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Abstract  

Memory latency tolerant architectures support thou-
sands of in-flight instructions without scaling cycle-
critical processor resources, and thousands of useful in-
structions can complete in parallel with a miss to mem-
ory. These architectures however require large queues to 
track all loads and stores executed while a miss is pend-
ing. Hierarchical designs alleviate cycle time impact of 
these structures but the CAM and search functions re-
quired to enforce memory ordering and provide data for-
warding place high demand on area and power.  

We present new load-store processing algorithms for 
latency tolerant architectures. We augment primary load 
and store queues with secondary buffers. The secondary 
load buffer is a set associative structure, similar to a 
cache. The secondary store buffer, the Store Redo Log, is 
a first-in first-out structure recording the program order 
of all stores completed in parallel with a miss, and has no 
CAM and search functions. Instead of the secondary store 
queue, a cache provides temporary forwarding. The SRL 
enforces memory ordering by ensuring memory updates 
occur in program order once the miss returns.  

The new algorithms eliminate the CAM and search 
functions in the secondary load and store buffers, and 
remove fundamental sources of complexity, power, and 
area inefficiency in load/store processing. The new or-
ganization, while being area and power efficient, is com-
petitive in performance compared to hierarchical designs. 

1. Introduction 

Large instruction window processors capable of sus-
taining thousands of in-flight instructions can effectively 
tolerate relatively increasing memory latencies. They do 
so by executing thousands of useful miss-independent 
instructions in parallel with the pending miss [13]. These 
independent instructions constitute a significant portion of 
the instruction window following a miss [11]. Recent pro-
posals have demonstrated how to design processors to 
sustain such large numbers of in-flight instructions with-
out having to scale up the cycle critical register file and 
scheduler, and the reorder buffer [5, 17]. 

Continual Flow Pipeline processors [17] achieve re-
source efficiency by ensuring instructions that depend 
upon a long latency miss do not block cycle critical proc-
essor resources. These resources become available for 
subsequent miss-independent instructions to execute and 
complete. The approach is particularly effective because 
the majority of instructions following a long latency miss 
are independent of the miss. These instructions can exe-
cute and speculatively retire, freeing up their resources in 
the process. The small numbers of miss-dependent in-
structions drain out of the pipeline, releasing their re-
sources, and wait in a simple first-in first-out data buffer. 
When the miss returns, these miss-dependent instructions 
re-enter the pipeline, re-allocate resources, and execute. 
The processor then integrates the results of the miss-
independent and miss-dependent instructions together 
without requiring the miss-independent instructions to be 
re-examined. Since miss-dependents do not block re-
sources, small sizes for the register file, scheduler, and 
reorder buffer are sufficient to sustain thousands of in-
flight instructions to tolerate a long latency miss. The 
small sizes result in resource efficiency. High power effi-
ciency arises because the numerous miss-independent 
instructions are not re-executed. 

While the above proposals effectively address the reg-
ister-file, scheduler, and reorder buffer for designing very 
large instruction window processors, they nevertheless 
require buffering all loads and stores to ensure correct 
memory ordering and data forwarding requirements. 

A load might have incorrectly executed because either 
a memory dependence predictor incorrectly predicted the 
load to be independent of a miss-dependent store, or a 
store to the same address from another thread or processor 
executed, thus requiring the load to re-execute to enforce 
correct multiprocessor memory ordering. Detecting these 
conditions requires tracking all loads, dependent and in-
dependent. Conventional load queues implement this as a 
fully associative CAM of the store address against all 
loads in the load queues. 

Store queues aid memory-address disambiguation be-
tween stores and loads, provide buffering for stores until 
retirement, and provide data to loads following the stores. 
These functions require searching the store queue because 
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a load may depend upon any store in the queue, and mul-
tiple stores to the same address can be simultaneously 
present in the store queue. Hierarchical solutions to the 
store queue design [1] ensure the latency tolerant proces-
sor meets cycle time constraints. However, these hierar-
chical structures occupy significant area and display 
power inefficiencies. The CAM and the search required 
for memory ordering and data forwarding is a fundamental 
source of complexity, power, and area inefficiency. Re-
cent proposals [15, 16] address complexity of these struc-
tures by reducing their active power, optimizing search 
through filtering, and sectoring, but do not address the 
CAM itself and largely ignore the increasing area foot-
print of very large fully associative store queues. 

We present new scalable load and store-processing 
mechanisms for memory latency tolerant processors. 
These mechanisms do not require searching large secon-
dary load and store queues. We take advantage of a key 
property of latency-tolerant processors: in the presence of 
a long latency memory miss, a significant portion of the 
useful instructions (including loads and stores) following 
the miss, are independent of the miss [11], and do not 
need to re-execute when the miss returns. This allows us 
to optimize their processing. Further, the instruction win-
dow in latency tolerant processors needs to scale only in 
the presence of a long latency miss. The secondary buffers 
are operational only during the miss, while small conven-
tional primary load and store queues are sufficient in the 
absence of misses. 

The secondary load and store processing has three key 
actions: 

1. Miss-independent stores temporarily update a 
cache and use it to forward to future independent 
loads. Their program order is recorded in a first-in 
first-out Store Redo Log (SRL),  

2. The temporary updates are discarded when the 
miss returns and the slice executes. The independ-
ent stores re-update the cache using the store redo 
log appropriately interleaved in program order 
with the miss-dependent instructions, and 

3. Internal and external stores are snooped by a set-
associative secondary load address buffer. Recov-
ery is checkpoint-based and checkpoint bits de-
termine where to roll back. Because recovery is 
coarse-grain, exact load order information is not 
necessary, and thus a set-associative cache struc-
ture is sufficient. This allows a scalable solution 
for load processing without loss in performance.  

The first action provides simple and fast store-to-load 
forwarding. Since these stores were independent of the 
miss, they do not have to re-execute when the miss re-
turns. The second action ensures correct ordering. Dis-
carding temporary updates restores the correct memory 
image to miss-dependent loads and stores. The third ac-
tion ensures that in case of a memory-dependence predic-

tion violation or a consistency violation, execution restarts 
from the appropriate point.  

These actions do not require associatively searching ei-
ther the large secondary store queue or the load buffer, 
and thus do not require CAM logic.  Eliminating the CAM  
logic structure from each cell of the secondary load and 
store buffers and not requiring fully associative searches 
outweighs the performance and power overhead of re-
updating the cache. Instead of optimizing the search of 
these structures, as some earlier proposals do [15, 16] via 
filtering and sectoring, we eliminate the search itself. 

This paper makes the following contributions to 
load/store processing in latency tolerant processors: 

• A novel redo algorithm for processing store opera-
tions that does not require searching a large sec-
ondary store queue for maintaining ordering. 

• A simpler and smaller secondary store queue 
structure because it does not have a CAM. This 
means much smaller area and lower power de-
mands. 

• A simple secondary load buffer that is scalable and 
set-associative. The buffer has a cache organiza-
tion. A store identifier per entry determines load 
and store program order and checkpoint bits allow 
rollback to recover from memory violations. 

Section 2 describes a baseline latency tolerant proces-
sor, motivates the need for large load/store queues in such 
processors, and presents a complexity analysis of conven-
tional load and store queues. Section 3 and Section 4 pre-
sent our new load and store proposals. Section 5 presents 
experimental methodology and Section 6 presents power, 
performance, and area results. We discuss related work in 
Section 7 and conclude in Section 8. 

2. Latency tolerant processor design 

We begin by describing our baseline latency tolerant 
processor in Section 2.1. We qualitatively and quantita-
tively motivate the necessity for large load and store buff-
ers for latency tolerant processors in Section 2.2 and we 
discuss the complexity of load and store processing in 
Section 2.3. 

2.1 Baseline microarchitecture 
Our baseline processor, shown in Figure 1 is a Contin-

ual Flow Pipeline (CFP) processor [17] implemented on a 
reorder-buffer-free Checkpoint Processing and Recovery 
(CPR) microarchitecture [1]. CPR removes scalability 
limitations for branch misprediction recovery and register 
reclamation mechanisms. A small number of selectively 
created register rename-map table checkpoints enable 
quick and efficient misprediction recovery. These check-
points also enable CPR to implement an aggressive regis-
ter reclamation scheme and provide precise interrupts. 
CPR decouples register reclamation from instruction re-
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tirement. Since CPR does not have a reorder buffer, 
checkpoint counters track instruction completion. A 
checkpoint is committed instantaneously, in a bulk com-
mit manner, when all instructions within it have com-
pleted. CPR provides resource-efficient processor design 
to handle short and medium latencies. A CFP mechanism 
allows the processor to handle even very long latencies in 
a resource efficient manner. 

In conventional processor designs, a long latency miss 
and its dependent instructions occupy cycle critical regis-
ter file and scheduler resources while the miss is pending. 
These blocked instructions stall the processor for a long 
time since later miss-independent instructions, which are 
in the thousands and are a significant fraction of the useful 
window that can execute in the shadow of a miss, are un-
able to execute because they do not have resources. In a 
CFP processor, the long latency miss operations and their 
dependents do not occupy cycle-critical structures while 
the miss is pending. Doing so allows future miss-
independent instructions to execute and complete in paral-
lel with the outstanding miss. These miss-independent 
instructions speculatively retire, and their results are auto-
matically integrated when the miss-dependent instructions 
(called the miss forward slice) later execute. The miss-
dependent instructions, along with their ready source op-
erands, leave the processor pipeline, release their sched-
uler, register file, and reorder buffer resources (if CFP is 
on a machine with a reorder buffer), and drain into a first-
in first-out slice data buffer (SDB). 

A poison bit associated with each physical register and 
store queue entry identifies the slice and propagates de-
pendence information. A load that misses to memory sets 
its destination register’s poison bit. Any subsequent in-
structions reading the register inherit the poison bit for 
their destination registers. This bit propagates through the 
load-miss dependence chain until the miss data returns. A 
store reading a poisoned destination also sets its store 
queue entry’s poison bit. Memory dependences are also 
properly constructed. Destination registers of loads de-
pendent on a poisoned store or predicted to depend on a 

poisoned store by a memory dependence predictor [4, 14] 
have their poison bits set. 

2.2 Necessity for large load and store queues  
In CFP processors, even though miss-independent in-

structions complete and speculatively retire thus releasing 
any cycle-critical microarchitecture resources, the proces-
sor must track all load and store operations in these in-
structions until all instructions are architecturally commit-
ted after the miss-dependent instructions are processed. 
This is to ensure correct memory ordering and data for-
warding. While these operations do not occupy cycle-
critical structures, they occupy large secondary buffers. 

2.2.1 Tracking loads  
In a CFP processor, even though miss-independent 

loads have completed, the conventional load queue needs 
to be large enough to buffer all load addresses: dependent 
and independent. The processor uses a memory depend-
ence predictor to determine whether a load depends upon 
a miss-dependent store. This store might not have a 
known address. The address of the independent load has 
to be kept in a queue and must be checked when the miss-
dependent store eventually executes. Further, to ensure 
proper multiprocessor memory ordering, the processor 
must record the addresses of all loads executed and specu-
latively retired, and check these load addresses against 
stores from external processors. Our experiments suggest 
a load queue size of at least 512 entries for the best per-
formance configuration. 

2.2.2 Tracking stores  
As with load operations, CFP tracks dependent and in-

dependent stores. A miss-dependent store will result in all 
stores after it in program order to wait until the miss re-
turns and the store executes. This is because store updates 
to memory changes architectural state, and therefore must 
occur in program order. Independent stores, even though 
they have completed, must wait until the prior stores com-
plete in program order before updating memory. 
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Figure 1 Block diagram of a CFP processor  
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Figure 2 shows the performance sensitivity of a CFP 
processor to the size of its store queue (See Table 1 and 
Table 1 for configuration and benchmarks). The y-axis 
shows speedup over a configuration with only a 48-entry 
store queue, and the x-axis shows various store queue 
sizes from 128 to 1024 entries. As can be seen, the store 
queue must be at least 512 entries to achieve the best per-
formance configuration, and such a size is a significant 
increase over current store queue sizes of 24-32. 

Completed independent stores must also forward data 
to later independent loads. In an x86 CFP implementation, 
depending upon the application, the store queue forwards 
to 20-35% of loads. These loads must search the inde-
pendent stores in a large store queue and source data.  
Multiple store queue entries may correspond to the same 
address and correct store identification is necessary. A 
load may also need data from multiple store queue entries, 
and a mechanism for properly aligning data is necessary. 
Since loads are critical operations and must get their data 
quickly, the store queue must forward data quickly, typi-
cally within the latency of L1 data cache hit. Doing so is 
difficult for very large store queues. 

To make the store queue manageable, the CFP proces-
sor uses a two-level hierarchical store queue organization 
[1]. The first level store queue (L1 STQ) is small (~48 
entries) and fast. It holds the most recent stores. The sec-
ond level store queue (L2 STQ) is large (~1024 entries) 
and slow and holds older stores displaced from the L1 
STQ. Store to load forwarding typically occurs from the 
L1 STQ because stores typically forward to nearby loads. 
While this organization provides good performance and 
does not affect critical cycle time, it places high demands 
on power and area and makes it a resource inefficient de-
sign.  

2.3 Load/store processing complexity 
Load queue complexity arises from the full CAM per-

formed on internal and external store addresses. Store 
queue complexity arises because of the matching circuitry 

required to compare issued load addresses with store ad-
dresses in the store queue, selecting the correct matching 
store for forwarding, and, forwarding data to the load 
from the selected matching store. 

Figure 3 shows a store queue with a CAM, select cir-
cuitry, and the data array, and the CAM array cell. Each 
cell has storage for one address bit, one write port to drive 
the address into the store queue when a store issues, one 
read port to access the address when a store commits to 
memory, and a one-bit-comparator implemented as an 
XOR logic gate. A precharge/discharge signal performs an 
AND of all bit-comparator outputs within a store entry to 
generate an address match signal.  

Processing multiple loads and stores per cycle requires 
additional comparators and ports. Every issued load acti-
vates the CAM array entries for all stores located prior to 
the load in the instruction window. This results in signifi-
cant power consumption in the CAM structure, when the 
store queue size grows. Further, the CAM structures 
themselves contribute to leakage power. 

Proposals for dealing with store queue complexity [1, 
15, 16] have focused on reducing search bandwidth, re-
ducing active power, and tolerating the match-and-search 
latency using hierarchy, sectoring, and filtering, in various 
combinations. While they are effective in reducing active 
power (by up to 90% in some cases), they do not eliminate 
the dynamic power associated with the numerous CAM 
cells, nor do they reduce the area and the leakage power 
of these large store queues. 

3. A new secondary load buffer design 

We propose a set-associative secondary load buffer. 
Unlike the primary load queue, it is not organized as a 
first-in first-out program order queue. Completed loads in 
the shadow of a miss allocate a L2 load buffer entry based 
on the load’ s data address. Miss-dependent loads allocate 
an L2 load buffer entry when they complete, after the miss 
data returns. Each entry consists of a tag, the identifier of 
the nearest store, and checkpoint bits. These checkpoint 
bits can be bulk reset to remove instantaneously all loads 
belonging to a given checkpoint from the load buffer. A 
forwarding store identifier is also stored for each entry to 
indicate the store, if any, that forwarded data to the load.  

Enforcing load-store dependence: A store is assigned 
an identifier when it is allocated the store buffers. In our 

Figure 2 Impact of store queue size for a latency 
tolerant processor. 
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design, a store identifier corresponds to the SRL entry the 
store is allocated. A wrap-around bit can determine the 
program order of any two arbitrary stores with a simple 
magnitude comparison of their identifiers. When a load 
allocates, it gets the store identifier of the last allocated 
store prior to it in program order. A magnitude compari-
son of the store identifier of the load and store determines 
their relative program order. When a store completes, it 
looks up the load buffer. On an address match, the load 
buffer entry’ s nearest store identifier and the forwarding 
store identifier (if set) are used to determine if a memory 
dependence violation occurred. When a memory depend-
ence violation is flagged, the execution restarts from the 
checkpoint of the violating load, determined by the load 
entry’ s checkpoint bits. The load buffer differs from con-
ventional cache organizations since multiple loads with 
the same address are allocated different entries in the set. 
In case of a store address hit and memory dependence 
violations on more than one load entry, a program order 
check of the violating loads determines the oldest violat-
ing load in program order, and a restart from the oldest 
load checkpoint is initiated. 

Enforcing multiprocessor memory ordering: Snoop-
ing external stores for enforcing processor ordering does 
not require an order check between the snooped store and 
the hit load. A snoop address hit by an external store on 
any load initiates a restart from the load’ s checkpoint. If 
an external store snoop hits more than one load in the set, 
the restart is initiated from the oldest load checkpoint. 

Because of the limited capacity in the load buffer array, 
a set-overflow may occur when a new load enters the load 
buffer. One option for handling these overflow cases is to 
use a small fully associative victim load buffer for over-
flow loads, or simply to take a memory ordering violation 
on the overflow. 

The baseline checkpoint processing and recovery ar-
chitecture ensures forward progress by guaranteeing that a 
new checkpoint is created on the next instruction after a 
prior restarted checkpoint, thus ensuring at least one in-
struction always retires. 

4. A redo approach to processing stores 

The new algorithm replaces the L2 STQ of a hierarchi-
cal store queue [1] (which requires search and forward 
capability) with a much simpler non-searched structure 
with significantly less area and power demands while pro-
viding competitive and at times better performance. 

4.1 Decoupling ordering from forwarding 
Our goal is to eliminate the search and forwarding 

functions required of the L2 STQ. This would allow us to 
reduce area and power by eliminating the CAM cells and 
the cycle-critical forwarding circuitry. We first sketch our 
approach below. 

We replace the L2 STQ with a first-in first-out (FIFO) 
structure that does not forward and that records all stores 
in program order. This structure also does not require 
search capability. However, independent loads must ac-
cess data from prior independent stores if necessary. For 
this, we use the data cache itself. Independent stores will 
update the data cache, even before they retire, so that later 
loads can access their data. However, since program order 
requires stores to update the cache in order, these cache 
updates are temporary. The data cache now provides the 
forwarding function of the secondary store queue, and 
provides temporary buffering space. To prevent the cor-
rect memory state (that should be seen by the miss-
dependent instructions prior to a temporary  store) from 
being lost, any dirty block that is temporarily updated 
must, prior to the update, be written back to the next level 
in the memory hierarchy. 

Independent stores execute, temporarily update the 
cache, and complete. Future independent loads will access 
the cache (instead of the secondary store queue) to read 
data of prior independent stores. 

Once the cache miss returns, dependent instructions re-
enter the pipeline, re-allocate register and scheduler re-
sources, and execute. These dependent instructions are 
interleaved with the completed miss-independent instruc-
tions in program order. To enable these dependent instruc-
tions to see the correct memory state, the temporary up-
dates made by the independents are discarded. The inde-
pendent instructions however have speculatively retired 
and do not need to be re-executed because they do not 
depend upon the cache miss. 

To ensure memory updates occur in program order, the 
independent stores (recorded in the secondary store queue 
in program order) must “re-update” the cache in program 
order and be properly interleaved with the execution of 
miss-dependent instructions, after the cache miss is ser-
viced. These independent stores do not re-enter the pipe-
line and do not consume execution resources: they just 
update the cache from the secondary store queue consum-
ing only cache write bandwidth. Data dependences are 
maintained because a dependent load executes only when 
a prior independent store has re-updated the cache.  

Since the independent stores have to be redone in pro-
gram order from the secondary store queue, we call that 
structure the Store Redo Log (SRL). The SRL is the L2 
STQ without any search and forward capability. 

Independent stores from the SRL do not consume exe-
cution bandwidth and their re-update of the cache con-
sumes only cache write-bandwidth. These store re-updates 
occur at the same time these updates would have occurred 
with a large conventional store queue: when the miss data 
returns and dependent stores execute and update the cache 
allowing all stores (including miss independent stores) 
behind them in the window to proceed with the cache up-
dates. The additional write bandwidth consumption in the 
data cache due to the temporary updates by independent 
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stores occurs at a time such store updates would have 
stalled anyway in a conventional STQ design due to miss 
latency delays. Therefore, the SRL algorithm does not 
require increase in cache write bandwidth. 

4.2 Correct ordering without SRL CAM 
We now step through some scenarios to show the SRL 

workings. Consider the instruction sequences shown in 
Figure 4. Six sequences (i—vi) are shown. In CFP, miss-
dependent instructions and the later miss-independent 
instructions execute out-of-order and during two phases: 
the independents execute while the dependents are waiting 
for the miss to complete (phase 1), and the dependents 
execute when the miss is serviced (phase 2). Stores in the 
SRL drain during the second phase. A horizontal solid 
line separates these two phases in the figure. Solid boxes 
denote instructions in the first phase that enter the SDB 
(Slice Data Buffer), and dotted boxes denote instructions 
in the second phase that execute from the SDB. The fig-
ures only show instructions executing in the pipeline and 
do not show cache updates of independent stores from the 
SRL. The first instruction in all sequences (LD-) is the 
long-latency cache miss. Because of memory dependence 
prediction, some independent load instructions, and their 
dependence chain may also become part of the miss slice 
instructions if they are predicted to depend on a store. 

Case (i) shows an example of how the SRL algorithm 
handles a write-after-write hazard, case (ii) demonstrates 
the handling of a write-after-read hazard, and cases (iii) 
through (vi) show how read-after-write dependences are 
maintained. 

4.2.1 Write-after-write hazard avoidance 
In case (i), two stores occur to the same memory ad-

dress, A, forming a write-after-write hazard. One store is 
miss-dependent (shown with a box) and a subsequent 
store is miss-independent. The miss-independent store, 
though after the miss-dependent store in program order, 
executes first, and temporarily updates the cache. Subse-
quent independent loads can access this data. When the 
miss returns, the temporary cache updates are discarded 
and dependents re-enter the pipeline and execute.  The 
two stores (including the completed independent store) 
will update the cache through the SRL in program order, 
avoiding a write-after-write hazard. 

4.2.2 Write-after-read hazard avoidance 
In case (ii), a miss-independent store follows a miss-

dependent load to the same address forming write-after-
read hazard. The load drains out forming part of the slice, 
while the store updates the cache temporarily. When the 
miss returns, the update of the miss-independent store is 
discarded. The miss-dependent load on execution will 
then read the correct data from prior to the independent 
store, thereby avoiding a write-after-read hazard  

4.2.3 Read-after-write hazard handling 
Cases (iii) and (iv) show common sequences where the 

miss-dependent instructions and miss-independent instruc-
tions have no inter-dependences.  

In (iii), the independent store (ST B) forwards to the 
independent load (LD B) in the first phase (either via the 
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L1 STQ or through a temporary cache update). On re-
insertion, of these two instructions, only the independent 
store is re-done.  

In (iv), a dependence (shown by the solid arc) between 
a load (LD A) and a prior store (ST A) exists and is cor-
rectly predicted by the memory dependence predictor 
(shown by the dotted arc). No dependence exists between 
the independent store (ST B) and other instructions 
shown. On re-insertion of the waiting instructions (shown 
by boxes), the dependent load (LD A) will correctly for-
ward from the prior store (ST A) either via the primary 
store queue or after the store has updated the cache (de-
pending upon when the operations are scheduled). 

Case (v) shows a situation where dependence via mem-
ory exists between a load (LD A) and a prior store (ST A). 
The store is miss-dependent and drains the pipeline wait-
ing for the miss but the memory dependence predictor 
incorrectly predicts a lack of dependence. The load (LD 
A) is treated as an independent, executes, and enters the 
secondary load buffer. When the waiting instructions re-
enter the pipeline and execute, the store (ST A) also exe-
cutes. The store (ST A) looks up the secondary load 
buffer, detects the memory-dependence violation, and 
restarts from the checkpoint prior to LD A. 

Case (vi) demonstrates a complex memory dependence 
violation sequence. Here, the memory dependence predic-
tor predicts an independent load (LD A) to be dependent 
upon a miss-dependent store (ST B in the slice). The load 
however must receive data from the unboxed independent 
store (ST A). In phase 2, when the waiting instructions re-
enter the pipeline and execute, depending upon the im-
plementation, the boxed store (ST A) may go to the pri-
mary store queue and the load may incorrectly read the 
result of this store. When the unboxed ST A leaves the 
SRL and updates the cache, it looks up the load buffer, 
hits LD A, and detects the memory dependence violation. 
A restart from the LD A checkpoint follows. This demon-

strates that in case any dependence violation (read-after-
write) does indeed occur, the program order execution of 
all stores from the SRL will detect such a situation 
through the secondary load buffer.  

Since the SRL algorithm can detect all violations, it 
will provide a correct execution under all situations, in-
cluding similar cases not discussed above. 

4.3 SRL implementation 
Figure 5 shows the SRL algorithm implementation. 

The baseline data cache has support for our checkpoint 
architecture. Two additional bits, a speculative bit and a 
speculatively valid bit, per checkpoint are used for each 
cache block.  The L1 data cache stores speculative state: 
the data in a block is not committed until its checkpoint 
has committed. When a checkpoint is committed, the cor-
responding speculatively valid and speculative bits in the 
cache are bulk cleared, marking those cache blocks as 
committed. A checkpoint squash requires a bulk clear of 
the speculatively valid bits. Only one version of a given 
cache block is allowed: stores from only one checkpoint 
can write a given cache block. Only one version of a given 
cache block is allowed: stores from only one checkpoint 
can write a given cache block; a store from another 
checkpoint to this cache block will stall and will prevent 
subsequent stores from the L1 STQ from draining. 

 In addition to the SRL queue, we have two new struc-
tures: a Forwarding Cache (FC) and a Loose Check Filter 
(LCF). These structures are small arrays and are low-
complexity and simple performance enhancements to the 
SRL algorithm.  

Forwarding Cache (FC): To avoid design changes to 
the L1 data cache, we use a separate small forwarding 
cache. Miss-independent stores update this cache and use 
it, instead of the data cache, to forward data to subsequent 
independent loads. Updates in this cache are discarded 
when the store redo occurs. As we discuss in the results 

Figure 5 SRL algorithm implementation. 
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section, performing temporary updates to a small forward-
ing cache has design benefits over changing the data 
cache. 

Loose Check Filter (LCF):  During the store redo 
mode, some loads might need data from the SRL (to for-
ward from an independent store). These loads might have 
been miss-dependent and have re-inserted from the SDB, 
or might be new loads from the front-end that issue during 
slice reinsertion. Since the SRL does not have a CAM, 
and because stores in the SRL might not have completely 
updated the cache when these loads issued, these loads 
would have to stall until the SRL drains completely. To 
avoid this stall, we use the LCF. The LCF is a direct-
mapped non-tagged array of 6-bit counters. The LCF is 
indexed by hashing the memory address. Multiple ad-
dresses may map to the same counter. The LCF is based 
on a counting bloom filter [6], a variant of the Bloom fil-
ter allowing entries to be removed [2]. When a store en-
ters the SRL, the LCF entry counter corresponding to its 
address is incremented. The counter is decremented when 
this store leaves the SRL. The LCF tracks whether an ad-
dress has an entry in the SRL or not. A zero counter in the 
LCF entry corresponding to the load’ s address guarantees 
no store for the address exists in the SRL. This allows a 
load to safely issue. Counter overflows are handled by 
stalling store allocation in the SRL. We find the LCF ef-
fective in ensuring loads stall only when necessary. 

For the small fraction of loads that stall because of a 
matching entry in the SRL, we add a limited form of for-
warding to the SRL we call indexed forwarding. This still 
does not require a CAM or a search. The key idea for in-
dexed forwarding is that most stalled loads that depend on 
stores in the SRL are newly fetched loads that entered the 
pipeline after the miss-dependent instructions were re-
inserted but before the SRL stores have updated the cache. 
The store that forwards to such a load is the last matching 
store inserted into the SRL. We therefore store the index 
of the corresponding SRL entry with the LCF counter. 
When such a load issues, the SRL is indexed using the 
index stored with the LCF counter. The address and data 
from the SRL entry are read. A single comparator outside 
the SRL is used to perform a complete address and age 
check of the load against the store. This form of limited 
forwarding does not require any CAM or search. 

In summary, our SRL algorithm implementation re-
places the CAM and search circuitry of a conventional 
store queue with a FIFO structure (SRL), a direct-mapped 
array (LCF), and a small forwarding cache. 

Algorithm overview: We now describe the algorithm 
in the context of Figure 5. The L1 STQ is a conventional 
small and fast store queue that provides forwarding capa-
bility for active instructions in the pipeline. The SRL is 
used only in the presence of a long latency cache miss, 
when the instruction window becomes large. 

When a cache miss occurs, all subsequent miss-
dependent instructions enter the SDB. All stores, depend-

ent and independent, leave the L1 STQ in order, and enter 
the SRL. When leaving the L1 STQ, the miss-independent 
stores write their address and data value into the SRL. 
They also update the forwarding cache. Dependent stores 
have not completed and therefore do not write into the 
SRL. They however get an SRL entry allocated. This en-
try index is recorded with the miss-dependent store in the 
SDB.  

When the cache miss returns, all updates in the for-
warding cache are discarded. When the miss-dependent 
instructions execute, the stores re-inserted from the SDB 
re-allocate L1 STQ entries. When these stores complete, 
they leave the L1 STQ and update their SRL entry (the 
index of which they had recorded when they entered the 
SDB). The SRL thus holds, in program order, all store 
data in the shadow of the cache miss, and subsequently 
updates the data cache in program order. 

To ensure that stores maintain correct ordering with 
prior loads (write-after-read dependency), the store at the 
head of the SRL updates the cache (during redo mode) 
only after all prior loads have completed execution. This 
is tracked using a bit-array, implemented with head and 
tail pointers. Every load and store gets an entry in the bit 
array (in program order), but only loads set and clear the 
bit. A load’ s bit in the array is set at allocate and is cleared 
when it completes execution. The load increments the 
head pointer when its bit is cleared. A store that is at the 
head of the bit array can be sure all prior loads have exe-
cuted. We find that delaying store updates until loads have 
executed did not hurt performance. 

5. Experimental Methodology 

We use a detailed execution driven timing simulator 
for simulating the IA32 instruction set and micro-ops. The 

  

Table 1 Baseline processor model. 

Processor frequency 8 GHz 
Rename/issue/retire width 4/6/4 
Branch mispred. penalty Minimum 20 cycles 
Scheduling window size 64 Int, 64 FP, 32 Mem 
Map table checkpoints 8 
Register file 192 int, 192 fp. 
Store buffer size 48 
Load buffer 1K entries 
Memory dependence pred. Store sets 
Functional units Pentium 4 equivalent 

Branch predictor 
Gshare-perceptron hybrid 

64K gshare, 256 perceptron 
Hardware data prefetcher Stream-based (16 streams) 
Trace cache 4-wide 
L1 Data cache 32 KB, 3 cycles 
L2 Unified cache 1MB, 8 cycles 
L1/L2 line size 64 bytes 
Memory lat (Req to use) 100 ns 
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simulator executes both user and kernel instructions, mod-
els all system activity such as DMA traffic and system 
interrupts, and models a detailed memory subsystem.  

Table 1 shows parameters of our baseline Continual 
Flow Pipeline [17] processor with Checkpoint Processing 
and Recovery [1]. Table 2 lists the simulated benchmark 
suites, and the number of unique benchmarks within each 
suite. Unless specified, all performance numbers in graphs 
in the paper are percent speedups calculated over the 
baseline processor. 

6. Results 

Section 6.1 presents a performance comparison of the 
SRL proposal with a hierarchical store queue proposal and 
an ideal store queue and provides SRL statistics. Section 
6.2 presents a power and area comparison of SRL and the 
hierarchical store queue. Section 6.3 evaluates the benefit 
of LCF and indexed forwarding.  Section 6.4 presents the 
effect of LCF size and LCF hashing function on SRL per-
formance, and Section 6.5 presents the performance bene-
fit of using a forwarding cache instead of the data cache 
for temporary updates. 

6.1 SRL performance 
Figure 6 shows a performance comparison of SRL, the 

hierarchical store queue, and an ideal store queue. The 

SRL parameters are 48-entry L1 STQ with a 3-cycle ac-
cess, a 1K-entry FIFO SRL, a 2K-entry LCF, and a 256-
entry 4-way associative forwarding cache. The hierarchi-
cal store queue parameters 48-entry L1 STQ with a 3-
cycle access, a 1K-entry L2 STQ with an 8-cycle access, 
and a 1K-entry Membership Test Buffer). The ideal store 
queue is a 1K-entry L1 STQ with a 3-cycle access. The y-
axis is the percent speedup over a baseline with a 48-entry 
store queue. (A large store queue is necessary for a la-
tency tolerant processor to sustain a large instruction win-
dow and the store queue alone does not result in high per-
formance). 

We see that SRL provides performance competitive to 
the hierarchical store queue, and outperforms it for the 
WS benchmark suite. This occurs because for stores miss-
ing the L1 STQ, SRL forwarding occurs at the L1 cache 
hit latency, while forwarding from the L2 STQ for the 
hierarchical solution occurs at the L2 cache hit latency. 
The hierarchical solution performs better than the SRL 
proposal for four suites (SINT2K, WEB, MM and 
SERVER) because the hierarchical solution has a full 
CAM structure and forwarding capability, unlike the SRL 
where only the last store mapping to an LCF entry can 
forward using indexed forwarding.  

With SRL, some loads end up stalling even with in-
dexed forwarding. However, SRL does not require the 
CAM structures or search required in the hierarchical so-
lution or the ideal solution. It achieves performance within 
6% of an ideal store queue implementation. 

Table 3 shows key SRL statistics. The floating-point 
benchmarks (SFP2K) have high cache miss ratios and 
longer dependence chains and hence have a large fraction 
of stores in the shadow of cache misses, which can be seen 
from the percentage of stores redone (column 2). These 
benchmarks also have more miss-dependent stores (col-
umn 3) and more miss-dependent instructions (column 4) 
compared to other benchmarks. The restricted forwarding 
capability in SRL causes a small fraction of loads to stall 
(column 5) across all benchmarks. 

Figure 7 shows the SRL occupancy distribution for the 
fraction of time the SRL is occupied. Stores enter the SRL 

Table 3 SRL statistics. 

 
Redone  
Stores 
(%) 

Miss-
dependent 

 Stores 
(%) 

Miss-
dependent 
Uops (%) 

SRL Load 
Stalls/ 
10000 
uops 

% execution 
time SRL is 

occupied 

SFP2K 47.6 26.7 16.4 11 49.1 

SINT2K 7.3 1.3 2.2 5 16.5 

WEB 1.9 0.6 4.9 9 21.8 

MM 6 2.7 6.5 6 18.3 

PROD 0.3 0.1 0.4 1 5.7 

SERVER 4.2 1.1 7.5 17 41.7 

WS 9.4 8.5 2.6 3 13.9 
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Figure 6 SRL performance comparison. 

 
 

Table 2 Benchmark suite. 

Suite 
# of 

Bench Desc./Examples 

SPECFP2K (SFP2K) 13 www.spec.org 

SPECINT2K(SINT2K) 10 www.spec.org 

Internet (WEB) 10 SPECJbb, WebMark 

Multimedia (MM) 14 MPEG, speech, photoshop 

Productivity (PROD) 7 SYSMark2k, Winstone 

Server (SERVER) 7 TPC-C 

Workstation (WS) 13 CAD, rendering 
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only in the presence of missed loads and Table 3’ s column 
6 shows the percentage of execution time the SRL is oc-
cupied. For all benchmarks, we find a 1K entry SRL is 
sufficient to hold all stores in the shadow of a load miss. 

6.2 Power and area analysis 
In this section, we compare the power and area of our 

SRL proposal with that of the hierarchical store queue [1]. 
As mentioned earlier, the hierarchical store queue has a 
full CAM L2 store queue. We do not study the data por-
tions of the store queues since that will be common to all 
proposals. 

Hierarchical L2 STQ power and area: We designed 
a 512-entry store queue (the L2 STQ) with an 8 cycle ac-
cess latency using a 90nm CMOS technology [12]. The 
design was optimized to reduce leakage power. A banked 
structure was used to reduce dynamic power. The CAM 
array entry has 36 address bits and 8 byte-mask bits (to 
determine address match when loads and stores have un-
aligned addresses or different data sizes). We performed 
SPICE simulations of our design and calculated the dy-
namic and leakage power of the L2 STQ. The area of the 
L2 STQ was 1.4 mm2. Using SPICE simulations, the leak-
age power came to 95mW and the dynamic power (if 
every load looked up the L2 STQ) came to 4.4W. Since 
only 10% of loads look up the L2 STQ in the hierarchical 
design, the total dynamic power of the 512-entry L2 STQ 
if 440mW. 

Store Redo Log power and area: We also designed 
the address array of a 512-entry SRL with a 2K-entry 
LCF. Each entry in the SRL queue consists of 6 bytes of 
address, and thus the total SRL queue size is 3KBytes. 
Each entry in the LCF consists of 10-bit SRL queue index 
and 6 bits count value, for a total of 2 bytes per entry. The 
total size of the LCF is therefore 4KBytes. The combined 
size of the SRL and LCF is 7K bytes. The area of the SRL 
queue was 0.35mm2. The dynamic power was 30mW and 
the leakage power was 40mW. Adding the separate for-
warding cache to the SRL has minimal impact on these 

parameters. The SRL with the forwarding cache has an 
area of 0.45mm2, a leakage power of 48mW, and a dy-
namic power of 37mW. 

Comparing to the area and power estimates for a hier-
archical store queue design presented earlier, the SRL 
algorithm gives significant reduction in area and power 
over a highly optimized hierarchical store queue circuit 
that uses best current techniques for minimizing CAM and 
search activity to reduce dynamic power. 

6.3 LCF and SRL indexed forwarding 
The results presented thus far assume an SRL imple-

mentation with a loose-check filter (LCF) and indexed 
forwarding (Section 4.3) to prevent unnecessary load 
stalls. In this section, we study the performance impact of 
LCF and indexed forwarding.  

Figure 8 compares the performance of SRL without 
LCF, SRL with LCF but without indexed forwarding, and 
SRL with LCF augmented with indexed forwarding. We 
use a 2K-entry LCF for this experiment. Lack of LCF af-
fects SFP2K benchmarks the most since they have a large 
number of cache misses and miss dependent stores occu-
pying the SRL. Adding an LCF significantly cuts down on 
loads stalling due to potential matches in the SRL result-
ing in more than 15% performance gain for SFP2K. Fur-
ther adding indexed forwarding support to the SRL (which 
still does not require a CAM match) results in higher per-
formance.  Thus, the LCF and indexed forwarding play an 
important role in achieving high performance. 

6.4 LCF size and LCF hashing function 
Figure 9 presents the sensitivity of SRL performance to 

the LCF size and hashing function. Two different LCF 
hashing functions are studied: Lower Address Bits index-
ing (LAB), and 3-Piece Address XOR indexing (3-PAX), 
which computes an index from the XOR of the lower, 
middle and upper address bits. For each hash function, 
results for 256-entry and 2K-entry LCF sizes are pre-
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sented, and performance without LCF is shown for refer-
ence. Results presented elsewhere in this paper are for a 
2K-entry LCF and a 3-PAX hashing scheme.  From Figure 
9 we see little sensitivity to hash function and greater sen-
sitivity to LCF size, especially for the SFP2K benchmark 
suite. A 256-entry LCF performs within 2% of a 2K-entry 
LCF and significantly better than without an LCF, across 
all benchmarks. While the performance difference be-
tween the two hashing schemes is small, the 3-PAX hash-
ing significantly benefits several individual benchmarks. 

6.5 Data cache for temporary updates 
We have avoided using the data cache to buffer tempo-

rary updates in our SRL implementation, and employ a 
small forwarding cache. While doing so has the advantage 
of not having to change the data cache design, it also has 
performance benefits. This is because if we use the data 
cache for buffering temporary updates for forwarding 
from independent stores to independent loads, any earlier 
modified data for the block being written must be written 
back to the next level of cache. This adds latency.  Fur-
ther, the data cache may suffer from associativity limita-
tions, which may stall store processing.  Because tempo-
rary updates are discarded in the data cache, a load may 
observe an additional miss to the next level of cache dur-
ing the redo phase.  

Figure 10 compares the performance of SRL with and 
without a 256-entry 4-way associative forwarding cache 
and shows that a forwarding cache significantly helps im-
prove performance.  

7. Related Work 

Sethumadhavan et al. [16] propose filtering schemes 
using Bloom filters to reduce both the number of LSQ 
lookups and the number of entries to be searched during 
each lookup.  They also use address predictors to reduce 
the number of loads tracked in the LSQ, leading to a 

smaller LSQ. Park et al. [15] reduce search bandwidth 
demand on the store queue using a store-sets predictor that 
prevents loads predicted to be independent of prior stores 
from looking up the store queue.  They present ways to 
reduce the search bandwidth demand on the load queue 
and explore a segmented load/store queue (LSQ) with 
pipelined, variable-latency segments. Akkary et al. [1] 
propose a hierarchical store queue consisting of a small, 
fast L1 STQ, and a large, slow L2 STQ, combined with a 
fast filtering mechanism, the Membership Test Buffer to 
reduce L2 STQ lookups. 

The above three schemes reduce the search bandwidth 
requirements of large store queues and/or reduce the num-
ber of loads that need to be tracked to maintain proper 
memory ordering. Our load buffer algorithm and store 
redo approach avoid having to search large load and store 
queues, thus providing significant savings in area and 
power. 

Gharachorloo et al. [8] use speculative execution to 
improve the performance of memory consistency models, 
and suggest using value matching  to detect consistency 
violations.  Gniady et al. [9] use speculative execution and 
a hardware log of speculative updates to processor and 
memory state for every instruction for improving the per-
formance of sequential consistency. Their implementation 
rolls back to the “sequentially consistent” memory state if 
a violation is about to occur. Cain and Lipasti [3] propose 
a value-based replay mechanism for enforcing uniproces-
sor and multiprocessor ordering constraints that eliminate 
the need for associative look-ups in the load queue. Our 
load buffer eliminates the fully associative lookup of the 
load queue as well and does not need to store load data 
since it does not need a replay mechanism.  

 Proposals for storing speculative versions of data and 
for detecting memory dependence violations between 
tasks/threads in the context of speculative multithreading 
exist [7, 10] and are orthogonal to the proposals in this 
paper. 

-5

0

5

10

15

20

25

30

SFP2K SINT2K WEB MM PROD SERVER WS

P
er

ce
nt

 s
pe

ed
up

 o
ve

r b
as

el
in

e

No LCF

LCF256 + LAB indexing

LCF2K + LAB indexing

LCF256 + 3-PAX indexing

LCF2K + 3-PAX indexing
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8. Conclusions 

We have presented a new proposal for processing loads 
and stores in very large instruction window, latency-
tolerant processors. The proposal does not require address 
CAM and search of the secondary load and store buffers. 
The secondary load buffer is a set associative buffer with 
store identifiers for determining load and store order and 
checkpoint bits with bulk reset mechanism. The key idea 
behind the store queue proposal is that redoing stores in 
the shadow of load misses, after the miss data is fetched 
from memory, to fix memory dependences provides better 
power and area characteristics than a scheme which con-
stantly enforces dependences among a very large number 
of loads and stores, many of which have unknown ad-
dresses. Our proposal performs competitively compared to 
a very large conventional store queue while significantly 
reducing the area and power of the load and store address 
queues. The reductions are primarily because our proposal 
eliminates the requirement for search and CAM of large 
load and store queue structures. 
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