

Scalable Load and Store Processing in Latency Tolerant Processors

Amit Gandhi† Haitham Akkary Ravi Rajwar Srikanth T. Srinivasan Konrad Lai
†Electrical and Computer Engineering

Portland State University

Microarchitecture Research Lab
Intel Corporation

†gandhi@ece.pdx.edu, {haitham.h.akkary, ravi.rajwar, srikanth.t.srinivasan, konrad.lai}@intel.com

Abstract

Memory latency tolerant architectures support thou-
sands of in-flight instructions without scaling cycle-
critical processor resources, and thousands of useful in-
structions can complete in parallel with a miss to mem-
ory. These architectures however require large queues to
track all loads and stores executed while a miss is pend-
ing. Hierarchical designs alleviate cycle time impact of
these structures but the CAM and search functions re-
quired to enforce memory ordering and provide data for-
warding place high demand on area and power.

We present new load-store processing algorithms for
latency tolerant architectures. We augment primary load
and store queues with secondary buffers. The secondary
load buffer is a set associative structure, similar to a
cache. The secondary store buffer, the Store Redo Log, is
a first-in first-out structure recording the program order
of all stores completed in parallel with a miss, and has no
CAM and search functions. Instead of the secondary store
queue, a cache provides temporary forwarding. The SRL
enforces memory ordering by ensuring memory updates
occur in program order once the miss returns.

The new algorithms eliminate the CAM and search
functions in the secondary load and store buffers, and
remove fundamental sources of complexity, power, and
area inefficiency in load/store processing. The new or-
ganization, while being area and power efficient, is com-
petitive in performance compared to hierarchical designs.

1. Introduction

Large instruction window processors capable of sus-
taining thousands of in-flight instructions can effectively
tolerate relatively increasing memory latencies. They do
so by executing thousands of useful miss-independent
instructions in parallel with the pending miss [13]. These
independent instructions constitute a significant portion of
the instruction window following a miss [11]. Recent pro-
posals have demonstrated how to design processors to
sustain such large numbers of in-flight instructions with-
out having to scale up the cycle critical register file and
scheduler, and the reorder buffer [5, 17].

Continual Flow Pipeline processors [17] achieve re-
source efficiency by ensuring instructions that depend
upon a long latency miss do not block cycle critical proc-
essor resources. These resources become available for
subsequent miss-independent instructions to execute and
complete. The approach is particularly effective because
the majority of instructions following a long latency miss
are independent of the miss. These instructions can exe-
cute and speculatively retire, freeing up their resources in
the process. The small numbers of miss-dependent in-
structions drain out of the pipeline, releasing their re-
sources, and wait in a simple first-in first-out data buffer.
When the miss returns, these miss-dependent instructions
re-enter the pipeline, re-allocate resources, and execute.
The processor then integrates the results of the miss-
independent and miss-dependent instructions together
without requiring the miss-independent instructions to be
re-examined. Since miss-dependents do not block re-
sources, small sizes for the register file, scheduler, and
reorder buffer are sufficient to sustain thousands of in-
flight instructions to tolerate a long latency miss. The
small sizes result in resource efficiency. High power effi-
ciency arises because the numerous miss-independent
instructions are not re-executed.

While the above proposals effectively address the reg-
ister-file, scheduler, and reorder buffer for designing very
large instruction window processors, they nevertheless
require buffering all loads and stores to ensure correct
memory ordering and data forwarding requirements.

A load might have incorrectly executed because either
a memory dependence predictor incorrectly predicted the
load to be independent of a miss-dependent store, or a
store to the same address from another thread or processor
executed, thus requiring the load to re-execute to enforce
correct multiprocessor memory ordering. Detecting these
conditions requires tracking all loads, dependent and in-
dependent. Conventional load queues implement this as a
fully associative CAM of the store address against all
loads in the load queues.

Store queues aid memory-address disambiguation be-
tween stores and loads, provide buffering for stores until
retirement, and provide data to loads following the stores.
These functions require searching the store queue because

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

a load may depend upon any store in the queue, and mul-
tiple stores to the same address can be simultaneously
present in the store queue. Hierarchical solutions to the
store queue design [1] ensure the latency tolerant proces-
sor meets cycle time constraints. However, these hierar-
chical structures occupy significant area and display
power inefficiencies. The CAM and the search required
for memory ordering and data forwarding is a fundamental
source of complexity, power, and area inefficiency. Re-
cent proposals [15, 16] address complexity of these struc-
tures by reducing their active power, optimizing search
through filtering, and sectoring, but do not address the
CAM itself and largely ignore the increasing area foot-
print of very large fully associative store queues.

We present new scalable load and store-processing
mechanisms for memory latency tolerant processors.
These mechanisms do not require searching large secon-
dary load and store queues. We take advantage of a key
property of latency-tolerant processors: in the presence of
a long latency memory miss, a significant portion of the
useful instructions (including loads and stores) following
the miss, are independent of the miss [11], and do not
need to re-execute when the miss returns. This allows us
to optimize their processing. Further, the instruction win-
dow in latency tolerant processors needs to scale only in
the presence of a long latency miss. The secondary buffers
are operational only during the miss, while small conven-
tional primary load and store queues are sufficient in the
absence of misses.

The secondary load and store processing has three key
actions:

1. Miss-independent stores temporarily update a
cache and use it to forward to future independent
loads. Their program order is recorded in a first-in
first-out Store Redo Log (SRL),

2. The temporary updates are discarded when the
miss returns and the slice executes. The independ-
ent stores re-update the cache using the store redo
log appropriately interleaved in program order
with the miss-dependent instructions, and

3. Internal and external stores are snooped by a set-
associative secondary load address buffer. Recov-
ery is checkpoint-based and checkpoint bits de-
termine where to roll back. Because recovery is
coarse-grain, exact load order information is not
necessary, and thus a set-associative cache struc-
ture is sufficient. This allows a scalable solution
for load processing without loss in performance.

The first action provides simple and fast store-to-load
forwarding. Since these stores were independent of the
miss, they do not have to re-execute when the miss re-
turns. The second action ensures correct ordering. Dis-
carding temporary updates restores the correct memory
image to miss-dependent loads and stores. The third ac-
tion ensures that in case of a memory-dependence predic-

tion violation or a consistency violation, execution restarts
from the appropriate point.

These actions do not require associatively searching ei-
ther the large secondary store queue or the load buffer,
and thus do not require CAM logic. Eliminating the CAM
logic structure from each cell of the secondary load and
store buffers and not requiring fully associative searches
outweighs the performance and power overhead of re-
updating the cache. Instead of optimizing the search of
these structures, as some earlier proposals do [15, 16] via
filtering and sectoring, we eliminate the search itself.

This paper makes the following contributions to
load/store processing in latency tolerant processors:

• A novel redo algorithm for processing store opera-
tions that does not require searching a large sec-
ondary store queue for maintaining ordering.

• A simpler and smaller secondary store queue
structure because it does not have a CAM. This
means much smaller area and lower power de-
mands.

• A simple secondary load buffer that is scalable and
set-associative. The buffer has a cache organiza-
tion. A store identifier per entry determines load
and store program order and checkpoint bits allow
rollback to recover from memory violations.

Section 2 describes a baseline latency tolerant proces-
sor, motivates the need for large load/store queues in such
processors, and presents a complexity analysis of conven-
tional load and store queues. Section 3 and Section 4 pre-
sent our new load and store proposals. Section 5 presents
experimental methodology and Section 6 presents power,
performance, and area results. We discuss related work in
Section 7 and conclude in Section 8.

2. Latency tolerant processor design

We begin by describing our baseline latency tolerant
processor in Section 2.1. We qualitatively and quantita-
tively motivate the necessity for large load and store buff-
ers for latency tolerant processors in Section 2.2 and we
discuss the complexity of load and store processing in
Section 2.3.

2.1 Baseline microarchitecture
Our baseline processor, shown in Figure 1 is a Contin-

ual Flow Pipeline (CFP) processor [17] implemented on a
reorder-buffer-free Checkpoint Processing and Recovery
(CPR) microarchitecture [1]. CPR removes scalability
limitations for branch misprediction recovery and register
reclamation mechanisms. A small number of selectively
created register rename-map table checkpoints enable
quick and efficient misprediction recovery. These check-
points also enable CPR to implement an aggressive regis-
ter reclamation scheme and provide precise interrupts.
CPR decouples register reclamation from instruction re-

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

tirement. Since CPR does not have a reorder buffer,
checkpoint counters track instruction completion. A
checkpoint is committed instantaneously, in a bulk com-
mit manner, when all instructions within it have com-
pleted. CPR provides resource-efficient processor design
to handle short and medium latencies. A CFP mechanism
allows the processor to handle even very long latencies in
a resource efficient manner.

In conventional processor designs, a long latency miss
and its dependent instructions occupy cycle critical regis-
ter file and scheduler resources while the miss is pending.
These blocked instructions stall the processor for a long
time since later miss-independent instructions, which are
in the thousands and are a significant fraction of the useful
window that can execute in the shadow of a miss, are un-
able to execute because they do not have resources. In a
CFP processor, the long latency miss operations and their
dependents do not occupy cycle-critical structures while
the miss is pending. Doing so allows future miss-
independent instructions to execute and complete in paral-
lel with the outstanding miss. These miss-independent
instructions speculatively retire, and their results are auto-
matically integrated when the miss-dependent instructions
(called the miss forward slice) later execute. The miss-
dependent instructions, along with their ready source op-
erands, leave the processor pipeline, release their sched-
uler, register file, and reorder buffer resources (if CFP is
on a machine with a reorder buffer), and drain into a first-
in first-out slice data buffer (SDB).

A poison bit associated with each physical register and
store queue entry identifies the slice and propagates de-
pendence information. A load that misses to memory sets
its destination register’s poison bit. Any subsequent in-
structions reading the register inherit the poison bit for
their destination registers. This bit propagates through the
load-miss dependence chain until the miss data returns. A
store reading a poisoned destination also sets its store
queue entry’s poison bit. Memory dependences are also
properly constructed. Destination registers of loads de-
pendent on a poisoned store or predicted to depend on a

poisoned store by a memory dependence predictor [4, 14]
have their poison bits set.

2.2 Necessity for large load and store queues
In CFP processors, even though miss-independent in-

structions complete and speculatively retire thus releasing
any cycle-critical microarchitecture resources, the proces-
sor must track all load and store operations in these in-
structions until all instructions are architecturally commit-
ted after the miss-dependent instructions are processed.
This is to ensure correct memory ordering and data for-
warding. While these operations do not occupy cycle-
critical structures, they occupy large secondary buffers.

2.2.1 Tracking loads
In a CFP processor, even though miss-independent

loads have completed, the conventional load queue needs
to be large enough to buffer all load addresses: dependent
and independent. The processor uses a memory depend-
ence predictor to determine whether a load depends upon
a miss-dependent store. This store might not have a
known address. The address of the independent load has
to be kept in a queue and must be checked when the miss-
dependent store eventually executes. Further, to ensure
proper multiprocessor memory ordering, the processor
must record the addresses of all loads executed and specu-
latively retired, and check these load addresses against
stores from external processors. Our experiments suggest
a load queue size of at least 512 entries for the best per-
formance configuration.

2.2.2 Tracking stores
As with load operations, CFP tracks dependent and in-

dependent stores. A miss-dependent store will result in all
stores after it in program order to wait until the miss re-
turns and the store executes. This is because store updates
to memory changes architectural state, and therefore must
occur in program order. Independent stores, even though
they have completed, must wait until the prior stores com-
plete in program order before updating memory.

uOP
Queues

Instruction
Decoder

Allocate
and

Register
Rename

Scheduler

Register
File and
Bypass

L2
Cache

Memory
Interface

FIFO Slice Data Buffer
Slice Rename

Filter

Slice
Remapper Slice Processing Unit

Functional
Units

STQ

D$

Figure 1 Block diagram of a CFP processor

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

Figure 2 shows the performance sensitivity of a CFP
processor to the size of its store queue (See Table 1 and
Table 1 for configuration and benchmarks). The y-axis
shows speedup over a configuration with only a 48-entry
store queue, and the x-axis shows various store queue
sizes from 128 to 1024 entries. As can be seen, the store
queue must be at least 512 entries to achieve the best per-
formance configuration, and such a size is a significant
increase over current store queue sizes of 24-32.

Completed independent stores must also forward data
to later independent loads. In an x86 CFP implementation,
depending upon the application, the store queue forwards
to 20-35% of loads. These loads must search the inde-
pendent stores in a large store queue and source data.
Multiple store queue entries may correspond to the same
address and correct store identification is necessary. A
load may also need data from multiple store queue entries,
and a mechanism for properly aligning data is necessary.
Since loads are critical operations and must get their data
quickly, the store queue must forward data quickly, typi-
cally within the latency of L1 data cache hit. Doing so is
difficult for very large store queues.

To make the store queue manageable, the CFP proces-
sor uses a two-level hierarchical store queue organization
[1]. The first level store queue (L1 STQ) is small (~48
entries) and fast. It holds the most recent stores. The sec-
ond level store queue (L2 STQ) is large (~1024 entries)
and slow and holds older stores displaced from the L1
STQ. Store to load forwarding typically occurs from the
L1 STQ because stores typically forward to nearby loads.
While this organization provides good performance and
does not affect critical cycle time, it places high demands
on power and area and makes it a resource inefficient de-
sign.

2.3 Load/store processing complexity
Load queue complexity arises from the full CAM per-

formed on internal and external store addresses. Store
queue complexity arises because of the matching circuitry

required to compare issued load addresses with store ad-
dresses in the store queue, selecting the correct matching
store for forwarding, and, forwarding data to the load
from the selected matching store.

Figure 3 shows a store queue with a CAM, select cir-
cuitry, and the data array, and the CAM array cell. Each
cell has storage for one address bit, one write port to drive
the address into the store queue when a store issues, one
read port to access the address when a store commits to
memory, and a one-bit-comparator implemented as an
XOR logic gate. A precharge/discharge signal performs an
AND of all bit-comparator outputs within a store entry to
generate an address match signal.

Processing multiple loads and stores per cycle requires
additional comparators and ports. Every issued load acti-
vates the CAM array entries for all stores located prior to
the load in the instruction window. This results in signifi-
cant power consumption in the CAM structure, when the
store queue size grows. Further, the CAM structures
themselves contribute to leakage power.

Proposals for dealing with store queue complexity [1,
15, 16] have focused on reducing search bandwidth, re-
ducing active power, and tolerating the match-and-search
latency using hierarchy, sectoring, and filtering, in various
combinations. While they are effective in reducing active
power (by up to 90% in some cases), they do not eliminate
the dynamic power associated with the numerous CAM
cells, nor do they reduce the area and the leakage power
of these large store queues.

3. A new secondary load buffer design

We propose a set-associative secondary load buffer.
Unlike the primary load queue, it is not organized as a
first-in first-out program order queue. Completed loads in
the shadow of a miss allocate a L2 load buffer entry based
on the load’ s data address. Miss-dependent loads allocate
an L2 load buffer entry when they complete, after the miss
data returns. Each entry consists of a tag, the identifier of
the nearest store, and checkpoint bits. These checkpoint
bits can be bulk reset to remove instantaneously all loads
belonging to a given checkpoint from the load buffer. A
forwarding store identifier is also stored for each entry to
indicate the store, if any, that forwarded data to the load.

Enforcing load-store dependence: A store is assigned
an identifier when it is allocated the store buffers. In our

Figure 2 Impact of store queue size for a latency
tolerant processor.

0

5

10

15

20

25

30

35

40

SFP2K SINT2K WEB MM PROD SERVER WS

P
er

ce
nt

 s
pe

ed
up

 o
ve

r b
as

el
in

e

128-entry STQ
256-entry STQ
512-entry STQ
1K-entry STQ

Se
le

ct
io

n
 L

og
ic

CAM
Array

RAM Data
Array

WR
Port

RD
Port

LD
ADDR

CLK

MATCH

Bit

Figure 3 Store queue and CAM array cell.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

design, a store identifier corresponds to the SRL entry the
store is allocated. A wrap-around bit can determine the
program order of any two arbitrary stores with a simple
magnitude comparison of their identifiers. When a load
allocates, it gets the store identifier of the last allocated
store prior to it in program order. A magnitude compari-
son of the store identifier of the load and store determines
their relative program order. When a store completes, it
looks up the load buffer. On an address match, the load
buffer entry’ s nearest store identifier and the forwarding
store identifier (if set) are used to determine if a memory
dependence violation occurred. When a memory depend-
ence violation is flagged, the execution restarts from the
checkpoint of the violating load, determined by the load
entry’ s checkpoint bits. The load buffer differs from con-
ventional cache organizations since multiple loads with
the same address are allocated different entries in the set.
In case of a store address hit and memory dependence
violations on more than one load entry, a program order
check of the violating loads determines the oldest violat-
ing load in program order, and a restart from the oldest
load checkpoint is initiated.

Enforcing multiprocessor memory ordering: Snoop-
ing external stores for enforcing processor ordering does
not require an order check between the snooped store and
the hit load. A snoop address hit by an external store on
any load initiates a restart from the load’ s checkpoint. If
an external store snoop hits more than one load in the set,
the restart is initiated from the oldest load checkpoint.

Because of the limited capacity in the load buffer array,
a set-overflow may occur when a new load enters the load
buffer. One option for handling these overflow cases is to
use a small fully associative victim load buffer for over-
flow loads, or simply to take a memory ordering violation
on the overflow.

The baseline checkpoint processing and recovery ar-
chitecture ensures forward progress by guaranteeing that a
new checkpoint is created on the next instruction after a
prior restarted checkpoint, thus ensuring at least one in-
struction always retires.

4. A redo approach to processing stores

The new algorithm replaces the L2 STQ of a hierarchi-
cal store queue [1] (which requires search and forward
capability) with a much simpler non-searched structure
with significantly less area and power demands while pro-
viding competitive and at times better performance.

4.1 Decoupling ordering from forwarding
Our goal is to eliminate the search and forwarding

functions required of the L2 STQ. This would allow us to
reduce area and power by eliminating the CAM cells and
the cycle-critical forwarding circuitry. We first sketch our
approach below.

We replace the L2 STQ with a first-in first-out (FIFO)
structure that does not forward and that records all stores
in program order. This structure also does not require
search capability. However, independent loads must ac-
cess data from prior independent stores if necessary. For
this, we use the data cache itself. Independent stores will
update the data cache, even before they retire, so that later
loads can access their data. However, since program order
requires stores to update the cache in order, these cache
updates are temporary. The data cache now provides the
forwarding function of the secondary store queue, and
provides temporary buffering space. To prevent the cor-
rect memory state (that should be seen by the miss-
dependent instructions prior to a temporary store) from
being lost, any dirty block that is temporarily updated
must, prior to the update, be written back to the next level
in the memory hierarchy.

Independent stores execute, temporarily update the
cache, and complete. Future independent loads will access
the cache (instead of the secondary store queue) to read
data of prior independent stores.

Once the cache miss returns, dependent instructions re-
enter the pipeline, re-allocate register and scheduler re-
sources, and execute. These dependent instructions are
interleaved with the completed miss-independent instruc-
tions in program order. To enable these dependent instruc-
tions to see the correct memory state, the temporary up-
dates made by the independents are discarded. The inde-
pendent instructions however have speculatively retired
and do not need to be re-executed because they do not
depend upon the cache miss.

To ensure memory updates occur in program order, the
independent stores (recorded in the secondary store queue
in program order) must “re-update” the cache in program
order and be properly interleaved with the execution of
miss-dependent instructions, after the cache miss is ser-
viced. These independent stores do not re-enter the pipe-
line and do not consume execution resources: they just
update the cache from the secondary store queue consum-
ing only cache write bandwidth. Data dependences are
maintained because a dependent load executes only when
a prior independent store has re-updated the cache.

Since the independent stores have to be redone in pro-
gram order from the secondary store queue, we call that
structure the Store Redo Log (SRL). The SRL is the L2
STQ without any search and forward capability.

Independent stores from the SRL do not consume exe-
cution bandwidth and their re-update of the cache con-
sumes only cache write-bandwidth. These store re-updates
occur at the same time these updates would have occurred
with a large conventional store queue: when the miss data
returns and dependent stores execute and update the cache
allowing all stores (including miss independent stores)
behind them in the window to proceed with the cache up-
dates. The additional write bandwidth consumption in the
data cache due to the temporary updates by independent

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

stores occurs at a time such store updates would have
stalled anyway in a conventional STQ design due to miss
latency delays. Therefore, the SRL algorithm does not
require increase in cache write bandwidth.

4.2 Correct ordering without SRL CAM
We now step through some scenarios to show the SRL

workings. Consider the instruction sequences shown in
Figure 4. Six sequences (i—vi) are shown. In CFP, miss-
dependent instructions and the later miss-independent
instructions execute out-of-order and during two phases:
the independents execute while the dependents are waiting
for the miss to complete (phase 1), and the dependents
execute when the miss is serviced (phase 2). Stores in the
SRL drain during the second phase. A horizontal solid
line separates these two phases in the figure. Solid boxes
denote instructions in the first phase that enter the SDB
(Slice Data Buffer), and dotted boxes denote instructions
in the second phase that execute from the SDB. The fig-
ures only show instructions executing in the pipeline and
do not show cache updates of independent stores from the
SRL. The first instruction in all sequences (LD-) is the
long-latency cache miss. Because of memory dependence
prediction, some independent load instructions, and their
dependence chain may also become part of the miss slice
instructions if they are predicted to depend on a store.

Case (i) shows an example of how the SRL algorithm
handles a write-after-write hazard, case (ii) demonstrates
the handling of a write-after-read hazard, and cases (iii)
through (vi) show how read-after-write dependences are
maintained.

4.2.1 Write-after-write hazard avoidance
In case (i), two stores occur to the same memory ad-

dress, A, forming a write-after-write hazard. One store is
miss-dependent (shown with a box) and a subsequent
store is miss-independent. The miss-independent store,
though after the miss-dependent store in program order,
executes first, and temporarily updates the cache. Subse-
quent independent loads can access this data. When the
miss returns, the temporary cache updates are discarded
and dependents re-enter the pipeline and execute. The
two stores (including the completed independent store)
will update the cache through the SRL in program order,
avoiding a write-after-write hazard.

4.2.2 Write-after-read hazard avoidance
In case (ii), a miss-independent store follows a miss-

dependent load to the same address forming write-after-
read hazard. The load drains out forming part of the slice,
while the store updates the cache temporarily. When the
miss returns, the update of the miss-independent store is
discarded. The miss-dependent load on execution will
then read the correct data from prior to the independent
store, thereby avoiding a write-after-read hazard

4.2.3 Read-after-write hazard handling
Cases (iii) and (iv) show common sequences where the

miss-dependent instructions and miss-independent instruc-
tions have no inter-dependences.

In (iii), the independent store (ST B) forwards to the
independent load (LD B) in the first phase (either via the

LD -

ST A

ST A

LD -

ST A

LD A

(i)

LD -

LD A

ST A

LD -

LD A

(ii)

LD -

ST B

ST A

LD B

LD -

ST A

(iii)

LD -

ST A

ST B

LD A

LD -

ST A

LD A

(iv)

LD -

ST A

ST B

LD A

LD -

ST A

LD A

(D)

(v)

A
fte

r
m

is
s

se
rv

ic
ed

B

ef
or

e
m

is
s

se
rv

ic
ed

Pr
og

ra
m

 O
rd

er

Pr
og

ra
m

 O
rd

er

Inst. enters SDB

Inst. from SDB

(D) Detects dependence misprediction
and forces restart

Dependence predicted

Dependence exists

Long latency miss LD -

LD -

ST A

ST A

ST B

LD -

ST A

Restart
LD A

LD A

ST B

(vi)

Figure 4 Examples showing various hazard conditions handling in SRL.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

L1 STQ or through a temporary cache update). On re-
insertion, of these two instructions, only the independent
store is re-done.

In (iv), a dependence (shown by the solid arc) between
a load (LD A) and a prior store (ST A) exists and is cor-
rectly predicted by the memory dependence predictor
(shown by the dotted arc). No dependence exists between
the independent store (ST B) and other instructions
shown. On re-insertion of the waiting instructions (shown
by boxes), the dependent load (LD A) will correctly for-
ward from the prior store (ST A) either via the primary
store queue or after the store has updated the cache (de-
pending upon when the operations are scheduled).

Case (v) shows a situation where dependence via mem-
ory exists between a load (LD A) and a prior store (ST A).
The store is miss-dependent and drains the pipeline wait-
ing for the miss but the memory dependence predictor
incorrectly predicts a lack of dependence. The load (LD
A) is treated as an independent, executes, and enters the
secondary load buffer. When the waiting instructions re-
enter the pipeline and execute, the store (ST A) also exe-
cutes. The store (ST A) looks up the secondary load
buffer, detects the memory-dependence violation, and
restarts from the checkpoint prior to LD A.

Case (vi) demonstrates a complex memory dependence
violation sequence. Here, the memory dependence predic-
tor predicts an independent load (LD A) to be dependent
upon a miss-dependent store (ST B in the slice). The load
however must receive data from the unboxed independent
store (ST A). In phase 2, when the waiting instructions re-
enter the pipeline and execute, depending upon the im-
plementation, the boxed store (ST A) may go to the pri-
mary store queue and the load may incorrectly read the
result of this store. When the unboxed ST A leaves the
SRL and updates the cache, it looks up the load buffer,
hits LD A, and detects the memory dependence violation.
A restart from the LD A checkpoint follows. This demon-

strates that in case any dependence violation (read-after-
write) does indeed occur, the program order execution of
all stores from the SRL will detect such a situation
through the secondary load buffer.

Since the SRL algorithm can detect all violations, it
will provide a correct execution under all situations, in-
cluding similar cases not discussed above.

4.3 SRL implementation
Figure 5 shows the SRL algorithm implementation.

The baseline data cache has support for our checkpoint
architecture. Two additional bits, a speculative bit and a
speculatively valid bit, per checkpoint are used for each
cache block. The L1 data cache stores speculative state:
the data in a block is not committed until its checkpoint
has committed. When a checkpoint is committed, the cor-
responding speculatively valid and speculative bits in the
cache are bulk cleared, marking those cache blocks as
committed. A checkpoint squash requires a bulk clear of
the speculatively valid bits. Only one version of a given
cache block is allowed: stores from only one checkpoint
can write a given cache block. Only one version of a given
cache block is allowed: stores from only one checkpoint
can write a given cache block; a store from another
checkpoint to this cache block will stall and will prevent
subsequent stores from the L1 STQ from draining.

 In addition to the SRL queue, we have two new struc-
tures: a Forwarding Cache (FC) and a Loose Check Filter
(LCF). These structures are small arrays and are low-
complexity and simple performance enhancements to the
SRL algorithm.

Forwarding Cache (FC): To avoid design changes to
the L1 data cache, we use a separate small forwarding
cache. Miss-independent stores update this cache and use
it, instead of the data cache, to forward data to subsequent
independent loads. Updates in this cache are discarded
when the store redo occurs. As we discuss in the results

Figure 5 SRL algorithm implementation.

 Hit/
index

L1
STQ

Fwd. cache hit

Data to RF

LCF hit
L1 STQ hit Mux

Ctrl

FC

Data

cache

L
C
F

SRL

Ld Ld Ld

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

section, performing temporary updates to a small forward-
ing cache has design benefits over changing the data
cache.

Loose Check Filter (LCF): During the store redo
mode, some loads might need data from the SRL (to for-
ward from an independent store). These loads might have
been miss-dependent and have re-inserted from the SDB,
or might be new loads from the front-end that issue during
slice reinsertion. Since the SRL does not have a CAM,
and because stores in the SRL might not have completely
updated the cache when these loads issued, these loads
would have to stall until the SRL drains completely. To
avoid this stall, we use the LCF. The LCF is a direct-
mapped non-tagged array of 6-bit counters. The LCF is
indexed by hashing the memory address. Multiple ad-
dresses may map to the same counter. The LCF is based
on a counting bloom filter [6], a variant of the Bloom fil-
ter allowing entries to be removed [2]. When a store en-
ters the SRL, the LCF entry counter corresponding to its
address is incremented. The counter is decremented when
this store leaves the SRL. The LCF tracks whether an ad-
dress has an entry in the SRL or not. A zero counter in the
LCF entry corresponding to the load’ s address guarantees
no store for the address exists in the SRL. This allows a
load to safely issue. Counter overflows are handled by
stalling store allocation in the SRL. We find the LCF ef-
fective in ensuring loads stall only when necessary.

For the small fraction of loads that stall because of a
matching entry in the SRL, we add a limited form of for-
warding to the SRL we call indexed forwarding. This still
does not require a CAM or a search. The key idea for in-
dexed forwarding is that most stalled loads that depend on
stores in the SRL are newly fetched loads that entered the
pipeline after the miss-dependent instructions were re-
inserted but before the SRL stores have updated the cache.
The store that forwards to such a load is the last matching
store inserted into the SRL. We therefore store the index
of the corresponding SRL entry with the LCF counter.
When such a load issues, the SRL is indexed using the
index stored with the LCF counter. The address and data
from the SRL entry are read. A single comparator outside
the SRL is used to perform a complete address and age
check of the load against the store. This form of limited
forwarding does not require any CAM or search.

In summary, our SRL algorithm implementation re-
places the CAM and search circuitry of a conventional
store queue with a FIFO structure (SRL), a direct-mapped
array (LCF), and a small forwarding cache.

Algorithm overview: We now describe the algorithm
in the context of Figure 5. The L1 STQ is a conventional
small and fast store queue that provides forwarding capa-
bility for active instructions in the pipeline. The SRL is
used only in the presence of a long latency cache miss,
when the instruction window becomes large.

When a cache miss occurs, all subsequent miss-
dependent instructions enter the SDB. All stores, depend-

ent and independent, leave the L1 STQ in order, and enter
the SRL. When leaving the L1 STQ, the miss-independent
stores write their address and data value into the SRL.
They also update the forwarding cache. Dependent stores
have not completed and therefore do not write into the
SRL. They however get an SRL entry allocated. This en-
try index is recorded with the miss-dependent store in the
SDB.

When the cache miss returns, all updates in the for-
warding cache are discarded. When the miss-dependent
instructions execute, the stores re-inserted from the SDB
re-allocate L1 STQ entries. When these stores complete,
they leave the L1 STQ and update their SRL entry (the
index of which they had recorded when they entered the
SDB). The SRL thus holds, in program order, all store
data in the shadow of the cache miss, and subsequently
updates the data cache in program order.

To ensure that stores maintain correct ordering with
prior loads (write-after-read dependency), the store at the
head of the SRL updates the cache (during redo mode)
only after all prior loads have completed execution. This
is tracked using a bit-array, implemented with head and
tail pointers. Every load and store gets an entry in the bit
array (in program order), but only loads set and clear the
bit. A load’ s bit in the array is set at allocate and is cleared
when it completes execution. The load increments the
head pointer when its bit is cleared. A store that is at the
head of the bit array can be sure all prior loads have exe-
cuted. We find that delaying store updates until loads have
executed did not hurt performance.

5. Experimental Methodology

We use a detailed execution driven timing simulator
for simulating the IA32 instruction set and micro-ops. The

Table 1 Baseline processor model.

Processor frequency 8 GHz
Rename/issue/retire width 4/6/4
Branch mispred. penalty Minimum 20 cycles
Scheduling window size 64 Int, 64 FP, 32 Mem
Map table checkpoints 8
Register file 192 int, 192 fp.
Store buffer size 48
Load buffer 1K entries
Memory dependence pred. Store sets
Functional units Pentium 4 equivalent

Branch predictor
Gshare-perceptron hybrid

64K gshare, 256 perceptron
Hardware data prefetcher Stream-based (16 streams)
Trace cache 4-wide
L1 Data cache 32 KB, 3 cycles
L2 Unified cache 1MB, 8 cycles
L1/L2 line size 64 bytes
Memory lat (Req to use) 100 ns

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

simulator executes both user and kernel instructions, mod-
els all system activity such as DMA traffic and system
interrupts, and models a detailed memory subsystem.

Table 1 shows parameters of our baseline Continual
Flow Pipeline [17] processor with Checkpoint Processing
and Recovery [1]. Table 2 lists the simulated benchmark
suites, and the number of unique benchmarks within each
suite. Unless specified, all performance numbers in graphs
in the paper are percent speedups calculated over the
baseline processor.

6. Results

Section 6.1 presents a performance comparison of the
SRL proposal with a hierarchical store queue proposal and
an ideal store queue and provides SRL statistics. Section
6.2 presents a power and area comparison of SRL and the
hierarchical store queue. Section 6.3 evaluates the benefit
of LCF and indexed forwarding. Section 6.4 presents the
effect of LCF size and LCF hashing function on SRL per-
formance, and Section 6.5 presents the performance bene-
fit of using a forwarding cache instead of the data cache
for temporary updates.

6.1 SRL performance
Figure 6 shows a performance comparison of SRL, the

hierarchical store queue, and an ideal store queue. The

SRL parameters are 48-entry L1 STQ with a 3-cycle ac-
cess, a 1K-entry FIFO SRL, a 2K-entry LCF, and a 256-
entry 4-way associative forwarding cache. The hierarchi-
cal store queue parameters 48-entry L1 STQ with a 3-
cycle access, a 1K-entry L2 STQ with an 8-cycle access,
and a 1K-entry Membership Test Buffer). The ideal store
queue is a 1K-entry L1 STQ with a 3-cycle access. The y-
axis is the percent speedup over a baseline with a 48-entry
store queue. (A large store queue is necessary for a la-
tency tolerant processor to sustain a large instruction win-
dow and the store queue alone does not result in high per-
formance).

We see that SRL provides performance competitive to
the hierarchical store queue, and outperforms it for the
WS benchmark suite. This occurs because for stores miss-
ing the L1 STQ, SRL forwarding occurs at the L1 cache
hit latency, while forwarding from the L2 STQ for the
hierarchical solution occurs at the L2 cache hit latency.
The hierarchical solution performs better than the SRL
proposal for four suites (SINT2K, WEB, MM and
SERVER) because the hierarchical solution has a full
CAM structure and forwarding capability, unlike the SRL
where only the last store mapping to an LCF entry can
forward using indexed forwarding.

With SRL, some loads end up stalling even with in-
dexed forwarding. However, SRL does not require the
CAM structures or search required in the hierarchical so-
lution or the ideal solution. It achieves performance within
6% of an ideal store queue implementation.

Table 3 shows key SRL statistics. The floating-point
benchmarks (SFP2K) have high cache miss ratios and
longer dependence chains and hence have a large fraction
of stores in the shadow of cache misses, which can be seen
from the percentage of stores redone (column 2). These
benchmarks also have more miss-dependent stores (col-
umn 3) and more miss-dependent instructions (column 4)
compared to other benchmarks. The restricted forwarding
capability in SRL causes a small fraction of loads to stall
(column 5) across all benchmarks.

Figure 7 shows the SRL occupancy distribution for the
fraction of time the SRL is occupied. Stores enter the SRL

Table 3 SRL statistics.

Redone
Stores
(%)

Miss-
dependent

 Stores
(%)

Miss-
dependent
Uops (%)

SRL Load
Stalls/
10000
uops

% execution
time SRL is

occupied

SFP2K 47.6 26.7 16.4 11 49.1

SINT2K 7.3 1.3 2.2 5 16.5

WEB 1.9 0.6 4.9 9 21.8

MM 6 2.7 6.5 6 18.3

PROD 0.3 0.1 0.4 1 5.7

SERVER 4.2 1.1 7.5 17 41.7

WS 9.4 8.5 2.6 3 13.9

0

5

10

15

20

25

30

SFP2K SINT2K WEB MM PROD SERVER WS

P
er

ce
nt

 s
pe

ed
up

 o
ve

r b
as

el
in

e

SRL

Hierarchical STQ

Ideal STQ

Figure 6 SRL performance comparison.

Table 2 Benchmark suite.

Suite
of

Bench Desc./Examples

SPECFP2K (SFP2K) 13 www.spec.org

SPECINT2K(SINT2K) 10 www.spec.org

Internet (WEB) 10 SPECJbb, WebMark

Multimedia (MM) 14 MPEG, speech, photoshop

Productivity (PROD) 7 SYSMark2k, Winstone

Server (SERVER) 7 TPC-C

Workstation (WS) 13 CAD, rendering

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

only in the presence of missed loads and Table 3’ s column
6 shows the percentage of execution time the SRL is oc-
cupied. For all benchmarks, we find a 1K entry SRL is
sufficient to hold all stores in the shadow of a load miss.

6.2 Power and area analysis
In this section, we compare the power and area of our

SRL proposal with that of the hierarchical store queue [1].
As mentioned earlier, the hierarchical store queue has a
full CAM L2 store queue. We do not study the data por-
tions of the store queues since that will be common to all
proposals.

Hierarchical L2 STQ power and area: We designed
a 512-entry store queue (the L2 STQ) with an 8 cycle ac-
cess latency using a 90nm CMOS technology [12]. The
design was optimized to reduce leakage power. A banked
structure was used to reduce dynamic power. The CAM
array entry has 36 address bits and 8 byte-mask bits (to
determine address match when loads and stores have un-
aligned addresses or different data sizes). We performed
SPICE simulations of our design and calculated the dy-
namic and leakage power of the L2 STQ. The area of the
L2 STQ was 1.4 mm2. Using SPICE simulations, the leak-
age power came to 95mW and the dynamic power (if
every load looked up the L2 STQ) came to 4.4W. Since
only 10% of loads look up the L2 STQ in the hierarchical
design, the total dynamic power of the 512-entry L2 STQ
if 440mW.

Store Redo Log power and area: We also designed
the address array of a 512-entry SRL with a 2K-entry
LCF. Each entry in the SRL queue consists of 6 bytes of
address, and thus the total SRL queue size is 3KBytes.
Each entry in the LCF consists of 10-bit SRL queue index
and 6 bits count value, for a total of 2 bytes per entry. The
total size of the LCF is therefore 4KBytes. The combined
size of the SRL and LCF is 7K bytes. The area of the SRL
queue was 0.35mm2. The dynamic power was 30mW and
the leakage power was 40mW. Adding the separate for-
warding cache to the SRL has minimal impact on these

parameters. The SRL with the forwarding cache has an
area of 0.45mm2, a leakage power of 48mW, and a dy-
namic power of 37mW.

Comparing to the area and power estimates for a hier-
archical store queue design presented earlier, the SRL
algorithm gives significant reduction in area and power
over a highly optimized hierarchical store queue circuit
that uses best current techniques for minimizing CAM and
search activity to reduce dynamic power.

6.3 LCF and SRL indexed forwarding
The results presented thus far assume an SRL imple-

mentation with a loose-check filter (LCF) and indexed
forwarding (Section 4.3) to prevent unnecessary load
stalls. In this section, we study the performance impact of
LCF and indexed forwarding.

Figure 8 compares the performance of SRL without
LCF, SRL with LCF but without indexed forwarding, and
SRL with LCF augmented with indexed forwarding. We
use a 2K-entry LCF for this experiment. Lack of LCF af-
fects SFP2K benchmarks the most since they have a large
number of cache misses and miss dependent stores occu-
pying the SRL. Adding an LCF significantly cuts down on
loads stalling due to potential matches in the SRL result-
ing in more than 15% performance gain for SFP2K. Fur-
ther adding indexed forwarding support to the SRL (which
still does not require a CAM match) results in higher per-
formance. Thus, the LCF and indexed forwarding play an
important role in achieving high performance.

6.4 LCF size and LCF hashing function
Figure 9 presents the sensitivity of SRL performance to

the LCF size and hashing function. Two different LCF
hashing functions are studied: Lower Address Bits index-
ing (LAB), and 3-Piece Address XOR indexing (3-PAX),
which computes an index from the XOR of the lower,
middle and upper address bits. For each hash function,
results for 256-entry and 2K-entry LCF sizes are pre-

0

20

40

60

80

100

>0 >64 >128 >192 >256 >384 >512 >768 >1024

number of entries in SRL

P
er

ce
nt

 o
f S

R
L

oc
cu

pa
nc

y
tim

e

SFP2K
SINT2K
WEB
MM
PROD
SERVER
WS

Figure 7 SRL occupancy distribution during

the time the SRL is occupied.

-5

0

5

10

15

20

25

30

SFP2K SINT2K WEB MM PROD SERVER WS

P
er

ce
nt

 s
pe

ed
up

 o
ve

r b
as

el
in

e

SRL

SRL without indexed forwarding

SRL without LCF and indexed forwarding

Figure 8 Impact of LCF and forwarding in SRL.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

sented, and performance without LCF is shown for refer-
ence. Results presented elsewhere in this paper are for a
2K-entry LCF and a 3-PAX hashing scheme. From Figure
9 we see little sensitivity to hash function and greater sen-
sitivity to LCF size, especially for the SFP2K benchmark
suite. A 256-entry LCF performs within 2% of a 2K-entry
LCF and significantly better than without an LCF, across
all benchmarks. While the performance difference be-
tween the two hashing schemes is small, the 3-PAX hash-
ing significantly benefits several individual benchmarks.

6.5 Data cache for temporary updates
We have avoided using the data cache to buffer tempo-

rary updates in our SRL implementation, and employ a
small forwarding cache. While doing so has the advantage
of not having to change the data cache design, it also has
performance benefits. This is because if we use the data
cache for buffering temporary updates for forwarding
from independent stores to independent loads, any earlier
modified data for the block being written must be written
back to the next level of cache. This adds latency. Fur-
ther, the data cache may suffer from associativity limita-
tions, which may stall store processing. Because tempo-
rary updates are discarded in the data cache, a load may
observe an additional miss to the next level of cache dur-
ing the redo phase.

Figure 10 compares the performance of SRL with and
without a 256-entry 4-way associative forwarding cache
and shows that a forwarding cache significantly helps im-
prove performance.

7. Related Work

Sethumadhavan et al. [16] propose filtering schemes
using Bloom filters to reduce both the number of LSQ
lookups and the number of entries to be searched during
each lookup. They also use address predictors to reduce
the number of loads tracked in the LSQ, leading to a

smaller LSQ. Park et al. [15] reduce search bandwidth
demand on the store queue using a store-sets predictor that
prevents loads predicted to be independent of prior stores
from looking up the store queue. They present ways to
reduce the search bandwidth demand on the load queue
and explore a segmented load/store queue (LSQ) with
pipelined, variable-latency segments. Akkary et al. [1]
propose a hierarchical store queue consisting of a small,
fast L1 STQ, and a large, slow L2 STQ, combined with a
fast filtering mechanism, the Membership Test Buffer to
reduce L2 STQ lookups.

The above three schemes reduce the search bandwidth
requirements of large store queues and/or reduce the num-
ber of loads that need to be tracked to maintain proper
memory ordering. Our load buffer algorithm and store
redo approach avoid having to search large load and store
queues, thus providing significant savings in area and
power.

Gharachorloo et al. [8] use speculative execution to
improve the performance of memory consistency models,
and suggest using value matching to detect consistency
violations. Gniady et al. [9] use speculative execution and
a hardware log of speculative updates to processor and
memory state for every instruction for improving the per-
formance of sequential consistency. Their implementation
rolls back to the “sequentially consistent” memory state if
a violation is about to occur. Cain and Lipasti [3] propose
a value-based replay mechanism for enforcing uniproces-
sor and multiprocessor ordering constraints that eliminate
the need for associative look-ups in the load queue. Our
load buffer eliminates the fully associative lookup of the
load queue as well and does not need to store load data
since it does not need a replay mechanism.

 Proposals for storing speculative versions of data and
for detecting memory dependence violations between
tasks/threads in the context of speculative multithreading
exist [7, 10] and are orthogonal to the proposals in this
paper.

-5

0

5

10

15

20

25

30

SFP2K SINT2K WEB MM PROD SERVER WS

P
er

ce
nt

 s
pe

ed
up

 o
ve

r b
as

el
in

e

No LCF

LCF256 + LAB indexing

LCF2K + LAB indexing

LCF256 + 3-PAX indexing

LCF2K + 3-PAX indexing

Figure 9 LCF sizes and hashing function impact

on SRL performance.

0

5

10

15

20

25

30

SFP2K SINT2K WEB MM PROD SERVER WS

P
er

ce
nt

 s
pe

ed
up

 o
ve

r b
as

el
in

e

Using a separate forwarding cache

Using the data cache for forwarding

Figure 10 Forwarding design option impact.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

8. Conclusions

We have presented a new proposal for processing loads
and stores in very large instruction window, latency-
tolerant processors. The proposal does not require address
CAM and search of the secondary load and store buffers.
The secondary load buffer is a set associative buffer with
store identifiers for determining load and store order and
checkpoint bits with bulk reset mechanism. The key idea
behind the store queue proposal is that redoing stores in
the shadow of load misses, after the miss data is fetched
from memory, to fix memory dependences provides better
power and area characteristics than a scheme which con-
stantly enforces dependences among a very large number
of loads and stores, many of which have unknown ad-
dresses. Our proposal performs competitively compared to
a very large conventional store queue while significantly
reducing the area and power of the load and store address
queues. The reductions are primarily because our proposal
eliminates the requirement for search and CAM of large
load and store queue structures.

Acknowledgements

We thank Saurabh Dighe, Shih-Lien Lu, and Dinesh
Somasekhar for discussions on low-power circuit design
techniques and for help with the circuit design and simula-
tion tools.

References

[1] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint
Processing and Recovery: Towards Scalable Large Instruction
Window Processors. In Proceedings of the 36th International
Symposium on Microarchitecture, December 2003.
[2] B. H. Bloom. Space/Time Trade-Offs in Hash Coding with
Allowable Errors. Communications of the ACM, 13(7), July
1970.
[3] H. W. Cain and M. H. Lipasti. Memory Ordering: A Value-
Based Approach. In Proceedings of the 31st Annual Interna-
tional Symposium on Computer Architecture, June 2004.
[4] G. Z. Chrysos and J. S. Emer. Memory Dependence Predic-
tion Using Store Sets. In Proceedings of the 25th Annual Inter-
national Symposium on Computer Architecture, June 1998.
[5] A. Cristal, D. Ortega, J. Llosa, and M. Valero. Out-of-Order
Commit Processors. In Proceedings of the Tenth International
Symposium on High-Performance Computer Architecture, Feb-
ruary 2004.

[6] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary
Cache: A Scalable Wide-Area Web Cache Sharing Protocol.
IEEE/ACM Transactions on Networks, 8(3), 2000.
[7] M. Franklin and G. S. Sohi. A Hardware Mechanism for
Dynamic Reordering of Memory References. IEEE Transactions
on Computers, 45(5), May 1996.
[8] K. Gharachorloo, A. Gupta, and J. L. Hennessy. Two Tech-
niques to Enhance the Performance of Memory Consistency
Models. In Proceedings of the 1991 International Conference
on Parallel Processing, August 1991.
[9] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is SC + ILP =
Rc? In Proceedings of the 26th Annual International Sympo-
sium on Computer Architecture, May 1999.
[10] S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi.
Speculative Versioning Cache. In Proceedings of the Fourth
International Symposium on High-Performance Computer Ar-
chitecture, February 1998.
[11] T. Karkhanis and J. E. Smith. A Day in the Life of a Data
Cache Miss. In Workshop on Memory Performance Issues, June
2002.
[12] K. Kuhn, M. Agostinelli, S. Ahmed, S. Chambers, S. Cea,
S. Christensen, P. Fischer, J. Gong, C. Kardas, T. Letson, L.
Henning, A. Murthy, H. Muthali, B. Obradovic, P. Packan, S.
W. Pae, I. Post, S. Putna, K. Raol, A. Roskowski, R. Soman, T.
Thomas, P. Vandervoorn, M. Weiss, and I. Young, A 90 nm
Communication Technology Featuring SiGe HBT Transistors,
RF CMOS, Precision R-L-C RF Elements and 1 um2 6-T
SRAM Cell. presented at IEEE International Electron Devices
Meeting, December 2002
[13] A. R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E.
Rotenberg. A Large, Fast Instruction Window for Tolerating
Cache Misses. In Proceedings of the 29th Annual International
Symposium on Computer Architecture, May 2002.
[14] A. Moshovos and G. S. Sohi. Streamlining Inter-Operation
Memory Communication Via Data Dependence Prediction. In
Proceedings of the 30th International Symposium on Microar-
chitecture, December 1997.
[15] I. Park, C. L. Ooi, and T. N. Vijaykumar. Reducing Design
Complexity of the Load/Store Queue. In Proceedings of the
36th International Symposium on Microarchitecture, December
2003.
[16] S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore,
and S. W. Keckler. Scalable Hardware Memory Disambiguation
for High ILP Processors. In Proceedings of the 36th Interna-
tional Symposium on Microarchitecture, December 2003.
[17] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M.
Upton. Continual Flow Pipelines. In Proceedings of the Elev-
enth Symposium on Architectural Support for Programming
Languages and Operating Systems, October 2004.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

