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Abstract

In this paper, we introduce and analyze the Optimized
GEometric History Length (O-GEHL) branch Predictor
that efficiently exploits very long global histories in the 100-
200 bits range.

The GEHL predictor features several predictor tables
T (i) (e.g. 8) indexed through independent functions of the
global branch history and branch address. The set of used
global history lengths forms a geometric series, i.e., L(j) =
a/~1L(1). This allows the GEHL predictor to efficiently
capture correlation on recent branch outcomes as well as
on very old branches. As on perceptron predictors, the pre-
diction is computed through the addition of the predictions
read on the predictor tables.

The O-GEHL predictor further improves the ability of
the GEHL predictor to exploit very long histories through
the addition of dynamic history fitting and dynamic thresh-
old fitting.

The O-GEHL predictor can be ahead pipelined to pro-
vide in time predictions on every cycle.

1. Introduction

Modern processors feature moderate issue width, but
deep pipelines. Therefore any improvement in branch pre-
diction accuracy directly translates in performance gain.

The O-GEHL predictor [22] was recently proposed at the
first Championship Branch Prediction (Dec. 2004). While
receiving a best practice award, the 64 Kbits O-GEHL pre-
dictor achieves higher or equivalent accuracy as the exotic
designs that were presented at the Championship Branch
Prediction workshop [4, 15, 10, 1]. It also outperforms
Michaud’s tagged PPM-like predictor [17] which was the
only other implementable predictor presented at the Cham-
pionShip.
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In this paper, we analyze the O-GEHL branch predictor
in great details and explore the various degrees of freedom
in its design space.

The O-GEHL predictor (Figure 1) implements multiple
predictor tables (typically between 4 to 12) . Each table pro-
vides a prediction as a signed counter. As on a perceptron
predictor [8], the overall prediction is computed through an
adder tree. The index functions of the tables are hash func-
tions combining branch (and path) history and instruction
address. GEHL stands for GEometric History Length since
we are using an approximation of a geometric seriesfor the
history lengths L(i), i.e., L(i) = o'~ 1 L(1).
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Figure 1. The GEHL predictor

The O-GEHL implements a simple form of dynamic his-
tory length fitting [12] to adapt the behavior of the predic-
tor to each application. In practice, for demanding appli-
cations, most of the storage space in the O-GEHL predic-
tor is devoted to tables indexed with short history lengths.
But, the combination of geometric history length and of dy-
namic history lengths fitting allows the O-GEHL predictor
to exploit very long global histories (typically in the 200-
bits range) on less demanding applications. The O-GEHL
predictor also implements a threshold based partial update
policy augmented with a simple dynamic threshold fitting.

We explore in details the design space for the O-GEHL
predictor: number of predictor tables, counter width, min-
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imum and maximum history lengths, storage size impact,
update threshold. Experiments show that the O-GEHL pre-
dictor provides very accurate predictions. We also show
that the O-GEHL predictor is very robust in the sense that
overdimensioning or underdimensioning parameters such
as the maximum global history length, the update thresh-
old, or the counter width does not significantly impair the
predictor accuracy.

As for any state-of-the-art branch predictor, the response
time of the O-GEHL predictor is longer than a CPU cy-
cle since it involves the read of several large tables followed
a small adder tree. However, the O-GEHL predictor can be
adapted to provide predictions in time for use through ahead
pipelining [25].

Paper outline

The remainder of the paper is organized as follows. Sec-
tion 2 presents our experimental framework for simula-
tion and evaluation of the branch predictors. Section 3 in-
troduces the O-GEHL predictor principles. Section 4 ex-
plores the design space of the O-GEHL predictor. Section
5 shows that the O-GEHL predictor can be efficiently ahead
pipelined [25] in order to provide the prediction in time for
use. Finally, Section 6 reviews related work and summa-
rizes this study.

2. Evaluation framewor k

2.1. Simulation traces and evaluation metric

To allow reproducibility, the simulations illustrat-
ing this paper were run using the publicly available
traces provided for the 1st Championship Branch Pre-
dictor (http://www.jilp.org/cbp/). 20 traces selected from
4 different classes of workloads are used. The 4 work-
load classes are: server, multi-media, specint, specfp. Each
of the branch traces is derived from an instruction trace con-
sisting of 30 million instructions. These traces include sys-
tem activity.

30 million instruction traces are often considered as short
for branch prediction studies. However 30 million instruc-
tions represent approximately the workload that is executed
by a PC under Linux or Windows in 10 ms, i.e., the OS
time slice. Moreover, system activity was shown to have an
important impact on predictor accuracy [5]. Finally, some
traces, particularly server traces, exhibit very large number
of static branches that are not represented in more conven-
tional workloads such as specint workloads. The character-
istics of the traces are summarized in Table 1.

The evaluation metric used in this paper is mispredic-
tion/KI. Due to space limitations, in most places we will
use the average misprediction rate computed as the ratio of
the total number of mispredictions on the 20 benchmarks di-
vided by the total number of instructions in the 20 traces.

Since this study was performed on traces, immediate up-
date of the predictor is assumed. On a real hardware proces-
sor, the effective update is performed later in the pipeline,
at misprediction resolution or at commit time. However, for
branch predictors using very long global branch history, the
differences of accuracy between a delayed updated predic-
tor and an immediately updated predictor are known to be
small [7, 24].

2.2. Predictor initialization

Exact reproducibility supposes exact equal initial state.
In the simulation results presented in [22], all counters were
therefore initialized to zero. However, branch predictor be-
haviors might be sensitive to the initial state of the predic-
tor. Resetting counters before simulating each trace leads
to underestimate cold start effects. On the same hand, for
the O-GEHL predictor as well as for all the predictors us-
ing wide counters (perceptron predictors for instance), uni-
form random initialization of the predictor tables is not a
realistic initialization, since after an application execution
the contents of the predictor tables are not uniformly dis-
tributed.

In order to approach a realistic initialization point, the
simulations presented in this paper assume that the simula-
tions of the 20 traces are chained without resetting the pre-
dictor counters. Compared with assuming resetting all the
counters before simulating each trace, the discrepancy in
prediction accuracy is relatively marginal for O-GEHL pre-
dictors with moderate storage budgets (0.03 misp/KI for the
reference 64Kbits O-GEHL predictor). This discrepancy in-
creases with the storage budget and it also increases with the
width of the counters used in the predictor.

2.3. Information used for indexing the branch pre-
dictor

For computing the indexes for global history predictors,
most studies consider either hashing the conditional branch
history with the branch address or hashing the path history
with the branch address [19]. Both these solutions lead to
consider some paths as equal even before computing the ef-
fective index in the predictor tables. This phenomenon can
be called path aliasing. The impact of path aliasing on pre-
dictor accuracy is particularly important when a short global
history is used.

The O-GEHL predictor uses several tables indexed us-
ing short history lengths. Therefore path aliasing would im-
pair the accuracy of the predictions provided by the tables
indexed with short histories.

In order to limit this phenomenon, we include non-
conditional branches in the branch history ghist (inserting
a taken bit) and we also record a path history, phist con-
sisting of 1 address bit per branch. Since path aliasing im-
pact decreases when history length increases, the maximum

0-7695-2270-X/05/$20.00 (C) 2005 |IEEE



FP-1 FP-2 FP-3 FP-4 FP-5 INT-1 INT-2 INT-3 INT-4 INT-5
static branches 444 452 810 556 243 424 1585 989 681 441
dynamic branches (x10000) 221 179 155 90 242 419 287 377 207 376

MM-1 | MM-2 | MM-3 | MM-4 | MM-5 || SERV-1 | SERV-2 | SERV-3 | SERV-4 | SERV-5
static branches 460 2523 1091 2256 4536 10910 10560 16604 16890 13017
dynamic branches (x10000) 223 381 302 488 256 366 354 381 427 429

Table 1. Characteristics of the CBP traces

path history length considered in this paper is 16, i.e., the
path history length is equal to Min (history length, 16).

3. The O-GEHL predictor

In this section, we first introduce the general principles
of the GEHL branch predictor. Then we introduce two extra
features, dynamic history length fitting and dynamic thresh-
old fitting that enables the GEHL predictor to adapt its be-
havior to each particular application. We will refer to the
GEHL predictor augmented with dynamic history length fit-
ting and dynamic threshold fitting as the O-GEHL predic-
tor.

3.1. The GEHL predictor

The GEometric History Length (GEHL) branch predic-
tor is illustrated on Figure 1. The GEHL predictor fea-
tures M distinct predictor tables Ti, 0 < ¢ < M in-
dexed with hash functions of the branch address and the
global branch/path history. The predictor tables store pre-
dictions as signed saturated counters. To compute a pre-
diction, a single counter C(i) is read on each predictor ta-
ble Ti. As, on perceptron predictors [8], the prediction is
computed as the sign of the sum S of the M counters C(i),
S =% +3<icn C(@) 1. The prediction is taken when S
is positive or nul and not-taken when S is negative.

Distinct history lengths are used for computing the index
of the distinct tables. Table TO is indexed using the branch
address. The history lengths used for computing the index-
ing functions for tables Ti, 1 < i < M are of the form
L(i) = o'~ x L(1), i.e., the lengths L(i) form a geomet-
ric series. More precisely, as history length are integers, we
use L(i) = (int)(a’~1 x L(1)+ 0.5).

Using a geometric series of history lengths allows to
use very long history lengths for indexing some predic-
tor tables, while still dedicating the major of the storage
space to predictor tables using short global history lengths.
As an example on a 8-component GEHL predictor, us-
ing @ = 2 and L(1) =2 leads to the following series
{0,2,4,8,16,32,64,128}. Remark that 5 tables are indexed

1 For p-bit counters, predictions vary between —2P—1 and 27—1 — 1
and are centered on — 1

using less than 16 history bits while correlation on a 128-bit
history might still be captured.

3.1.1. Updatingthe GEHL predictor The GEHL predic-
tor update policy is derived from the perceptron predictor
update policy [8]. The GEHL predictor is only updated on
mispredictions or when the absolute value of the computed
sum S is smaller than a threshold 6. Saturated arithmetic is
used. More formally, the GEHL predictor is updated as fol-
lows, Out being the branch outcome:

if ((p !=0ut) or (|S] <))
for each i in parallel
if Outthen C'(i) = C(i)+1else C(i) = C(i)—1

3.1.2. Degrees of freedom in the design of GEHL pre-
dictors In Section 4, we will evaluate the degrees of free-
dom that exist for the design of a GEHL predictor.

First one can vary the number M of tables in the GEHL
predictor. We will show that using 4 to 12 tables provides
high level of accuracy. Second, we will show that using
4-bit counters is a cost-effective solution. Using a mix of
4-bit counter tables and 5-bit counter tables is the most
storage effective solution. However using 3-bit counters or
5-bit counters are also cost-effective solutions. Third, one
can vary the parameters of the geometric series of history

lengths, i.e., L(1) and L(M-1) since o = (L(ﬁl’)’) ) w3
For storage budget varying from 32 Kbits to 1 Mbits, the
GEHL predictor is able to capture correlation on very long
history in the hundred bits range. Furthermore, in Section
3.2, we propose a simple dynamic history length fitting
mechanism [12] for the GEHL predictor. With this mech-
anism, the O-GEHL predictor is able to adapt the used his-
tory lengths to each application and even to phases in the
application.

Fourth, one can vary the threshold 6 for updating the pre-
dictor. Using 8 = M, the number of tables in the GEHL pre-
dictor is a good tradeoff when using 4-bit counters. How-
ever, the best threshold varies with the application, it may
even vary during an application. In Section 3.3, we propose
a simple dynamic threshold fitting policy which adapts the
update threshold to the behavior of each application.
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3.2. Dynamic history length fitting for the GEHL
predictor

Experiments showed that, for a 8-component 64Kbits
GEHL predictor, some benchmarks would achieve their best
performance with a maximum history length L(7) around 50
(most of the server benchmarks) while others would bene-
fit from using very long histories in the 150 bits range.

Juan et al [12] proposed to continuously adapt the branch
history length during execution for global history branch
predictors. The GEHL predictor offers an opportunity to
implement such an adaptative history length fitting. We de-
scribe below such a history length fitting mechanism for a
predictor featuring 8 tables.

Eleven history lengths L(j) forming a geometric series
are used. For 3 out of the 8 predictor tables, Tables T2, T4
and T6, two possible histories lengths are used: Table T2 is
indexed using either L(2) or L(8), Table T4 is indexed using
either L(4) or L(9), Table T6 is indexed using either L(6) or
L(10).

The algorithm we propose to dynamically select the his-
tory lengths for indexing the predictor is based on a rough
estimation of the aliasing ratio on updates encountered on
Table T7. Table T7 is the predictor component using the
longest history apart L(8), L(9) and L(10). Intuitively, if Ta-
ble T7 experiences a high degree of aliasing then short his-
tories should be used on Tables 2, 4 and 6; on the other
hand if Table T7 encounters a low degree of aliasing then
long histories should be used.

In order to dynamically estimate the aliasing ratio on Ta-
ble T7, we add a tag bit to some entries of Table T7. We use
a single saturating 9-bit counter AC (for aliasing counter).
On a predictor update, the tag bit records one bit of the ad-
dress of the branch and we perform the following computa-
tion:

if ((p!=out) & (|S] < B)){

if (PC & 1) == Tag[indexT[7]]) AC++; else AC=
AC - 4;

if (AC == SaturatedPositive) Use Long Histories
if (AC == SaturatedNegative) Use Short Histories
Tag[indexT[7]] = (PC & 1);}

When the last update of the corresponding entry in Table T7
has been been performed using the same (branch, history)
pair, AC is incremented. When the last update has been per-
formed by another (branch, history) pair, AC is incremented
on false hits and decremented by 4 on misses.

When the ratio of conflicting updates on Table T7 by dis-
tinct branches remains below 40 %, AC tends to be positive
and therefore long histories are used. Using a 9-bit counter
and flipping from short to long histories and vice-versa only
on saturated values guarantee that such flippings are rare.

Simple is sufficient The proposed dynamic history length
fitting only chooses between two modes short histories and

long histories. More complex forms were tested, i.e., con-
trolling history length flipping component by component.
However, these more complex forms did not bring any sig-
nificant accuracy benefit.

Predictor training after history length flipping After an his-
tory length flipping, predictor tables T2, T4 and T6 suffer
from cold start effects. However the other predictor tables
are still warm and this ensures good accuracy during the
warming phase on tables T2, T4 and T6.

Other numbers of predictor tables For the simulations pre-
sented in this paper, we assume that history lengths are dy-
namically fitted on three predictor tables when the num-
ber of predictor tables is higher than or equal to 8, on two
predictor tables for 5 and 6-component O-GEHL predictors
and a single predictor table for the 4 component O-GEHL
predictor.

Remark Associating a tag bit per entry in predictor table T7
is not needed. For instance one can associated only a tag bit
to one out of N entries and ignore the other entries in the al-
gorithm to update the AC counter.

3.3. Adaptative threshold fitting for the GEHL
predictor

Experiments showed that the optimal threshold 6 for the
GEHL predictor varies for the different applications. For
some of the benchmarks and using a 8-table GEHL predic-
tor, the difference between using @ = 5orf = 14 as a
threshold results in 0.5 misp/KI variations. However, we re-
marked that for most benchmarks there is a strong correla-
tion between the quality of a threshold € and the relative ra-
tio of the number of updates on mispredictions NU,,,;ss and
the number of updates on correct predictions NU,orrect:
when NU,;ss and NU;orrect are in the same range, 6 is
among the best possible thresholds for the benchmark.

Therefore, we implement a simple algorithm that adjusts
the update threshold while maintaining the ratio ;7=iss
close to 1. This algorithm is based on a single saturated
counter TC (for threshold counter).

if ((p '=0Out) {TC=TC + 1; if (TC == Saturated-
Positive) {§ = 6 + 1, TC=0;} }

if (p==0ut) & (|S| < 8)) {TC=TC - 1;if (TC
== SaturatedNegative){§ = 6§ — 1; TC=0;}}

Using a 7-bit counter for TC was found to be a good
tradeoff.

3.4. The reference O-GEHL predictor

The simulations displayed in the paper are obtained
through varying parameters on the 64 Kbits 8-table O-
GEHL predictor presented in [22]. This predictor will be
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FP-1 | FP2 | FP-3 | FP-4 | FP5
1408 | 0934 | 0417 | 0097 | 0.031
L5 | L6 | L7 | L6 | L7
INT-L | INT-2 | INT-3 | INT-4 | INT5
0730 | 5595 | 9.032 | 1042 | 0.343
L2 | S7 | S8 L2 | L1
MM-1 | MM-2 | MM-3 | MM-4 | MM-5
7245 | 9057 | 0286 | 1419 | 4538
S11 | S13 | L 2 L5 | S5
SERV-1 | SERV-2 | SERV-3 | SERV-4 | SERV-5
2137 | 1685 | 4519 | 3538 | 2.846
S2 | S3 | S7 | S4 | sS4

Table 3. Accuracy of the 64Kbits reference O-
GEHL predictor (misp/KI)

referred to as the reference O-GEHL predictor. We recall
below its characteristics.

A O-GEHL predictor featuring 8 tables would normally
lead to 8 2K 4-bit counters tables and a 1K 1-bit tag table as-
sociated with Table T7, i.e. a total of 65 Kbits. For fitting in
the 64Kbits storage budget, the reference O-GEHL features
one table with only 1K counters, Table T1. Moreover, ex-
periments showed that using 5-bit counters on the tables in-
dexed with short history is beneficial. This allows to cap-
ture the behavior of very strongly biased branches. There-
fore while respecting the 64Kbits storage budget constraint
for the ChampionShip Branch Prediction, the reference O-
GEHL predictor mixes 5-bit counters and 4-bit counters:

e Tables TO and T1 implement 5-bit counters.
e Tables T2 to T7 implement 4-bit counters.
e Table T7 features an extra tag bit for half of its entries.

The characteristics of the reference O-GEHL predictor
are summarized in Table 2. Using 200 as L(10) the maxi-
mum history length and 3 as L(1) is one of the best trade-
offs on the set of the benchmark traces. The simulation re-
sults in misp/KI for this reference branch predictor are il-
lustrated on Table 32. Table 3 also illustrates if the refer-
ence O-GEHL predictor is essentially using long or short
(L or S) history length and the value reached by the update
threshold at the end of the simulation of the trace.

3.5. Prediction computation time and hardware
logic complexity on the O-GEHL predictor

3.5.1. Predictor response time The prediction response
time on most global history predictors involves three com-

2 Thedlight discrepancy with the results published in [22] is associated
with the absence of resetting the predictor when chaining the simula-
tions of the different traces (see Section 2.2)

ponents: the index computation, the predictor table read and
the prediction computation logic.

The indexing functions used for the simulations illustrat-
ing this paper can be implemented using a single stage of
3-entry exclusive-OR gates (cf. Section 3.5.3 below). A 2-
entry multiplexor is also used to select between the “short”
and the long history length for the predictor tables con-
cerned with dynamic history length fitting.

The predictor table read delay depends on the size of ta-
bles. For a 8Kbit table, a single cycle table read delay can
be considered.

The prediction computation logic on the O-GEHL pre-
dictor consists in an adder tree. The delay to cross this logic
depends on the number M of predictor tables and on the
width of the counter. For the 8-component O-GEHL pre-
dictor we are considering as a reference in this paper, a 9-
entry 5-bit adder tree is used. It can be implemented us-
ing a 3-stage carry save adder tree and a final 2-entry 8-bit
adder. Therefore the overall response time of this computa-
tion logic is approximately the same as the response time as
a 32-bit adder.

Typically, at equal storage budgets, the response time of
the O-GEHL will be slightly longer than the response time
of more conventional gshare or 2bcgskew predictors, since
the computation is slightly more complex.

3.5.2. Branch history management The O-GEHL pre-
dictor relies on using a very long branch history. This global
branch history as well as the path history are speculatively
updated and must therefore be restored on misprediction.

Checkpointing the complete branch history would be
very costly for the O-GEHL branch predictor. However, one
can use a circular buffer (for instance 512 bits) to store the
branch history [11]. Then only the head pointer of the circu-
lar buffer has to be checkpointed. Restoring the branch his-
tory consists of restoring the head pointer.

3.5.3. Addressing the indexing functions complexity
The O-GEHL predictor has been defined in order to cap-
ture correlation on very long histories in the 100-200 bits
range. Fully hashing the 200-bit history, the 16-bit path his-
tory and 32 branch address bits to compute a 11-bit
index for the reference O-GEHL predictor would nor-
mally require using 23 bit entry functions for comput-
ing each of index bit (for instance a 23-entry exclusive-OR
tree). The delay for computing such functions can be pro-
hibitive.

The index functions used for the simulations presented
in this paper can be computed using single three-entry
exclusive-OR gate for computing each index bit. We choose
to ignore some of the address bits and some of the history
bits as follows. For computing the hash function to index
Table Ti, 2™ being the number of entries on Ti, we regu-
larly pick 3n bits in the vector of bits composed with the
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| Table | 70 [ T2 | T2 | T8 | T4 | T5 | T6 | T7
short branch history length || L(0)=0 | L(1)=3 | L(2)=5 | L(3)=8 | L(4)=12 | L(5)=19 | L(6)=31 L(7)=49
long branch history length - - L(8)=79 - L(9)=125 - L(10)=200 -
counter width (bits) 5 5 4 4 4 4 4 4
tag bit - - - - - - - 0.5
entries 2K 1K 2K 2K 2K 2K 2K 2K
storage budget (bits) 10K 5K 8K 8K 8K 8K 8K 8K +1K (tags)

Table 2. Characteristics of the reference 64Kbits O-GEHL predictor

least significant bits of the branch address, the L(i) branch
history bits and the min(L(i),16) path history bits. Then we
simply hash this 3n bit vector in a n-bit index through a sin-
gle stage of 3-entry exclusive-OR gates.

Experiments showed very limited accuracy degradation
when using these simple hash functions instead of full hash
of the branch address, the branch history and path his-
tory. Using a single stage of 2-entry exclusive-OR gates
(i.e. picking only 2n bits) would result in 2-3 % global in-
crease of the number of mispredictions on a 64Kbits pre-
dictor while using no exclusive-OR (i.e., picking n bits and
directly using it as an index) would result in 10-11 % aver-
age increase of the number of mispredictions.

3.5.4. Miscellaneous hardware logic Hardware logic for
the O-GEHL predictor also includes counter update logic
and the logic for managing dynamic history length fitting
and dynamic threshold fitting.

3.6. The O-GEHL predictor and local history

As for the perceptron predictor [9], one could combine
both local and global histories on the O-GEHL predictor
using the adder tree as the metapredictor. Combining local
and global histories on the perceptron predictor was shown
to result in a substantial accuracy benefit: some correlations
that are not captured by the global history perceptron pre-
dictor are captured when local and global histories are used.

On the O-GEHL predictor, this phenomenom is much
more limited. Some applications marginally benefits from
using a local history. But for the 32kbits-1Mbit storage bud-
get range considered in this paper, we did not find any parti-
tion of the storage budget between local and global history
components that was leading to a total misprediction reduc-
tion compared with using only global history. In practice,
using a very long global history in the 100-200 range al-
lows to capture most of the correlations that are captured by
local history.

The design and implementation of the hardware for
maintaining speculative local history is very complex on a
deep pipelined processor [26]: many occurrences of a single
static branch can be in flight at the same time. Therefore, we

advocate for using only global history on a O-GEHL branch
predictor.

4. Performance evaluation and analysis of the
O-GEHL predictor

As mentioned in the previous section, there are various
degrees of freedom for designing a O-GEHL predictor. In
this section, we first compare the O-GEHL predictor accu-
racy with the ones of previous state-of-the-art predictors,
then we analyze these degrees of freedom.

4.1. Prediction accuracy against previous state-of-
the-art branch predictors

On Figure 2, we report simulation results for the 8-
component O-GEHL predictor, the 4-component O-GEHL
predictor, the optimized 2bcgskew predictor described in
[21] and the path based neural predictor [6]. These two last
predictors are often considered as the most efficient predic-
tors previously proposed in the literature. For the O-GEHL
predictor, for each predictor size, simulations were run for
L(1) varying from 2 to 8 and the maximum history length
(L(20) for 8-component, L(4) for 4-component), varying
from 25 to 300 with step 25. We report here the simula-
tion results for the best (L(1),L(10)) pair for each predictor
size. For the optimized 2bcgskew predictor, the 4 history
lengths for indexing the predictor components in a 2V+11
storage bits predictor are N, N, 4*N and 8*N (i.e. 5,5,20 and
40 for a 64Kbits predictor). For the path based neural pre-
dictor, we report simulation results for 256, 512, 1024 and
2048 entries predictors and increasing the history length till
the total misprediction number reaches a minimum (i.e re-
spectively for 38, 44, 58 and 58 history bits).

Simulation results are reported for predictor storage bud-
gets ranging from 32 Kbits to 1 Mbit.

Both the 4-component and the 8-component O-GEHL
predictor outperform both 2bcgskew and the path based neu-
ral predictor. The shapes of the accuracy curves are very
similar. There is a large benefit in enlarging the predictor
from 32Kbits to 64 Kbits, increasing the predictor size up
to 256 Kbits is still cost-effective, but further enlargening
the predictor has very limited return.
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Prediction tables size (Kbits)

Figure 2. Average misprediction rates

4.2. Impact of the number of components in the
GEHL predictor

Figure 3 presents simulation results for O-GEHL predic-
tors featuring 4 to 12 predictor tables. The best (L(1), max-
imum history length) pair is represented for each configura-
tion.

For large storage budgets, using more components brings
more accuracy: the quality of the prediction is augmented
by the larger number of inputs for the computation of
the prediction. For instance, a 192Kbits 12-component O-
GEHL predictor essentially achieves the same accuracy as
a 384 Kbits 6-component O-GEHL predictor (in average
2.43 misp/KI). On the other hand and for the set of con-
sidered benchmark traces, for small predictor storage bud-
gets (equal or less than 48 Kbits), using 5 or 6 components
is more cost-effective. For such a storage budget, doubling
the number of predictor components, but halving each indi-
vidual component storage budget does not bring any accu-
racy return: while some benchmarks benefit from the larger
number of inputs for computing the prediction, the accu-
racy on other benchmarks is impaired by more conflicts on
the predictor tables.

The effective complexity of the design of a predictor
does not only depend on the overall storage budget of the
predictor. The number of predictor components also influ-
ence the overall silicon area, the prediction computation
time, the update logic complexity and the power budget.
With the O-GEHL predictor, the designer can choose us-
ing any number of components between 4 and 12 and get
high accuracy.

4.3. O-GEHL predictor and history lengths issues

4.3.1. Senditivity to variation of history length parame-
ters The O-GEHL predictor is robust to variations of his-
tory length parameters. Figure 4 illustrates this robustness
for the reference O-GEHL predictor. On this figure, we vary
L(10) and L(1), i.e the maximum history length and the geo-

T T
4 tables —+—
5tables —=—
36 b 6 tables —x—
’ 8 tables —&—
10 tables —=—
12 tables —e—

w
©
T

mispredictions/KI

32 64 128 256 512 1024
Prediction tables size (Kbits)

Figure 3. Varying the number of components
on the O-GEHL predictor

mispredictions/KIl

2 1 1 1 1
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Max history length

Figure 4. Impact of varying history length pa-
rameters

metric factor of the series of history lengths. One can chose
any value in the interval [2,6] for L(1) and any value in the
interval [125,300] for L(10) without significantly varying
the average accuracy of the predictor on the benchmark set
(best accuracy 2.83 misp/KI for L(1)= 4 and L(10)= 250,
worst accuracy 2.95 misp/KI for L(1)=2 and L(10)= 125).

4.3.2. Impact of dynamic history length fi tting Figure 5
illustrates the accuracy of the O-GEHL predictor assuming
that dynamic history length fitting is enabled or not. When
history length fitting is not used, there is no significant ben-
efit in using an history longer than 100. One can note that
dynamic history length fitting allows to reduce the average
misprediction rate by approximately 0.2 misp/KI (best av-
erage 2.83 misp/KI against 3.03 misp/Kl).

Flipping from long to short history is a rare event. Traces
using “long” histories with the reference O-GEHL predictor
are the 5 FP traces, INT-1, INT4, INT-5, MM-3 and MM-4.
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Figure 5. Benefits of using dynamic history
length fitting; impact of path information

4.3.3. Impact of using path information Curve “conv.
branch history” on Figure 5 illustrates the benefit of using
the history information combining path and branch history
described in Section 2.3. The average misprediction rate is
reduced by approximately 0.1 misp/KI (best average 2.83
misp/KI against 2.96 misp/KIl).

However the benefit is not uniform over the whole
benchmark set, but is concentrated on a few bench-
marks (INT-2, MM-1, MM-5, SERV-4).

4.3.4. Using geometric history length instead of linear
history length In order to illustrate the benefit of using “
geometric history length”, Figure 5 also reports the simula-
tion results using “ linear history length” predictor , i.e., a
predictor where the function indexing component T(i) is us-
ing i*L(1) history bits.

For maximum history lengths L(10) smaller than 50, us-
ing linear history lengths is competitive with using geomet-
ric history lengths. However using linear history lengths
does not allow to accommodate very long history lengths
in the hundreds of bits range with a reasonable accuracy.

4.3.5. Using geometric history length is a good trade-
off In order to check the possible accuracy limits of a pre-
dictor featuring the reference O-GEHL characteristics apart
the use of geometric history length, we run an experiment
to determine the best series of history lengths as possible
for the benchmark set. The overall objective of this experi-
ence was to find a better family of series of history lengths.

The experiment was based on simulated anneal-
ing and several initial points were used and run for 4
days on a cluster of 20 biprocessor machines. Note that
the configuration found through this experiment is bi-
ased towards the set of benchmark traces. The best his-
tory length series configuration that was found was
{0,2,4,9,12,18,31,54,114,145,266} and the aver-
age misprediction rate for this configuration was 2.79

T
3 bits ——
4 bits —<—

mispredictions/KIl

2 1 1 1 1
32 64 128 256 512 1024

Prediction tables size (Kbits)

Figure 6. Varying counter width and predictor
size

misp/KIl, i.e., a mere 0.04 misp/KI reduction compared
with the reference O-GEHL predictor.

4.4. Counter width

On the perceptron predictor family, using 8-bit counters
to represent the weights was shown to be a good tradeoff.
On the O-GEHL predictor, using 4-bit counters is sufficient.

Figure 6 represents the accuracy of the O-GEHL pre-
dictor varying the predictor storage budgets and different
counter widths. In this experiment, all the simulated predic-
tors use the history lengths presented in Table 2.

This experiment shows that using 4-bit counters is a good
tradeoff, even for moderate storage budgets. Figure 6 also
clearly indicates that the main benefit of using wider coun-
ters is to smoothen the impact of aliasing on the predictor.
For a storage budgets around 32 Kbits, 3-bit and 4-bit coun-
ters fail to deliver the same accuracy 5-bit counters for pre-
dictor. For a storage budget around 64 Kbits, using 4-bit
counters is sufficient and for large predictors even using 3-
bit counters brings competitive accuracy.

4.5. Update threshold

As the perceptron branch predictors, the O-GEHL pre-
dictor uses an adder tree and a partial update policy
associated with a threshold on the computed predic-
tion. The threshold proposed for the perceptron predictors
[8], 6=1.93M+14, does not fit the O-GEHL predic-
tor.

Figures 7 and 9 report simulation results assum-
ing that dynamic threshold fitting is disabled and varying
the counter widths and the update thresholds for respec-
tively small (around 64 Kbits) and large (around 512Kbits)
O-GEHL predictors. These figures show that the best
threshold depends on both the counter width and the pre-
dictor size. Moreover, the best threshold also depends on
the benchmark as illustrated on Figure 8.
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Curves 3-bit on Figures 7 and 9 illustrates an interest-
ing phenomenon associated with aliasing. Using a small up-
date threshold decreases the number of updates associated
with correct predictions and therefore decreases the destruc-
tive aliasing impact. For relatively small predictors, destruc-
tive aliasing has a large impact on the predictor behavior,
therefore using a small update threshold is better (Figure
7). On larger predictors, aliasing is more limited, stabiliz-
ing the prediction through updates on correct predictions
has a higher accuracy impact than destructive aliasing (Fig-
ure 9).

Figures 7 and 9 also reports simulation results using our
dynamic threshold fitting policy. Dynamic threshold fitting
adapts the behavior of the predictor to the predictor size and
the application. While it does not systematically outperform
the best fixed threshold on a per benchmark basis, it out-
performs the best fixed update threshold in average for the
whole set of traces. In particular, dynamic threshold fitting
appears to adapt the update threshold to the aliasing ratio
through the following scenario. When the aliasing ratio in-
creases on the predictor tables, the fraction of predictions
with small absolute values tends to increase and therefore
the number of updates on correct predictions also increases.
Hence the dynamic threshold fitting algorithm tends to de-
crease the update threshold.

Dynamic threshold fitting is a general technique for global
history predictors Experiments showed that the dynamic
threshold fitting algorithm we have proposed for the O-
GEHL predictor also works for the path based neural branch
predictor as well as the global history branch predictor. For
instance, on the path based neural predictor, our experi-
ments showed that one can use 7-bit counters instead of 8-
bit counters and still get a 2-3 % lower misprediction rate
than when using the fixed update threshold predictor.

mispredictions/KI

Fixed update threshold
Figure 8. Varying the update threshold 6 on

the reference 64Kbits O-GEHL predictor: per
benchmark results
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5. In time prediction with the O-GEHL pre-
dictor

The prediction computation time on any complex
branch predictor is longer than a single cycle on a high-
performance processor. Therefore, many processors (e.g.
Alpha EV6 [13] or EV8 [24]) have been designed us-
ing a fast, but relatively inaccurate predictor, backed with
a more accurate but slower branch predictor. Such an ap-
proach results in a substantial loss of instruction fetch
bandwidth.

However, global history (or path) branch predictor can
be adapted to provide in-time prediction through ahead
pipelining [25, 6, 23, 28]. Prediction computation can be
started X cycles before the actual cycle T when the predic-
tion is needed. Information available at cycle T-X is used
for the prediction, but also some intermediate information
(path or history) collected during the intermediate cycles
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can be used at the end of the computation. In this section,
we present a general principle to compute prediction in time
on any most global history predictors. Then we present sim-
ulations results for an ahead pipelined O-GEHL predictor.

5.1. Ahead pipelining a global history branch pre-
dictor

If a global history predictor relies on the simultaneous
read of several predictor components then it can be ahead
pipelined to provide the prediction in time for use apply-
ing the principle describe below. This principle was already
used in [25].

5.1.1. Prediction computation Let us assume that the
computation prediction by the global history predictor re-
quires X-1 cycles.

The prediction computation is done in two steps:

1. Cycle TO-X: parallel computation of 2™ speculative
predictions The prediction computation is initiated at
cycle TO-X i.e. X cycles ahead the use of the predic-
tion. The prediction computation is initiated with the
available information, i.e., the X-block ahead address
and the X-block ahead history h. However, this X-
block ahead information is not sufficient to provide ac-
curate prediction. Therefore some information on the
intermediate path from the block fetched at cycle TO-
X and the block fetched at cycle TO must also be used.
A vector V of m bits of information on the intermedi-
ate path is used for the prediction: the value of this vec-
tor is unknown at TO-X, then 2™ predictions p(i) cor-
responding to the 2™ possible values of the m-bit vec-
tor V are computed in parallel.

2. Cycle TO: effective prediction selection: at the end of
cycle TO-1, the 2™ predictions p(i) are available. At
cycle TO, the effective information vector V is known
and is used to select the correct prediction p(V). We
found that the exclusive-OR of a few bits of the cur-
rent block address and of the most recent history bits
is a good tradeoff for vector V.

5.1.2. Resuming on a misprediction or an interruption
On a misprediction (or an interruption), the X-block ahead
global branch predictor cannot deliver the prediction in-
time for the next X-1 cycles.

However, if the 2™ possible predictions associated with
the 2™ possible m-bit information vectors on intermedi-
ate path have been checkpointed, then the checkpoint logic
can deliver the predictions for the X-1 blocks following the
misprediction. This allows to resume instruction fetching
just after branch execution without extra mispenalty and/or
without waiting for committing the branch instruction (see

[25]).

Remark that for m smaller than 5 or 6, the storage cost of
these 2™ possible predictions remains small compared with
the volume of information to be checkpointed.

5.1.3. Hardwaretradeoffs Global history branch predic-
tors feature storages tables and hardware computation logic.
In order to compute 2™ predictions in parallel, 2™ adjacent
entries are read on each table instead of a single counter on
a conventional one-block ahead predictor. 2™ copies of the
prediction computation logic must also be implemented,

For predictors, with very limited prediction computation
logic (e.g. a 4-bit entry gate for 2bcgskew [25]), the cost of
these 2™ copies of the prediction computation logic remains
small, even for m=6. For the O-GEHL predictor, the cost of
duplicating the prediction computation logic is higher, but
is still affordable for m < 4.

5.2. Ahead pipelining the O-GEHL predictor

In this section, we will assume that the O-GEHL pre-
dictor is part of an instruction address generator in charge
of delivering a basic block address and its size on each cy-
cle as the decoupled instruction fetch front-end proposed in
[20].

For medium storage budget such as 64Kbits, the re-
sponse time of the reference O-GEHL predictor should be
around 3 cycles including 1 cycle for computing the index
functions, 1 cycle for reading the predictor tables (these ta-
bles are 8Kbit tables) and 1 cycle to compute the prediction
through the adder tree.

Figure 10 illustrates the accuracy for 3,4 and 5-block
ahead pipelined O-GEHL predictors assuming respectively
that 2, 3 and 4 bits of intermediate information (i.e., the
intermediate branch history information ) are used to se-
lect the final prediction. The best (L(1),L(10)) pairs are pre-
sented for each configuration.

As expected, some loss of accuracy is encountered par-
ticularly for small predictors compared with the ideal 1-
block ahead predictor. However this accuracy loss is rela-
tively small, and decreases with the size of the predictor.
For the 3-block ahead O-GEHL predictor, it decreases from
0.16 misp/KI for a 32 Kbits predictor to 0.06 misp/KI for
the 1 Mbit predictor. For small predictors, this loss of ac-
curacy is essentially associated with extra interferences on
tables indexed with short histories.

The robustness of the O-GEHL predictor on variations of
the (L(1), L(10)) pairs described in Section 4.3.1 still holds
for the ahead pipelined O-GEHL predictor as illustrated for
a 4-block ahead 64 Kbits O-GEHL predictor on Figure 11.

6. Related worksand summary

The design of the O-GEHL predictor capitalizes on the
previous research on branch prediction during the 15 last
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Figure 10. Accuracy of ahead pipelined O-
GEHL predictors

years. We borrowed multiple techniques from the previ-
ously proposed branch predictors. First, the O-GEHL pre-
dictor uses multiple predictor components indexed with dif-
ferent history lengths. The use of multiple history lengths
in a single branch predictor was initially introduced in [16],
then was refined by Evers et al. [3] and further appeared in
many proposals. On a multiple predictor component, the ac-
curacy of each component may be significantly impaired by
aliasing [30]. Using multiple components with close history
lengths was recognized to reduced the aliasing impact (e.g.
the skewed branch predictor[18], the agree predictor [27],
the bimode predictor [14], the YAGS predictor [2]). By us-
ing several short history components, the O-GEHL predic-
tor suffers very limited accuracy loss due to aliasing on ta-
bles indexed with short histories.

The O-GEHL predictor also borrows techniques from
the perceptron-like predictors. As perceptron-like predic-
tors [29, 8, 9, 6, 23, 28], the O-GEHL predictor does not use
storage based metapredictors, but computes the prediction

45 T T T

mispredictions/KI

25 Il Il Il Il
50 100 150 200 250 300

Max history length

Figure 11. Varying history length parameters
on a 4-block ahead O-GEHL branch predictor

through an adder tree. This adder tree does not “waste” stor-
age space for metaprediction. Associating a single weight to
a group of history bits was first proposed in [23], then inde-
pendently refined in [28] and in this work.

As the perceptron predictor, the O-GEHL predictor uses
a partial update policy considering a threshold. We intro-
duce dynamic update threshold fitting that adapts the thresh-
old to the behavior of the application. Dynamic update
threshold fitting was shown to be beneficial for the O-GEHL
predictor as well as for predictors from the perceptron pre-
dictor family.

The O-GEHL predictor makes a better usage of the stor-
age budget than the previously proposed global history pre-
dictors. Branch outcomes are statistically more correlated
with recent branches than with very old branches. By using
geometric history lengths, the O-GEHL predictor spends
most of its storage budget on the shortest history compo-
nents. On demanding applications, our reference O-GEHL
predictor uses %ths of its storage budget for capturing cor-
relation on history shorter than or equal to 12 bits. This
has to be compared with a 48-bit global history percep-
tron predictor, which uses only ith of the storage budget
for weights associated with the 12 most recent branches or
with a 2bcgskew predictor that devotes most of its storage
to long histories. Moreover on less demanding applications,
the association of a simple form of dynamic history length
fitting [12] with the use of geometric history lengths allows
the O-GEHL predictor to capture correlation on very old
branch outcomes. Furthermore, this association allows the
O-GEHL predictor to be very robust to the choice of his-
tory length parameters. Unlike, most previously proposed
global history predictors, overdimensioning the maximum
history length does not dramatically decrease the predictor
accuracy.

The hardware complexity of the computation logic of
the O-GEHL predictor is also significantly lower than the
ones of the previous perceptron-like predictors since it uses
a smaller number of entries in the adder tree and narrower
counters.

The design space of cost-effective O-GEHL predictors
is large. Depending on implementation tradeoffs one can
use from 4 to 12 tables, one can use 4-bit, 5-bit or even
3-bit counters. High level of accuracy are obtained for a
broad spectrum of maximum history lengths, for instance
any length in the 125-300 range for a 64 Kbits O-GEHL
predictor.

As the other global branch history predictors[25, 6, 23,
28], the O-GEHL predictor can be ahead pipelined to pro-
vide predictions in time for the instruction fetch engine.
The accuracy of a 3-block ahead pipelined O-GEHL pre-
dictor remains in the same range as the accuracy as the 1-
block ahead O-GEHL predictor, while the complexity of
the extra hardware needed to computed the prediction re-
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mains limited. It should be noted that the systolic-like ahead
pipelining technique originally proposed by Jiménez [6] for
the path based neural predictor and later refined by Tarjan
and Skadron [28] for the hashed perceptron could also be
adapted to the O-GEHL predictor.
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