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Abstract

The load-store unit is a performance critical com-
ponent of a dynamically-scheduled processor. It is also
a complex and non-scalable component. Several
recently proposed techniques use some form of specula-
tion to simplify the load-store unit and check this specu-
lation by re-executing some of the loads prior to
commit. We call such techniques load optimizations.
One recent load optimization improves load queue (LQ)
scalability by using re-execution rather than associative
search to check speculative intra- and inter- thread
memory ordering. A second technique improves store
queue (SQ) scalability by speculatively filtering some
load accesses and some store entries from it and re-exe-
cuting loads to check that speculation. A third technique
speculatively removes redundant loads from the execu-
tion engine, re-execution detects false eliminations.

Unfortunately, the benefits of a load optimization
are often mitigated by re-execution itself. Re-execution
contends for cache bandwidth with store commit, and
serializes load re-execution with subsequent store com-
mit. If a given load optimization requires a sufficient
number of load re-executions, the aggregate re-execu-
tion cost may overwhelm the benefits of the technique
entirely and even cause drastic slowdowns.

Store Vulnerability Window (SVW) is a new mecha-
nism that significantly reduces the re-execution require-
ments of a given load optimization. SVW is based on
monotonic store sequence numbering and an adaptation
of Bloom filtering. The cost of a typical SVW implemen-
tation is a 1KB buffer and a 16-bit field per LQ entry.
Across the three optimizations we study, SVW reduces
re-executions by an average of 85%. This reduction
relieves cache port contention and removes many of the
dynamic serialization events that contribute the bulk of
re-execution’s cost, allows these load optimizations to
perform up to their full potential. For the speculative
SQ, this means the chance to perform at all, as without
SVW it posts significant slowdowns.

1. Introduction

The load-store unit is a complex yet performance
critical component of a dynamically scheduled proces-
sor. It supplies values to in-flight loads and enforces the
appearance of a sequential memory access stream. Both
store-load forwarding and memory ordering require
expensive associative searches. In forwarding, loads
search older in-flight stores. In ordering, stores (in some
processors loads too) search younger in-flight loads.

The non-scalability of associative search has led

researchers to propose techniques that use speculation
to simplify some aspect of the load-store unit and then,
immediately prior to commit, re-execute some or all of
the loads—comparing the re-executed values to the
original ones—to verify the speculation [2, 6, 9]. We
dub such techniques load optimizations. One recent
load optimization improves load queue (LQ) scalability
[6] by using re-execution—rather than associative
search—to verify intra- and inter- thread memory order-
ing speculation. A second optimization improves store
queue (SQ) scalability [3, 20] by speculatively filtering
both load accesses and store entries from the SQ. Load
re-execution verifies both forms of speculation. Redun-
dant load elimination [17, 19, 23] speculatively removes
some loads from the execution engine entirely, present-
ing the load-store unit with a reduced load stream. Re-
execution detects false eliminations.

Load re-execution is a simple way to uniformly
detect many forms of load mis-speculation. It requires
only data cache access and it raises no costly false
alarms. However, it has some disadvantages. It contends
with store commit for cache bandwidth and introduces a
new critical loop [5]: a store may not commit until all
previous loads have re-executed successfully. If a given
load optimization requires the re-execution of a signifi-
cant fraction of loads, the resulting contention and seri-
alizations may overwhelm the benefit the optimization
itself provides. The non-associative LQ and redundant
load elimination techniques succeed largely because
they have “natural” filters that limit re-executions. The
speculative SQ technique has no natural filter and its re-
executions degrade performance significantly.

This work introduces the Store Vulnerability Win-
dow (SVW), a filter that significantly reduces the num-
ber of loads that must re-execute to support a given load
optimization. SVW exploits the observation that even an
optimized load (e.g., an eliminated load) need not re-
execute if it reads an address that has not been written to
in a long time. SVW uses a store sequence numbering
scheme and an adaptation of Bloom filtering. By reduc-
ing cache bandwidth contention and removing dynamic
load re-execution/store-commit serializations, SVW
improves the performance of optimizations that have
natural re-execution filters and “enables” optimizations
that have no natural filter by making them profitable.
Performance simulations on the SPEC2000 integer pro-
grams show that a 1IKB SVW filter reduces re-execu-
tions associated with these three load optimizations by
an average of 85%, and brings their performance close
to what it would be with ideal (instant latency, infinite
bandwidth) re-execution.
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FIGURE 1. Pipeline with load re-execution engine. Re-
execution shares a data cache port with store retirement.

2. Background

SVW optimizes load re-execution, which itself is
only meaningful when coupled with a load optimization.
In this section, we review a simple load re-execution
architecture and three load optimizations that exploit it.

2.1. Load Re-Execution

The commit pipeline of a superscalar processor
writes stores to the data cache in program order. When a
store commits, its corresponding address/value pair is
read from the head of the store queue (SQ) and sent to a
data cache write port. Processors typically support only
one data cache write per cycle as stores typically
account for only 15% of dynamic instructions.

Figure 1 shows a conventional pipeline augmented
with load re-execution. The added/modified paths/struc-
tures are bolded/shaded. The primary addition is a re-
execution pipeline which processes loads and stores.
Like the commit pipeline, the re-execution pipeline pro-
cesses instructions in program order and stalls at the first
non-completed instruction (load re-execution can actu-
ally begin as soon as the load address is available, but
this complicates the implementation). A separate ROB
pointer, rex-head, decouples the re-execution pipeline
from the commit pipeline. To re-execute loads, we con-
vert the data cache write port to a read/write port. Store
commit and load re-execution arbitrate for this port with
commit having priority. The re-execution pipeline can
buffer a few stores internally to allow loads to re-exe-
cute before all older stores have committed. The re-exe-
cution pipeline flags loads that re-execute successfully,
i.e., read the same value as the original execution. The
commit pipeline flushes the processor when it encoun-
ters a load that re-executed unsuccessfully.

For most load optimizations, the re-execution pipe-
line reads load addresses and values from the LQ. For
optimizations that eliminate the LQ or—Ilike redundant
load elimination [17, 19, 23]—filter some loads from it,
we elongate the re-execution pipeline to read the base
address and value from the register file.

Natural re-execution filters. Some load optimiza-
tions only affect a subset of the loads and only this sub-

set needs to re-execute. A load optimization that can
naturally identify the loads it affects and prune re-execu-
tions—and most can do this to some degree—is said to
have a natural re-execution filter. We call loads that
must re-execute marked loads.

Performance impact. If no loads re-execute, the re-
execution pipeline acts as a trivial one-stage extension
to the commit pipeline. If some or all loads re-execute,
the elongated pipeline reduces the effective capacities of
structures that hold in-flight instruction state: the ROB,
LQ, SQ, and register file. Two larger costs are conten-
tion for the data cache read/write port—the re-execution
pipeline stalls during store commit—and the introduc-
tion of a serialization scenario, i.e., a critical loop [5].
Counter-intuitively, this scenario does not involve the
re-execution of dependent loads. Dependent loads can
re-execute in parallel with the consumer re-executing
using producer’s original output value as its input; this is
“dependence-free checking” [2]. The serializing con-
straint is that a store may not commit until all prior loads
have successfully re-executed. It turns into a critical
loop because data cache access is typically a multi-cycle
operation. This serialization cannot be mitigated by a
store buffer, which exposes stores externally and from
which stores cannot be aborted.

2.2. Non-Associative Load Queue (NLQ)

Conventional processors that issue loads specula-
tively enforce the appearance of sequential memory
order using a load queue (LQ). The LQ tracks the
addresses of in-flight loads. To enforce intra-thread
ordering, completed stores associatively search the LQ
for younger loads to the same address that issued pre-
maturely. A match flushes the load and all subsequent
instructions. If the LQ contains values in addition to
addresses, some flushes may be avoided as the search
procedure could ignore ordering violations from silent
stores [13]. To enforce inter-thread ordering, the entire
LQ is searched when a cache line is invalidated by a
write from another thread. Loads to that line that have
issued are flushed. Inter-thread searches cannot incorpo-
rate values to eliminate false flushes due to silent stores
or false sharing since block invalidations are not accom-
panied by values that can be used for comparison. While
neither ordering operation is on the load execution criti-
cal path, LQ search is expensive because the LQ is
large, searches frequent, and false flushes costly.

To avoid unnecessary flushing associated with inter-
thread memory ordering speculation, Gharachorloo et
al. proposed replacing associative search with in-order
load re-execution prior to commit [9]. He quickly dis-
missed the idea because without a natural re-execution
filter, the bandwidth consumed by re-executing all loads
outweighs the gains of reduced flushing. Cain and
Lipasti made this approach competitive by introducing
two heuristics that significantly reduce the number of re-
executed loads [6]. To verify intra-thread ordering, only
loads that issued in the presence of older stores with
unresolved addresses are re-executed. For inter-thread
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FIGURE 2. LEFT: conventional load-store unit with interleaved data cache, two load ports and one store port. MIDDLE:
non-associative LQ design replaces LQ searches with re-execution. RIGHT: speculative SQ design splits SQ into a small,
low-bandwidth forwarding queue (FSQ) and large non-associative retirement queue (RSQ). Re-execution checks that loads
and stores are correctly steered to the FSQ. Steering is performed by a predictor which is trained by re-execution mechanism.

ordering, only loads that are in the window during a
cache line invalidation—these are identified by remem-
bering the value of LQ tail pointer at the time of an
invalidation—are re-executed. Collectively, we call
these optimizations the nomn-associative LQ (NLQ).
Individually, we call them NLQpg (load speculation)
and NLQg)y; (shared-memory). Cain and Lipasti show
that NLQpg re-executes 2-15% of the loads and
NLQgy re-executes an additional 20-40% [6].

All of our load optimizations build on the conven-
tional load-store unit in Figure 2a, which executes two
loads and one store per cycle. It includes a 2-way inter-
leaved data cache, an SQ with two associative ports (for
the loads), and an LQ with one associative port (for the
store). The shaded box shows the components that sit on
the load execution critical path: the data cache and SQ.

Figure 2b shows the NLQ organization. The added
structures/paths are shaded/bolded. Note the absence of
the LQ associative port (marker @) and the fact that the
scheduler marks loads for re-execution (@). One of the
stated limitations of the originally NLQ proposal [6] is
that it does not track the identities of stores that trigger
flushes and can only train store-blind dependence pre-
dictors, rather than more refined store-load pair depen-
dence predictors like store-sets [7]. We overcome this
limitation using the store PC table (SPCT): a small, tag-
less table indexed by low-order address bits in which
each entry contains the PC of the last retired store to
write to a matching address. On a flush, the store PC is
retrieved from the SPCT using the load address (©).

2.3. Speculative store queue (SSQ)

Loads read values from either the SQ (if they read
an address written by some older in-flight store) or the
data cache (otherwise). Cache and SQ are accessed in
parallel to minimize load latency and reduce scheduling
complexity. Address banking is a straightforward way
of providing high-bandwidth cache access, but is not

easily reconciled with the age-ordering invariants that
an SQ requires [22]. High-bandwidth SQ access is typi-
cally provided by multi-porting or replication. Both
options are costly, especially for associative structures.

Recently, researchers [3, 20] have observed that an
SQ serves two functions: (i) it buffers stores for in-order
retirement, and (ii) it forwards values from in-flight
stores to younger loads. The first function requires an
SQ to hold all in-flight stores (i.e., to be large). The sec-
ond requires it to be associatively searched (i.e., to be
slow). Implementing both functions in a single structure
requires that structure to be both large and slow. Figure
2c shows one instance [20] of a design that exploits this
observation by dividing the functions of a conventional
SQ between two queues. A large retirement SQ (RSQ)
contains all stores but does not support associative
search. In fact, it is removed from the timing critical
load execution path (@). A small, low-bandwidth for-
warding SQ (FSQ) implements forwarding. The FSQ
requires fewer associative ports than a conventional SQ
because only loads that read values from older stores
access it. It requires fewer entries because only stores
that forward values to loads are allocated entries in it
(®). Actually, the FSQ handles only a subset of the for-
warding cases. A small, 8-entry unordered forwarding
buffer that fronts each cache bank (®) handles simple
forwarding cases (i.e., unambiguous ones which execute
in order anyway). Loads that execute incorrectly in this
structure are subsequently steered to the FSQ. FSQ
steering uses a simple predictor, a single bit per instruc-
tion in the instruction cache. Initially, all bits are clear
and no loads/stores access/enter the FSQ. When re-exe-
cution detects a missed forwarding instance, the partici-
pating load and store are tagged for future FSQ access/
entry. Because forwarding patterns are stable and the
static set of forwarding stores and loads is small—these
phenomena are well known and exploited by memory-
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ordering speculation [7, 14]—the predictor trains
quickly and mis-speculation rates are low.

Unlike NLQ, SSQ does not have a natural re-execu-
tion filter, i.e., it re-executes all loads (notice loads in the
LQ are not explicitly marked). Even though most
dynamic loads—over 80% in many applications—are
instances of static loads that never read from older stores
and don’t access the FSQ, they must always re-execute
to ensure that the first store-forwarding instance is not
missed. Loads that access the FSQ must also re-execute
because FSQ store membership is also speculative.

2.4. Redundant load elimination (RLE)

Compilers have a difficult time eliminating dynami-
cally redundant loads due to the limitations of static
alias analysis. Several proposed hardware mechanisms
dynamically detect redundant loads and remove them
from the execution engine, reducing both redundant
load effective latency and load unit bandwidth demand.

Redundant load elimination (RLE) comprises two
redundancy scenarios. Load reuse exploits redundancy
between two loads by renaming the output register of
the second load to point to the output register of the first.
Speculative memory bypassing exploits store-load com-
munication by setting the output register of the load to
point to the data input register of the store. We look at
one implementation of load reuse and speculative mem-
ory bypassing, register integration [19], which detects
reuse scenarios for all instructions using an integration
table (IT) that tracks physical register dependences of
recent instructions. An instruction is redundant if it per-
forms the same operation on the same physical register
inputs as an instruction which has an IT entry.

Redundant, un-executed loads must re-execute to
detect false eliminations, e.g., load reuse in the presence
of an unaccounted for store that intervenes between the
original and redundant loads. Invalidating IT entries by
snooping store addresses is insufficient because the
addresses of stores older than a redundant load may
become available only after the load has been elimi-
nated. Because eliminated loads do not execute and thus
have empty LQ entries, RLE requires an extended re-
execution pipeline which reads load addresses and val-
ues from the register file.

RLE has a natural re-execution filter; only elimi-
nated loads re-execute. However, it typically eliminates
25-40% of all dynamic loads yielding a substantial re-
execution stream.

3. The SVW Re-Execution Filter

Store vulnerability window (SVW) is a mechanism
that enhances the natural re-execution filter of a given
load optimization (e.g., NLQ and RLE), or provides one
if the optimization does not have one (e.g., SSQ). SVW
exploits the observation that even an optimized load—
e.g., a speculative load under NLQy g or an eliminated
load under RLE—should not have to re-execute if it
reads an address that hasn’t been written (or invalidated)
in a long time.

Basic SVW scheme. This basic SVW mechanism is
common to all load optimizations that we studied. SVW
assigns each dynamic store a monotonically increasing
sequence number, the store sequence number (SSN).
For now, we assume that SSNs have infinite width and
do not wrap. Store SSN’s need not be explicitly repre-
sented. It is sufficient to explicitly represent the SSN of
the last retired store, SSNggtigre- The SSN of any in-
flight store can be computed using this global value and
the store’s relative-to-head position in the SQ. For con-
venience, we also often refer to SSNrenave, the SSN of
the youngest store in the window. This is just SSNgeTIRe
+ SQ.0CCUPANCY.

SVW uses SSNs to associate with each dynamic
load a dynamic window of stores to which that load is
made vulnerable by the optimization; we refer to this
window of stores as a load’s store vulnerability window
(SVW). Intuitively, a load is only vulnerable to stores
that are older than itself yet not so old that they commit-
ted to the data cache before the associated optimization
took effect. For convenience, we define a load’s SVW as
the SSN of the youngest older store to which the load is
not vulnerable. We add an SVW field to the LQ; this
field is set at dispatch (1d.SVW = some-SSN) but can be
updated if a subsequent action shrinks the SVW.

Defining an SVW for each dynamic load is only half
the equation. The other half is a small, tagless table
indexed by low-order address bits—similar to the
SPCT—in which each entry holds the SSN of the last
retired store to write to any partially matching address.
We call this table the store sequence Bloom filter
(SSBF). Here we use the term Bloom filter [4] to mean a
filter in which aliasing can only produce false positives.

SVW adds one stage to the re-execution pipeline;
this stage immediately precedes data cache access.
Recall, the re-execution pipeline processes loads and
stores in program order. In the SVW stage, a store writes
its SSN into the SSBF entry corresponding to its address
(mnemonically, SSBF[st.addr] = st.SSN). A marked load
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FIGURE 3. NLQ with SVW.
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uses its address to read the SSBF and evaluates the re-
execution filter test: SSBF[ld.addr] > 1d.SVW. A positive
test implies that the load probably conflicts with a store
to which it is vulnerable; the load must re-execute to
detect possible mis-speculation. A negative test unam-
biguously means that no store conflict occured; the load
is immediately tagged as having sucessfully re-exe-
cuted, skips the data-cache access stages in the re-exe-
cution pipeline, and may commit the following cycle.

The additional structures and paths are shown in Fig-
ure 3 in the context of NLQ. SVW-specific hardware is
shaded/bolded. They new structures are: i) the global
counter SSNReTiRe, 1) an SVW field in the LQ, iii) the
SSBF, and iv) a re-execution test circuit. The new paths
are active at load dispatch (@), store SVW, i.e., SSBF
update (@), and load SVW, i.e., SSBF lookup and re-
execution filter test (©).

3.1. SVW for NLQ; g

NLQy g re-executes loads that issued in the presence
of older stores with unknown addresses. The memory
scheduler recognizes and marks these loads. To this nat-
ural filter, we add SVW so that a load re-executes only if
it issued speculatively and if a store to which it is vul-
nerable wrote to a colliding address.

The key step of implementing an optimization-spe-
cific SVW scheme is operationally defining the store
window to which a given load is vulnerable. In load-
speculation, a load is vulnerable to all older stores that
were in-flight at the time it dispatched. Almost no load
optimization we can think of makes loads vulnerable to
stores younger than themselves. Load speculation in
particular does not make loads vulnerable to stores that
committed prior to the load being dispatched. The phys-
ical definition of the load-speculation SVW for a given
load is the SSN of the last retired store. At dispatch, we
set Id.SVW = SSNRETIRE'

In load-speculation, store-load forwarding is an
action that shrinks the vulnerability window. When a
load reads from an in-flight store, it becomes invulnera-
ble to that store and all older stores. To capture this
effect, we update the load’s SVW to the SSN of the for-
warding store, Id.SVW = st.SSN.

Working example. Figure 4a shows the four SVW
events in the life of one dynamic load. Each snapshot
shows three structures. The LSQ is on the left (we show
the LQ and SQ as a single interleaved queue both for
clarity and to save space, the example still works if they
are separate). Values do not contribute to the example
and so we only show addresses (letters A, B, C, D) and
SSNs (numbers). Older instructions are to the right.
Stores are shaded. The second structure is the global
SSNReTiRe. Finally, the SSBF shows the SSNs of the last
retired stores to write to each of the four addresses. The
load of interest is the one on the left end of the LSQ.

In the first snapshot (@), we dispatch the load and
establish its vulnerability window by setting its SVW to
SSNReTiRe, 62. The load is vulnerable to all stores
younger than (i.e., with SSNs greater than) 62.

In the next snapshot, the LSQ head and tail have
advanced—notice the updated state of SSNggrg and
the SSBF—but the interesting event is the execution of
the load. Notice, the load executes in the presence of
older ambiguous stores (64 and 66), and so is marked
for potential re-execution by the scheduler. Also notice,
the load reads its value from store 65, which also refer-
ences address A. This action means the load is no longer
vulnerable to any stores older than 65, inclusive. We
update the load’s SVW to reflect this fact (@).

In the third snapshot, store 66 writes to A, meaning
that our load issued over-aggressively and must re-exe-
cute to detect this violation. When store 66 retires, it
writes its SSN into the SSBF entry for address A ().

Finally, in the SVW stage of the re-execution pipe-
line, the load accesses the SSBF using its own address,
A. As expected, the SSBF re-execution test indicates
that the load must re-execute because it collided with
store 66, to which it was vulnerable (@).

A Second Example. Figure 4b shows alternatives
for the final two snapshots in which the load collides
with store 64 to which it is not vulnerable (this store is
older than the store that forwarded the value to the load).
This time, when the load checks the SSBE, it finds the

(@)

* tail LSQ head {y SSNRETlRE SSBF
B A C A[B[C|D
6766] |65] |64]63 m 4]0 [17]62
head ¢
A B A C A[B[C|D
) [67]66] W0 [64]63 4106362
head
v
A B A D[C B[C[D
65| |67 65| |64]63 06364
%head
B[A A D[C B[C[D
67|66] |65] |64]63 06364
e-execute? Yes
(b) head
v o
A B A AlC A[B[C
65| |67 65| 6463 @ 65 0 |63
,head
v 14
B|D A Al C B[C[D
6766 65 64]63 0 [63]66

e-execute? No

FIGURE 4. NLQ; s+SVW working example shows the
relevant SVW steps in the life of one dynamic load, the
one on the left-most side of the LSQ. In (a), the steps are
load dispatch, load execution, conflicting store
retirement/SSBF update, and load SSBF lookup/re-
execution. (b) shows alternatives for the last two steps.
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SSN 65 in the entry for address A. The load skips re-
execution because it is not vulnerable to stores 65 and
older. Without SVW, this load re-executes.

3.2. SVW for NLQgy

NLQg)\; enforces inter-thread memory ordering by
re-executing loads that are in-flight when a shared-
memory coherence invalidation takes place. NLQgp
differs from NLQpg in two ways. First, information
about store addresses is available at the cache line
rather than word granularity. Second, stores do not
come from the same thread as the loads that are vulner-
able to them such that there is no “natural” sequence
numbering relationship between the two.

To account for the first difference, an invalidation
updates multiple SSBF entries. We divide the SSBF
into a number of banks that equals the number of words
in a cache line. For store updates, only one bank is
write-enabled. For invalidations, all banks are enabled.

To account for the second difference, we formulate
a sequence numbering relationship between loads and
invalidations. From a load’s point of view, an invalida-
tion acts like an asynchronous store from within the
same thread. Taking this view, a load is vulnerable to all
invalidations that occurred since it was dispatched so
the SVW definition is actually the same as in NLQy g,
1d.SVW = SSNgg7ire- When an invalidation occurs, we
pretend that it is an asynchronous store that potentially
affects all in-flight loads. We therefore write into the
SSBF an SSN that is higher than that of the youngest
in-flight store: SSBF[inval.addr] = SSNggname +1-

3.3. SVW for SSQ

The speculative SQ (SSQ) optimization uses the
same SVW implementation as the one used by NLQj g.
This is intuitive because both optimizations only make
a given load vulnerable to older stores that were in the
window at the time the load was dispatched. The differ-
ence between the two optimizations and their SVW
implementations is that while NLQy ¢ has a natural fil-
ter and uses SVW as an enhancer, SSQ uses SVW as an
enabler. Without SVW, it would re-execute all loads.

3.4. SVW for RLE

Redundant load elimination (RLE) is also different
from the first two optimizations. Under NLQ ¢ and
SSQ, a load is only vulnerable to stores that were in-
flight at the time it was dispatched. In contrast, an elim-
inated load is vulnerable to all stores starting at the
older load with which it is redundant. This difference
requires a new mechanism for establishing load SVWs.

RLE is coordinated by the register renaming stage.
Loads create IT entries that describe the operation they
are about to perform and the physical register which
will hold the result. Future loads search the IT and are
recognized as redundant if they find tuples with match-
ing “operation signatures.” To establish SVWs we must
pass SSN information from original load to redundant
load via the IT. Non-redundant loads attach SSNggname

to the IT entry they create to mark the beginning of the
vulnerability window for any future load that may reuse
their result. An eliminated load takes its SVW from the
IT entry it matches, 1d.SVW = IT-ENTRY.SSN.

3.5. SVW for Multiple Optimizations

Composing the re-execution streams of multiple
active load optimizations is easy: a load re-executes if it
is marked by any optimization. Composing the SVW
mechanisms of multiple optimizations is also easy; only
per-load SVW definitions must be composed. Under all
optimizations we have studied, a load is vulnerable to
some contiguous window of stores that is immediately
older than itself. In other words, for all optimizations the
younger end of the window is fixed (it is the load itself)
and only the older end varies. Intuitively, a load that is
subject to multiple optimizations is vulnerable to the
largest store window under any of them. Mnemonically,
1d.SVWgy1,02 = MIN(Id.SVW(4, 1d.SVWq,).

An SVW for all four optimizations. Composing
the unfiltered re-execution streams for all four optimiza-
tions we discussed is simple: SSQ marks all loads for
potential re-execution. Setting the SVW for a given
dynamic load is also straightforward. The SVW of non-
eliminated loads is just SSNggrjre- Eliminated loads are
not subject to SSQ or NLQy g because they do not exe-
cute, however they are subject to shared-memory invali-
dations. The SVW of an eliminated load is MIN(IT-
ENTRY.SSN, SSNReTiRe)-

3.6. Implementation Issues

We now address two SVW implementation issues.

SSN wrap-around. In a real implementation, SSNs
will have finite width. Sucessful handling of SSN wrap-
around means avoiding comparing SSBF entries (i.e.,
retired store SSNs) that are slightly larger than zero with
load SVWs that are slightly less than zero. A naive
application of the re-execution filter test in this case
would suggest that the load is safe because its SVW is
much larger (i.e., younger) than the SSBF entry. How-
ever, in reality the SSBF entry may be slightly younger.

The following simple policy avoids such ambiguous
comparisons. When SSNggyame Wraps around to zero,
we: 1) drain the pipeline by waiting for all in-flight
instructions to commit, ii) flash clear the SSBE, iii) flash
clear the IT if the RLE optimization is enabled, and iv)
resume dispatch. The effect of this policy is to ensure
that no load has a vulnerability range that crosses the
wrap-around point. In other words, no load has both an
SVW slightly less than zero and an older store whose
SSN is equal to or slightly larger than zero. Loads
younger than the store whose SSN is zero are stalled at
dispatch until that store reitres. As a result their SVW
will be zero. Flash clearing the IT has the same effect on
vulnerability ranges for eliminated loads.

Certainly, pausing to drain the pipeline at regular
intervals reduces performance. However, the impact is
minimal if SSNs are wide enough to make wrap-around
infrequent. Our experiments show that performance
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with 16-bit SSNs (wrap-around intervals of 64K stores)
is only 0.2% lower than with infinite-width SSN.

The experienced reader may wonder why SVW does
not handle wrap-around using the “log(Q.size)+1-bit”
scheme most processors use to compare the relative ages
of instructions in circular queues. Simply, these schemes
only work in queues where the logical ages they com-
pare are never more than Q.size apart. The SSBF is not a
queue. This allows it to be non-associative but makes it
incapable of maintaining temporal distance guarantees.

Speculative SSBF updates. Figure 4 shows load
SVW/re-execution and store SVW/commit as atomic
relative to one another, a store does not update the SSBF
until all previous loads have retired. Forcing this atomic-
ity would actually exacerbate the load-to-younger-store
serialization that re-execution filtering tries to avoid. In
practice, we force loads and stores through the SVW
stage in order, but allow stores to update the SSBF spec-
ulatively. This works because SSNs increase monotoni-
cally and because high SSBF entries are interpreted
conservatively. If a wrong path store erroneously writes
a high SSN into the SSBF, the only result may be a few
superfluous re-executions. No necessary re-executions
will be missed. Empirically, speculative SSBF updates
increase re-executions relatively by 1-2% (e.g., by
0.1% if the base rate is 10%), a small price to pay for
avoiding elongated serializations.

3.7. SVW vs. MCB/ALAT

Conceptually, SVW—which conservatively tracks
address conflicts between every load and a given win-
dow of stores to which that load is vulnerable—is simi-
lar to the Memory Conflict Buffer (MCB) [8] or Intel
Itanium’s Advanced Load Alias Table (ALAT) [11].
However, SVW has an advantage over MCB/ALAT in
that it does not require a load’s address to be known
before conflicts with that load can be tracked. SVW
achieves this by splitting conflict tracking into two
pieces: the SVW definition is attached to each load; the
SSBF tracks store conflicts in a load indpendent way.

This organization allows SVW to support a wider
range of load optimizations. Consider the three we dis-
cuss here. NLQ enforces memory ordering and requires
loads to be tracked from the time they execute. Since
load addresses are available at execution, an MCB/
ALAT can be used. As store addresses become avail-
able, MCB/ALAT would check them against all tracked
load addresses and force re-executions on matches. In
order to not invalidate loads when they collide with
younger stores, the MCB/ALAT could delay store
address matching until store commit. This extension—
which allows an MCB/ALAT to track load speculation
in the presence of out-of-order stores and which is an
application of the SVW concept—was proposed by
Onder and Gupta [16]. In contrast, SSQ and RLE opti-
mize value forwarding and require load-store collisions
to be tracked starting at load dispatch. MCB/ALAT can-
not be used for these optimizations.

In general, it seems that MCB/ALAT is appropriate

for software optimizations where it logically tracks
addresses between the commit of a speculative load and
its non-speculative counterpart. SVW is more appropri-
ate for hardware optimizations.

4. Experimental Evaluation

We use timing simulation to evaluate SVW’s impact
on three load optimizations: NLQ; g, SSQ, and RLE.
Our simulation infrastructure does not execute shared-
memory programs so we do not evaluate NLQgyg. Our
goal is to show that SVW produces correct execution—
flags all mis-speculations for re-execution—while
reducing re-execution overhead.

Benchmarks. Our benchmarks are the SPEC2000
integer suite. We compile them using the Digital OSF C
compiler with optimization flags —O3. We run them to
completion, on the training input sets using 5% periodic
sampling with 5% cache and branch predictor warm-up.
Each sample contains 10M instructions.

Performance simulator. Our simulator executes the
Alpha AXP user-level instruction set using the ISA and
system call modules from SimpleScalar 3.0. We model a
superscalar processor with MIPS-style register renam-
ing, out-of-order execution, aggressive branch predic-
tion and a two level on-chip memory system.

Because NLQ and SSQ target wide machines and
RLE targets narrower machines we use two processor
configurations. The common aspects are the memory
system, branch predictor, and gross pipeline structure.
The fetch unit has an 8K-entry hybrid direction predic-
tor and a 2K entry, 2-way set-associative BTB, and can
fetch past one taken branch per-cycle. The instruction
and data caches are 32KB, 2-way set-associative, 2-
cycle access. The L2 is 2MB, 8-way set-associative, 15
cycle access. Memory latency is 150 cycles. The L2 and
memory buses are both 16B wide, the latter is clocked at
one quarter processor frequency. The base pipeline has
15 stages pipeline (3 fetch, 2 decode, 2 rename, 2 sched-
ule, 3 register read, 1 execute, 1 writeback, 1 commit).
Re-execution adds two stages to the SSQ and NLQy g
pipelines and four to RLE. Both configurations use
store-sets [7] to manage load speculation. Both have a
single store retirement port; dual ports improve the per-
formance of only one benchmark (vortex) by 6% on the
8-wide machine. Where it is used, SVW adds an addi-
tional stage. Our baseline SVW configuration uses 16-
bit SSNs and a 512-entry (1KB) SSBF. SSBF read/write
bandwidths match load/store issue bandwidth.

Our NLQ/SSQ configuration is 8-way issue with a
512-entry ROB, 128-entry LQ, 64-entry SQ, 200 issue
queue entries, and 448 registers. It issues 5 integer, 2 FP,
2 load, 2 store, and 1 branch per cycle. Our RLE config-
uration is 4-wide with 128-entry ROB, 32-entry LQ, 16-
entry SQ, 50 issue queue entries, and 160 registers. It
issues 3 integer, 1 FP, 1 load, 1 store and 1 branch.

4.1. SVW’s Impact on NLQy g

Figure 5 shows load re-execution rates (percent of
retired loads) and speedups (percent IPC improvement)
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of four configurations. The baseline is the 8-way super-
scalar with a 128-entry LQ and one associative port, i.e.,
the ability to issue one store per cycle.

The first configuration is NLQ, in which the associa-
tive LQ port is replaced by re-execution, allowing this
configuration to execute two stores per cycle. With a
good natural filter—only loads that issue out-of-order
with respect to older stores re-execute—the average re-
execution rate is 7.4%. Only three programs re-execute
more than 10% of their loads and only twolf re-executes
20%. These numbers are higher than those initially
reported [6] because our window is larger and our
machine wider. We also use a different ISA, Alpha as
opposed to PowerPC.

Note, the filtered re-execution rate is (much) greater
than the mis-speulation rate. Re-executions due to silent
stores cannot be avoided. Also, the SSBF tracks SSNs at
an 8-byte granularity and so is vulnerable to “false shar-
ing” due to non-overlapping sub-quad writes.

With low re-execution rates the average gain from
the additional store port are 0.3%. Nine programs suffer
slight (Iess than 1%) slowdowns and parser shows a
3.5% slowdown stemming from an 8.5% re-execution
rate. Slowdowns do not directly reflect re-execution
rates because a large negative effect of re-execution is
load re-execution/store retirement serialization; perfor-
mance is not degraded if many loads re-execute but few
are closely followed by stores.

The next two configurations add SVW. SVW-UPD
does not update a load’s SVW to the SSN of a forward-
ing store. SVW+UPD adds this simple extension. Even
without forward updates, SVW reduces the average load
re-execution rate from 7.4% to 2.0% with a maximum
of 8.1% (perl.d). Most of the remaining re-executions
can also be filtered using the “update SVW on store-for-
ward” technique, which reduces re-executions further to
0.6% of all loads, with a maximum of 2.6% (again
perl.d). This is a 92% reduction in the number of re-exe-
cutions. With the forwarding optimization NLQ’s per-
formance improvement climbs to 1.3% with only one
program (gzip) showing a slowdown of —0.2%.

The point of these experiments is not to show how
good NLQj g is, but rather how close to ideal SVW
allows NLQy g to perform. The final experiment (+PER-
FECT) implements NLQy g with perfect, zero-latency,
infinite bandwidth re-execution. The average perfor-
mance improvement of the ideal NLQy g is 1.4%. With
SVW (1.3%), NLQy g nearly achieves that ideal.

4.2. SVW’s Impact on SSQ

Figure 6 shows the results of similar experiments
that measure SVW’s impact on the speculative SQ
(SSQ). Our baseline configuration is the 8-wide
machine with a 64-entry associative SQ and two load
ports, i.e., the SQ has two associative ports. CACTI sim-
ulations show that at 90nm, an SQ of this size has 1.7
times the access time as an 8KB single-ported data
cache bank and its input/output routing network.
Although our baseline configuration uses a 2-cycle
cache, loads take 4 cycles due to the associative SQ.

The first configuration presented relative to this
baseline (SSQ) is the design we sketched in Section 2.3.
The 64-entry associative SQ is replaced with a 64-entry
non-associative retirement store queue (RSQ) and a 16-
entry single-ported forwarding store queue (FSQ).
Again, CACTI simulations show that an FSQ of this
size is required to match the access time of the cache
banks. Here, two loads may issue per cycle, but only
one may access the FSQ. Loads execute in 2 cycles.

Recall, SSQ has no natural re-execution filter; it re-
executes 100% of the loads. In the graph, we break
down re-executions to distinguish loads that access the
FSQ (black portion at the bottom of the bar) from loads
that either use best-effort store-forwarding or no store-
forwarding at all (shaded portion at the top). Because all
loads re-execute, this configuration—despite the 2 cycle
reduction in load latency—yields an average slowdown
of 16%, the maximum slowdown is 83% (vortex). Pro-
grams with high baseline IPCs like bzip2, eon, and vor-
tex suffer the most. A single store retirement port does
not supply enough bandwidth to retire all stores and re-
execute all loads while matching execution throughput.

0 NLQ O +svw-uprD

[}
[=)

B + SVW+UPD B + PERFECT

% Loads Re-Executed
=

Z L

% Speedup
(=}

-3 bzip2 crafty eon.c eonk eonr  gap gce gzip

mcf parser perl.d perl.s twolf vortex vpr.p vprr —avg

FIGURE 5. NLQ g re-execution rate (top) and performance (bottom).

0-7695-2270-X/05/$20.00 (C) 2005 |IEEE



20 [1 ssQ [ +svw-upD + SVW+UPD + PERFECT
=
=
2 30
=
=
& 20
1]
=
g 10
- 10 I I
s [
. |
20
10
g0
T -10
D
20
¥ 30
-40

-83

bzip2 crafty eon.c eonk eonr gap gcc gzip

mcf  parser perl.d perl.s twolf vortex vpr.p vprr avg

FIGURE 6. SSQ re-execution rate (top) and performance (bottom).
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FIGURE 7. RLE re-execution rate (top) and performance (bottom).

The average re-execution rates for the SVW-UPD
and SVW+UPD configurations are 15% and 13%,
respectively, with maximum rates of 33% and 33%
(both eon.cook). The “update SVW on store-forward”
optimization does not help much here because it applies
only to loads that are steered to the FSQ. It cannot be
performed on loads that use best effort forwarding,
which does not maintain the invariants required to sup-
port it. With an 87% reduction in re-execution, the aver-
age performance impact of SSQ turns from a 16% loss
to a 1.2% gain. A few programs still post losses, but
these are reduced. Vortex posts a 41% loss and no pro-
gram and only eon.cook shows a loss as high as 6%.

The 1.2% average improvement with SVW is close
to the 4% improvement SSQ can achieve even with per-
fect re-execution (our last configuration, + PERFECT).
In fact, here we see that re-executions are only partially
responsible for the large vortex slowdown. Even with
perfect re-execution, vortex posts a 32% slowdown
because it needs more ordered forwarding capacity than
a 16-entry FSQ provides.

4.3. SVW’s Impact on RLE

Figure 7 shows SVW’s impact on redundant load
execution (RLE). The baseline is the 4-wide machine
with no elimination. The first configuration relative to
this baseline (RLE) adds a 512-entry 2-way set-associ-
ate IT and a four stage re-execution pipeline. Eliminated
loads do not fill their corresponding LQ entries with
addresses and values. For re-execution, we read these
from the register file which has a 2-cycle read latency.
We add a single dedicated read port to the register file
for this purpose. The address is read first; the value is
read in time to be compared with the reloaded value.

Since RLE eliminates an average of 28% of the
loads in a program (the maximum rate is 42% for vor-
tex), this is also the re-execution rate. We break down
re-executions according to whether the load was elimi-
nated by redundancy with an older load (shaded portion
at the top) or by speculative memory bypassing from an
older store (black portion at the bottom). The corre-
sponding average performance improvement is 2.6%,
with a peak of 9.2% (crafty and vpr.p). The only pro-
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gram to post a slowdown is vortex (16%). Again, vortex
has a combination of high IPC and a high load elimina-
tion rate; a single cache port does not provide enough
bandwidth to retire all of its stores and re-execute all of
its eliminated loads.

RLE eliminates load latency from the execution
dataflow graph and load bandwidth from the out-of-
order execution core. It does not actually eliminate load
execution, because all eliminated loads re-execute. We
change that by adding SVW to the re-execution pipe-
line. With SVW, average re-execution rate drops to
6.3%, a 78% relative reduction. Average performance
climbs to 5.7%, with a peak of 10.5% (crafty). Vortex’s
slowdown disappears. Again with perfect re-execution
(+PERFECT), average redundant load elimination per-
formance improvement is 6.3%.

In our experiments, we noticed that most re-execu-
tions that SVW cannot filter correspond to eliminations
of loads that are redundant with squashed versions of
themselves, i.e., squash reuse [21]. SVW is disabled for
squash reuse because of a corner case—a forwarding
store exists on the squashed path but not the correct
path—which the SSBF cannot capture. Our final experi-
ment, SVW-SQU, disables squash reuse in the RLE con-
figuration. Although re-executions drop markedly (from
6.3% to 1.2%) performance also drops slightly (from
5.7% to 5.1%). Eliminating a few last re-executions
does not justify forfeiting squash reuse.

4.4. SSBF Configuration Sensitivity Analysis

Our default SVW configuration uses 16-bit SSNs
and a 512-entry SSBF. We have already argued that SSN
width has little performance impact. Here, we measure
the effect of SSBF organization.

Figure 8 shows re-execution rates for a subset of the
benchmarks and the SSQ optimization (which has the
highest re-execution rates of the three). We measure six
SSBF configurations: “simple” SSBFs with 128 (128),
our default 512 (512), and 2K entries (2048); a configu-
ration that uses a second 512 entry SSBF—this one
indexed by the next 9 address bits—and re-executes a
load only if “hits” in both filters (Bloom), a configura-
tion that tracks conflicts at 4-byte rather than 8-byte
granularity (4-byte), and an infinite 4-byte granularity
SSBF (Infinite).

In SSQ, the average per-load SVW size is between 5

Ose2

B 2048 [ Bloom [f] 4-byte [ Infinite

128
20 l:l

% Loads Re-Executed

vortex vpr.r avg

FIGURE 8. SSBF organization and re-execution rate.

and 15 stores. Clearly, the chances of a store to a non-
conflicting address aliasing in a 512 entry table are
small, 1/512. The chances that one of 15 stores has
aliases are 1/32. Sophisticated SSBF configurations can
reduce this aliasing rate, but because it is a priori so low,
their impact on overall re-execution rate—and perfor-
mance—is minimal. The largest performance difference
for any program between a simple 512-entry 8-byte
granularity SSBF and an infinite 4-byte granularity
SSBF is 1.6% (vpr.r). The average is 0.3%.

5. Related Work

Re-execution and re-execution filtering. In-order
pre-commit re-execution is the fundamental mechanism
of the DIVA microarchitecture [2]. By providing a uni-
form way for detecting execution errors, it enables core
designs that trade correct execution on rare corner cases
for simplified design, higher performance, and lower
power. Gharachorloo et al. [9] propose re-execution as a
way of reconciling speculative execution with sequential
consistency, but dismiss the idea as too inefficient rela-
tive to LQ snooping, which is used in most processors
that support strong memory models [10, 24]. Cain and
Lipasti [6] introduce filtering heuristics to reduce the
number of re-executions and make re-execution compet-
itive with snooping. Their mechanism can also detect
intra-thread memory ordering violations, obviating the
need to search the LQ for any reason. A general re-exe-
cution filtering mechanism for software optimization is
the Memory Conflict Buffer (MCB) [8] or Advanced
Load Alias Table (ALAT) [11]. Onder and Gupta show
how the SVW concept can be applied to optimize these
structures [16].

Load and Store Queue Optimizations. Several
researchers have observed the difficulties in scaling the
LQ and SQ to large sizes and bandwidths. Sethumadha-
van et al. [22] reduce SQ access bandwidth by guarding
the SQ with a Bloom filter that encodes the addresses of
in-flight stores. They also reduce LQ size and search
bandwidth using similar Bloom filter guarding. Park et
al. [18] achieve the same bandwidth reductions using a
store-load dependence predictor [7, 14, 25] rather than a
Bloom filter and scale SQ size by chaining small SQ
segments. Akkary et al. [1] use hierarchy to improve SQ
scalability. A fast SQ holds the most recent stores while
a larger, second-level SQ holds all in-flight stores. A
Bloom filter eliminates most second-level SQ searches.
The speculative SQ design we study here—combining a
large, non-associative retirement queue and a small,
associative forwarding queue—was proposed by Roth
[20] and by Baugh and Zilles [3].

SVW uses Bloom filters in a different way than they
have previously been used [1, 22]. Previous techniques
use Bloom filters to guard SQ access. These filters are
managed speculatively and out-of-order meaning their
contents are difficult to maintain precisely and they are
vulnerable to false positives from loads that match
younger stores. They are also accessed on the load exe-
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cution critical path. SVW’s Bloom filter guards load re-
execution, not SQ access. It is managed in order and
only contains information about older stores; it is not
vulnerable false positives from younger stores. It is not
accessed on the load execution critical path.

Redundant Load Elimination. Our RLE imple-
mentation is register integration [19] which detects
elimination opportunities using register dependences.
Other implementations use address matching or mem-
ory dependence speculation [12, 15, 17, 23]. SVW can
reduce re-executions in the two more general mecha-
nisms [17, 23]. The two restricted speculative bypassing
implementations [12, 15] operate strictly within the
instruction window and can detect false eliminations
using coventional memory ordering hardware.

6. Conclusions

The load-store unit is one of the most complex and
non-scalable pieces of the execution core. Load optimi-
zations use speculation to simplify some aspect of the
core load-store unit. In-order pre-commit re-execution
of some or all of the loads verifies the speculation.
Recent examples of load optimizations include a non-
associative load queue, a speculative store queue, and
redundant load elimination. Unfortunately, re-execution
itself dampens the benefits of load optimizations by con-
tending for cache bandwidth with store retirement and
by serializing load re-execution with subsequent store
retirement. If a particular optimization requires a suffi-
cient number of loads to re-execute, it may be swamped
by their aggregate cost.

Store Vulnerability Window (SVW) reduces the re-
execution requirements of a given load optimization sig-
nificantly, by an average of 85% across three optimiza-
tions we have studied. By reducing cache port
contention and removing many dynamic serialization
events, SVW allows load optimizations to perform close
to their full potential. SVW “enables” the speculative
SQ optimization, which would not have been profitable
otherwise. SVW is based on monotonic store sequence
numbering and a novel adaptation of Bloom filtering.
The cost of an SVW implementation is a 1KB table and
an additional 16-bit field per LQ entry.

We are currently exploring SVW’s impact on other
load optimizations and evaluating its energy trade-offs.
We are also studying SVW’s potential as a replace-
ment—not just a filter—for re-execution. In this setup,
we forgo re-execution completely and simply use hits in
the SSBF to trigger pipeline flushes and train the appro-
priate predictors.
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