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Abstract

In this paper, we develop the first feasibly imple-
mentable scheme for end-to-end dynamic verification of 
multithreaded memory systems. For multithreaded 
(including multiprocessor) memory systems, end-to-end 
correctness is defined by its memory consistency model. 
One such consistency model is sequential consistency 
(SC), which specifies that all loads and stores appear to 
execute in a total order that respects program order for 
each thread. Our design, DVSC-Indirect, performs 
dynamic verification of SC (DVSC) by dynamically veri-
fying a set of sub-invariants that, when taken together, 
have been proven equivalent to SC. We evaluate DVSC-
Indirect with full-system simulation and commercial 
workloads. Our results for multiprocessor systems with 
both directory and snooping cache coherence show that 
DVSC-Indirect detects all injected errors that affect sys-
tem correctness (i.e., SC). We show that it uses only a 
small amount more bandwidth (less than 25%) than an 
unprotected system and thus can achieve comparable 
performance when provided with only modest additional 
link bandwidth.

1.  Introduction
The goal of this research is to improve the availabil-

ity of multithreaded computer systems by dynamically 
verifying that their memory systems are operating cor-
rectly. Dynamic verification hardware checks whether a 
system’s execution is correct as it is executing. While 
static verification is beneficial in that it can prove 
whether a system’s implementation satisfies its architec-
tural specification, dynamic verification can detect 
errors due to physical faults (both transient and perma-
nent), fabrication defects, and design bugs that were not 
caught by static verification. We explore dynamic verifi-
cation in this paper, but we note that these two types of 
verification are complementary and mostly orthogonal. 
We focus in this paper on errors due to transient physical 
faults (single event upsets), because they are becoming 
increasingly problematic, even for combinational logic, 
due to technological trends [6, 15]. 

There are two broad approaches to error detection: 
tailored error detection mechanisms and dynamic verifi-
cation of invariants. The most obvious approach is the 
former, in which we develop error detection mecha-
nisms that are tailored to each specific error model being 
considered. For example, if we consider the “single-bit 
stuck-at-x” model for the system bus, then adding a par-
ity bit to the bus is sufficient for error detection. We can 
then construct error detection schemes that compose tar-
geted error detection mechanisms for each error model 
at each possible error location in the system. This 
approach, however, is constrained to only detect those 
errors that are in the models, and it is by definition inca-
pable of detecting errors due to design bugs (if we knew 
to target them, they would not exist in the first place). 
Moreover, adding a large set of targeted mechanisms is 
cumbersome and requires understanding how the error 
models interact with each other. Most importantly, cer-
tain errors are extremely difficult to detect with local-
ized mechanisms (e.g., reordering of snooping cache 
coherence requests in one section of broadcast tree).

Unlike tailored error detection mechanisms, 
dynamic verification is an approach that checks that cer-
tain high-level invariants are being enforced. It does not 
consider specific error models, since these error models 
only matter insofar as they manifest themselves by 
affecting the correctness invariants. For example, at the 
microprocessor level, DIVA dynamically verifies that an 
aggressive microprocessor core has the same external 
interface as a simple, provably correct checker core [2]. 
As another example, for shared memory multiproces-
sors with snooping cache coherence, schemes have been 
developed for dynamically verifying that all processors 
observe the same total order of coherence requests, and 
all coherence upgrades have corresponding downgrades 
elsewhere in the system [16]. 

While DIVA and other existing dynamic verification 
schemes are good steps in the right direction, they do 
not address the highest level of end-to-end [14] correct-
ness in multithreaded (including multiprocessor) mem-
ory systems. The end-to-end correctness of a 
multithreaded memory system is defined by the archi-
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tecture’s memory consistency model. In this paper, we 
focus on sequential consistency (SC), the most straight-
forward consistency model. SC was defined by Lamport 
such that “the result of any execution is the same as if 
the operations of all the processors were executed in 
some sequential order, and the operations of each indi-
vidual processor appear in this sequence in the order 
specified by its program” [8]. While SC is the most 
restrictive consistency model, it is used in commercially 
available systems [19] and recent advances in improving 
its performance have enhanced its appeal [5]. Future 
work will address more relaxed consistency models.

In this paper, we present the first two schemes for 
dynamic verification of SC (DVSC). Without loss of 
generality, we assume that our multithreaded system 
model is a shared memory multiprocessor. Both of our 
DVSC schemes detect low-level errors that matter (i.e., 
that affect the system’s ability to satisfy SC), and we 
describe our error model in Section 2.. Moreover, both 
schemes are largely independent of the system’s cache 
coherence protocol. Both DVSC schemes trigger a sys-
tem recovery if they detect an error, and both are com-
patible with all-hardware backward error recovery 
(BER) schemes, such as SafetyNet [17] or ReVive [13], 
or even software BER. In Section 3., we briefly sketch 
the first scheme, called DVSC-Direct, which is a proof-
of-concept and intuitive starting design point. DVSC-
Direct directly verifies the invariant as specified by 
Lamport. It dynamically constructs a total order of loads 
and stores and verifies that each load gets the value of 
the most recent store to that block in the total order. 
While DVSC-Direct is conceptually simple, its exorbi-
tant use of interconnection network bandwidth moti-
vates our second scheme for DVSC, called DVSC-
Indirect. As described in Section 4., DVSC-Indirect 
implements DVSC by dynamically verifying sub-invari-
ants that, when composed together, have been proven to 
be equivalent to SC. This approach leads to a vastly 
more efficient hardware implementation than DVSC-
Direct, and we thus present DVSC-Indirect in full detail 
as the preferred, feasible design point.

In Section 5., we evaluate both DVSC-Direct and 
DVSC-Indirect using full-system simulation of multi-
processor systems with dynamically scheduled proces-
sors and commercial workloads. Our experimental 
results for systems with both directory and snooping 
cache coherence show that both systems detect all 
injected errors. We demonstrate that DVSC-Indirect 
uses less than 25% more interconnection network band-
width than an unprotected system. DVSC-Indirect can 
achieve performance that is comparable to that of an 
unprotected system, even when provided with only 
modest additional interconnection network bandwidth.

The main contributions of this paper are:

•The development of DVSC-Indirect, the first feasi-
bly implementable scheme for DVSC.

• Full-system evaluations of DVSC-Direct and 
DVSC-Indirect that demonstrate that they both 
detect all injected errors, and DVSC-Indirect is an 
efficient, viable design.

2.  Error Model
In this section, we discuss the errors that DVSC can 

detect. In general, by virtue of being an end-to-end [14] 
hardware checking mechanism, DVSC can detect single 
errors in the memory system and many multiple error 
scenarios. Protecting the processor is an orthogonal 
issue that is already handled well by other approaches, 
such as DIVA [2]. The memory system consists prima-
rily of caches, cache controllers, memories, memory 
controllers, and the interconnection network. We discuss 
potential errors in each:
Caches and Memories. Bits in caches, memories, and 
associated state (e.g., coherence state) can be corrupted 
by faults and thus lead to erroneous data and state. 
Cache/Memory Controllers. Coherence controllers, 
which are essentially just finite state machines, can have 
their state or outputs corrupted by faults and thus per-
form incorrect actions. These erroneous actions include: 
sending an erroneous message (corrupted or replicated), 
dropping a message (either incoming or outgoing), and 
operating incorrectly on the cache and memory state. 
Interconnection Network. Within the interconnection 
network, faults can cause errors such that messages are: 
corrupted (any field, including the destination), dropped, 
replicated, misrouted, and reordered (if ordering is sup-
posed to be enforced). We include faults that cause 
errors in messages that our DVSC schemes send. 

3.  DVSC with DVSC-Direct
DVSC-Direct takes the most direct approach to 

DVSC. It dynamically constructs the total order of loads 
and stores and then verifies that this total order satisfies 
SC. While conceptually simple, we will show that its 
implementation costs make it infeasible. We briefly 
present DVSC-Direct as an intuitive first step and to 
motivate the more efficient design in DVSC-Indirect, 
rather than to present it in detail as the preferred 
approach. A more in-depth description of DVSC-Direct 
can be found in a technical report [11] (in which DVSC-
Direct is referred to by its development name, Clou-
seau). We assume, without loss of generality, that our 
multithreaded system model is a shared memory multi-
processor. DVSC-Direct is largely independent of the 
cache coherence protocol (as is DVSC-Indirect). 
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3.1.  Design and Operation
To construct the total order of memory operations, 

each processor informs the accessed block’s home mem-
ory node for every load and store. An Inform message 
consists of: the block address, whether the operation is a 
load or store (referred to as Inform-Load and Inform-
Store), the data value, the logical time of the operation, 
and a short sequence number (for detecting dropped 
Informs). Logical time is a time basis that respects cau-
sality (i.e., if event A causes event B, then event A has a 
smaller logical time), and there are many potential logi-
cal time bases in a system [7]. We choose two logical 
time bases—one for snooping and one for directories—
based on their ease of implementation. In both logical 
time bases, time is a 3-tuple: <major, minor, ProcID>, 
similar to Plakal et al. [12]. For a snooping protocol, the 
major time for each cache and memory controller is the 
number of cache coherence requests that it has pro-
cessed thus far. For a directory protocol, the major time 
is based on a relatively slow, loosely synchronized phys-
ical clock that is distributed to each cache and memory 
controller. As long as the skew between any two control-
lers is less than the minimum communication latency 
between them, then causality will be enforced and this 
will be a valid basis of logical time [17]. To create a 
total order of all operations, multiple operations by the 
same processor at the same major time are given mono-
tonically increasing minor times, and operations at the 
same major and minor times at different processors are 
arbitrarily ordered by processor ID (since they are caus-
ally unrelated). For both types of coherence protocols, 
there exist numerous other options for logical time 
bases, but we choose these for simplicity.

Given this logically timestamped stream of Informs, 
the memory controllers can dynamically verify the total 
order of loads and stores in a distributed fashion. First, 
though, they sort them in a priority queue called the Ver-
ification Window Buffer (VWB), in order to process 
them in logical time order (they may arrive at the mem-

ory controllers out of logical time order). Each memory 
controller conceptually maintains shadow copies of each 
block in its Verification Memory, and it updates its Veri-
fication Memory based on the incoming Informs. An 
Inform-Store writes the value of the Verification Mem-
ory block. For an Inform-Load, the memory controller 
compares the value of the Inform-Load to that of the 
Verification Memory block and, if they are not equal, 
declares a violation of SC and triggers system recovery. 
This algorithm verifies SC, not just cache coherence, 
despite distributing the verification of different block 
addresses across the home memory controllers for those 
blocks. The verifications of these different blocks are 
not independent, since the logical time base orders 
accesses to different blocks; thus, distributing the verifi-
cation of this total order does not hinder DVSC-Direct’s 
ability to verify SC. In Figure 1, we illustrate an exam-
ple of DVSC-Direct detecting an SC violation in a 
snooping system. 

3.2.  Implementation Costs
The reason that DVSC-Direct is impractical, despite 

its conceptual simplicity, is the interconnection network 
bandwidth used by Informs. While the Verification 
Memory also appears to be a major expense, it can be 
made manageable with caching techniques. However, 
there is no such silver bullet for Inform bandwidth. A 
completely unoptimized DVSC-Direct system uses 
bandwidth like a system without caches. We have 
explored several sophisticated techniques for compress-
ing Informs, but even with complicated algorithms and 
hardware the Inform bandwidth is still prohibitive. 

We presented DVSC-Direct because it is the most 
direct approach to implementing DVSC, but we leave 
the details of its implementation to a technical report 
[11] so that we can now focus on DVSC-Indirect, a 
practical, implementable approach to DVSC. 

Figure 1. DVSC-Direct in operation in snooping system. GETX A(Pi) denotes the observation of a 
coherence request made by Processor Pi for Exclusive permission to block A. The subscript is the logical time of 
the request (we only use major time for simplicity in this example). Initially A=0. The boldface Inform-Load 
from P2 reveals that SC was violated, since it should have had the value 1.

physical time

processor 1

processor 2

memory

GETX A(P1)t=3 Store A=1t=3 GETX B(P2)t=4

GETX A(P1)t=3 GETX B(P2)t=4 Load A=0t=4

Inform-Store A=1t=3 Inform-Load A=0t=4 

processed incorrectly by P2
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4.  DVSC with DVSC-Indirect
Motivated by the implementation challenges of 

DVSC-Direct, DVSC-Indirect takes a different approach 
to DVSC. Instead of directly verifying the SC invariant, 
DVSC-Indirect verifies sub-invariants that have been 
proven to be equivalent to SC. There are any number of 
ways to construct SC from sub-invariants, and we 
choose one particular set of sub-invariants that has 
already been proven to be equivalent to SC [12]. Intu-
itively, at a high level, DVSC-Indirect dynamically veri-
fies that cache coherence is performed correctly and that 
processors correctly interact with the cache coherence 
protocol in order to implement SC. The advantage of 
this approach is that we will demonstrate it to be far eas-
ier to implement efficiently. The key is that DVSC-Indi-
rect’s bandwidth overhead is proportional to the amount 
of coherence traffic, unlike DVSC-Direct’s which is pro-
portional to the far greater number of loads and stores. 

As with DVSC-Direct, DVSC-Indirect performs 
DVSC in a way that is largely independent of the system 
model and cache coherence model. We also assume 
again, without loss of generality, that our multithreaded 
system model is a shared memory multiprocessor. We 
will present experimental results in Section 5. for 
DVSC-Indirect with both directory and snooping cache 
coherence protocols. 

4.1.  Constructing SC from Sub-Invariants
In the context of static verification, Plakal et al. [12] 

proved that SC is equivalent to one processor invariant 
(called Fact 1 in their paper) and three lemmas that 
place restrictions on (a) when loads and stores can occur 
with respect to per-block coherence epochs, and (b) 
what data values can be communicated between epochs. 
An epoch is an interval of logical time during which a 
node has Shared (read-only) or Exclusive (read-write) 
access to a block of data [12]. Epochs depend strictly on 
coherence permissions and not on the data. For example, 
as soon as a processor gets permissions to a block (e.g., 
by observing its coherence request on the bus in a 
snooping system), its epoch begins, even if the data 
response for that request has not arrived yet. Plakal et al. 
consider a memory operation to be bound to a coherence 
transaction if permission to perform the operation is 
obtained via that transaction. Fact 1 and the three lem-
mas are as follows, with informal and more intuitive 
descriptions afterwards in italics:
Fact 1: Let LD be a load from word w of block B at pro-
cessor pi that is bound to transaction T. Let ST be the last 
store to word w of block B by pi (if any) prior to LD in 
pi’s program order.
(a) If ST is also bound to transaction T, then the value 
loaded by LD equals the result of ST.

(b) Otherwise, the value loaded by LD equals the value 
of word w of block B received by pi in response to T.

→ If a processor performs a load, that load either 
returns the value of a store it just performed, if any, 
or the value it received for the block otherwise.

Lemma 1: Exclusive epochs for block B do not over-
lap with either Exclusive or Shared epochs for block B
in logical time.

→ Processors cannot have conflicting epochs for the 
same block at the same (logical) time.

Lemma 2: (a) Every load/store operation on block B at 
processor pi is contained in some epoch for B at pi and is 
bound to the transaction that caused that epoch to start. 
(b) Furthermore, every store operation on B at pi is con-
tained in some Exclusive epoch for B at pi and is bound 
to the transaction that caused that epoch to start.

→ Processors perform loads and stores in appropriate 
epochs.

Lemma 3: If block B is received by node N at the start 
of epoch [t1, t2), then each word w of B equals the most 
recent store to w prior to t1 or the initial value in the 
memory, if there is no store to w prior to logical time t1.

→ Correct values are passed among processors and 
memory controllers between epochs. 

Plakal et al. statically verified that a specific system 
satisfied this fact and these lemmas and thus satisfied 
SC, assuming no physical faults or defects. Their proof 
is formal and elegant, but without reading it carefully it 
may not be immediately obvious why these sub-invari-
ants are equivalent to SC. DVSC-Indirect’s goal in using 
these lemmas is different than that of Plakal et al.—
DVSC-Indirect seeks to dynamically verify that a run-
ning system is satisfying SC, which enables DVSC-
Indirect to detect errors (due to faults and defects) as 
well as design bugs that may not have been uncovered 
during static verification. Because the sub-invariants are 
proven to be equivalent to SC, dynamically verifying 
them is equivalent to dynamically verifying SC.

4.2.  Dynamically Verifying Sub-Invariants
We now describe how DVSC-Indirect dynamically 

verifies these sub-invariants. DVSC-Indirect does not 
have independent mechanisms for dynamically verify-
ing each sub-invariant; it is instead an integrated 
approach. As one of many possible approaches to 
dynamically verifying the fact and three lemmas from 
Section 4.1., DVSC-Indirect combines hardware for 
dynamically verifying the epoch invariants with DIVA 
[2] dynamic verification at each processor. 
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DIVA dynamically verifies the correctness of a com-
plex dynamically scheduled processor by using simple, 
provably correct checkers at the commit stage. A pro-
cessor with DIVA presents a simple, in-order abstraction 
to the memory system, even though the processor itself 
uses dynamic scheduling and speculation. DIVA does 
not appreciably slow down performance, because the 
checkers can keep up with the superscalar core by using 
it as a prefetcher and branch predictor. DVSC-Indirect 
relies on DIVA to dynamically verify Fact 1 and parts of 
Lemmas 2 and 3. Any mechanism to guarantee that 
memory operations are performed in program order is 
sufficient for this purpose. We chose DIVA, because it is 
a well-known design. Other than DIVA, DVSC-Indirect 
does not require modification to the processor core.

DVSC-Indirect dynamically verifies the epoch 
invariants—epochs do not conflict and data is trans-
ferred correctly between epochs—with two mecha-
nisms. We describe them abstractly here and then 
present some of the implementation details in 
Section 4.3.. First, each cache controller maintains a 
small amount of epoch information state—logical time 
at start, type of epoch, and block data—for each block it 
holds. For every load and store, it checks this state, 
called the Cache Epoch Table (CET), to make sure that 
the load or store is being performed in an appropriate 
epoch. This check helps to verify Lemma 2. Second, 
whenever an epoch for a block ends at a cache, the 
cache controller sends the block address and epoch 
information, including epoch end time, in an Inform-
Epoch message (along with a short sequence number to 
detect dropped Inform-Epochs) to the home memory 
controller for that block. Epochs can end either as a 
result of a coherence request—another node’s Request-
ReadOnly (if epoch is Exclusive), another node’s 
Request-ReadWrite, or this node’s Writeback-Exclu-
sive—or as a result of silently evicting a Shared block 
from its cache. Thus, Inform-Epoch traffic is propor-
tional to coherence traffic plus some extra traffic for oth-
erwise silent evictions of Shared blocks, instead of 
being proportional to load/store traffic as in DVSC-
Direct. Because the coherence protocol operates inde-
pendently of DVSC-Indirect, sending the Inform-Epoch 
is not on the critical path, and no new states are intro-
duced into the coherence protocol. Controller occu-
pancy is also unaffected, since the actions are 
independent and can be done in parallel.

For each Inform-Epoch a memory controller 
receives, it checks that (a) this epoch does not overlap 
illegally with any other epochs (Lemma 1), and (b) the 
correct block data is transferred from epoch to epoch 
(Lemma 3 and Fact 1b). The memory controller per-

forms these checks using per-block epoch information it 
keeps in its directory-like Memory Epoch Table (MET). 
Fact 1a. Fact 1a degenerates to uniprocessor memory 
ordering, i.e., a load by a processor gets the value of the 
most recent store by that processor to the same address. 
We use DIVA to dynamically verify Fact 1a. 
Fact 1b. Processor pi can only perform LD if it has a 
Shared or Exclusive epoch at that time, and this epoch 
starts with transaction T. If no previous store by pi was 
bound to T, then the value loaded by LD has to have 
been received in response to T. DVSC-Indirect dynami-
cally verifies that this value was correctly received by 
comparing the block data of LD’s subsequent Inform-
Epoch to the block data that was sent (i.e., the block data 
in the MET). DVSC-Indirect dynamically verifies that pi 
loads the value within an epoch by checking that it has 
an epoch for that block and that the data is available.
Lemma 1. For every Exclusive Inform-Epoch that 
arrives, the memory controller checks its MET to deter-
mine if this Exclusive epoch overlaps with other Shared 
or Exclusive epochs. Similarly, for every Shared Inform-
Epoch that arrives, the memory controller checks for 
overlap with other Exclusive epochs. If the memory 
controller detects conflicting epochs, the system has vio-
lated Lemma 1 and thus violated SC. 
Lemma 2. For every load, the cache controller checks 
the CET to ensure that there is a Shared or Exclusive 
epoch for that block. For every store, the cache control-
ler checks the CET to ensure that there is an Exclusive 
epoch for that block. Since an epoch starts with a trans-
action and DIVA ensures that memory operations are 
logically performed in order, DVSC-Indirect thus 
dynamically verifies that each memory operation is 
bound to the transaction that caused the epoch to start. 
Lemma 3. By dynamically verifying Lemmas 1 and 2, 
DVSC-Indirect ensures a total order of Exclusive epochs 
and that all stores occur within these Exclusive epochs. 
By comparing the data block at the beginning of each 
epoch (Shared and Exclusive) to the data block at the 
end of the most recent Exclusive epoch, DVSC-Indirect 
dynamically verifies that each epoch begins with a block 
whose words are comprised of the most recent word val-
ues or the original word values of the block (if no stores 
have been performed to these words yet). DIVA ensures 
that the most recent word values are those of the most 
recent stores, since DIVA dynamically verifies that 
stores are logically performed in program order. 

By dynamically verifying this fact and these three 
lemmas, DVSC-Indirect dynamically verifies SC. In 
Figure 2, we illustrate an example of DVSC-Indirect 
detecting a violation of Lemma 1 (and thus SC) due to a 
fault that causes a processor (P1 in the example) not to 
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observe another processor’s coherence request for 
Exclusive access.

4.3.  Implementation
In this section, we present the implementation of the 

design in Section 4.2. in more detail.
Cache Controller and CET Operation. Each cache 
has its own CET, which is physically separate from the 
cache to avoid slowing cache accesses. There is one 
CET entry for each cache line, but each entry is only 34 
bits. Each CET entry includes: the type of epoch (1 bit 
to denote Shared or Exclusive); the logical time (16 bits) 
and the data block (data blocks are hashed down to 16 
bits, as we discuss later in this section) at the beginning 
of the epoch; and a DataReadyBit to denote that data has 
arrived for this epoch (recall that an epoch can begin 
before data arrives). DVSC-Indirect adds an error cor-
recting code (ECC) to each line of the cache (not the 
CET) to ensure that the data block does not change 
unless it is written by a store; otherwise, silent corrup-
tions of cache state would be uncorrectable. An alterna-
tive design would use an error detecting code (EDC), 
but that would require a backward error recovery 
scheme that could tolerate this error model (and 
SafetyNet, which we use in this paper, does not tolerate 
this error model). When an epoch for a block ends, the 
cache controller sends an Inform-Epoch to the block’s 
home node. An Inform-Epoch consists of the: block 
address; logical time and data block at beginning of 
epoch; and logical time and, if Exclusive, data block at 
end of epoch (a Shared epoch will have the same data 
block at the end as at the beginning, and this is ensured 
by use of ECC on caches). 
Memory Controller and MET Operation. The mem-
ory controllers receive a stream of Inform-Epochs. To 
simplify the verification process, we require that mem-

ory controllers process Inform-Epochs in the logical 
time order of epoch start times. Thus, incoming Inform-
Epochs are sorted by a priority queue that is very similar 
to the VWB used by DVSC-Direct. The MET at each 
memory controller, which can be physically collocated 
with the directory, maintains the following state per 
block for which it is the home node: latest end time of 
any Shared epoch (16 bits), latest end time of any Exclu-
sive epoch (16 bits), and data block at end of latest 
Exclusive epoch (hashed to 16 bits and initialized from 
main memory). For every Inform-Epoch it processes, it 
checks for errors and then updates this state if necessary. 
To check for epoch overlap errors, it compares the start 
time of the Inform-Epoch with the latest end times of 
Shared and Exclusive epochs in the MET. If a Shared 
Inform-Epoch’s start time is earlier than the latest 
Exclusive epoch’s end time, this is an error. Similarly, if 
an Exclusive Inform-Epoch’s start time is earlier than 
either the latest Shared or Exclusive epoch’s end time, 
this is also an error. To check for epoch data errors, the 
memory controller compares the data block at the begin-
ning of the Inform-Epoch to the data block at the end of 
the latest Exclusive epoch. If they are not equal, this is 
an error. Similar to the caches, DVSC-Indirect adds an 
error correcting code (ECC) to each line of the memory 
(not the MET) to ensure that a data block does not 
change unless it is written by a Writeback-Exclusive; 
otherwise, silent corruptions of memory state would be 
uncorrectable. 
Logical Time. As with DVSC-Direct, DVSC-Indirect 
requires the use of a logical time base. Similar to 
DVSC-Direct, any number of logical time bases will 
work, just as long as they observe causality. DVSC-Indi-
rect uses the same logical time bases as DVSC-Direct 
for systems with snooping and directory cache coher-
ence. Unlike DVSC-Direct, however, DVSC-Indirect 

Figure 2. DVSC-Indirect in operation in a snooping system. GETX A(Pi) denotes the observation of a 
coherence request made by Processor Pi for Exclusive permission to block A. Pi(A):EX denotes an Exclusive 
Inform-Epoch for block A by Pi. Subscripts denote logical times. Originally, block A is Invalid in all caches. 
The boldface Inform-Epoch from P1 reveals that SC was violated, since it overlaps with the previously observed 
Exclusive Inform-Epoch from P2 (and violates Lemma 1).

physical time

processor 1

processor 2

memory

GETX A(P1)t=2 GETX A(P2)t=3

GETX A(P1)t=2 GETX A(P2)t=3

P1(A):EXt=(2,4) 

processor 3 GETX A(P1)t=2 GETX A(P2)t=3

GETX A(P3)t=4

GETX A(P3)t=4

GETX A(P3)t=4

P2(A):EXt=(3,4) 

processed incorrectly by P1
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only needs to explicitly timestamp coherence events 
instead of the more numerous loads and stores, so it only 
uses the major logical time (not a 3-tuple, as in DVSC-
Direct). Ties in logical time can be broken arbitrarily by 
the VWB (e.g., by arrival order) since there is no causal 
ordering between events at the same logical time.

One implementation challenge is the need to repre-
sent logical times with a reasonably small number of 
bits while avoiding wraparound problems. One upper 
bound on timestamp size is that a cache controller can-
not wait so long to send an Inform-Epoch that the back-
ward error recovery (BER) mechanism would not be 
able to recover to a pre-error state if that Inform-Epoch 
revealed a violation of SC. By keeping the number of 
bits in a logical time reasonably small (we choose 16 
bits), we can bound error detection latency and guaran-
tee that BER can always recover from a detected error. 
The key engineering tradeoff is that we want to use 
enough bits in a logical time so that we do not need to 
frequently “scrub” the system of old logical times that 
are in danger of wraparound, but not so many bits that 
we waste storage and bandwidth. Old logical times can 
lurk in the CETs and METs due to very long epochs. 
DVSC-Indirect’s method of scrubbing old logical times 
is to remember to check that an epoch time is not going 
to wrap around. DVSC-Indirect remembers to check by 
keeping a small FIFO (128 entries in our experiments) at 
each CET—every time an epoch begins, the cache 
inserts into the FIFO a pointer to that cache entry and 
the logical time at which the epoch would wraparound. 
By periodically checking the FIFO, we can guarantee 
that a FIFO entry will reach the head of the FIFO before 
wraparound can occur. When it reaches the head, if the 
epoch is still in progress, the cache controller sends an 
Inform-Open-Epoch to the memory controller. This 
message—which contains the block address, type of 
epoch, block data at start of epoch, and logical time at 
start of epoch—notifies the memory controller that the 
epoch is still in progress and that it should expect only a 
single Inform-Closed-Epoch message sometime later. 
The Inform-Closed-Epoch only contains the block 
address and the logical time at which the epoch ended. 
To maintain state about open epochs, each MET entry 
holds a bitmask (equal to the number of processors) for 
tracking open Shared epochs and a single processor ID 
(log2[number of processors] bits) for tracking an open 
Exclusive epoch. Whenever there is an open epoch, the 
MET entry does not need the last Shared/Exclusive logi-
cal time, so these logical times and the open epoch 
information can share storage space if we add an 
OpenEpoch bit. This saves 11 bits per MET entry in our 
implementation (if the number of processors is less than 
the number of bits in a logical time). DVSC-Indirect 

scrubs METs in a similar fashion to CETs, by using a 
FIFO at the memory controllers. 
Data Block Hashing. An important implementation 
issue is the hashing of data block values in the CETs, 
METs, and Inform-Epochs. Hashing is an explicit 
tradeoff between error coverage, storage, and intercon-
nection network bandwidth. A universal hashing func-
tion that reduces a data block down to n bits has a 2-n

probability of aliasing, which is mapping two different 
data blocks to the same data block. For DVSC-Indirect, 
we use CRC-16, a simple but not universal hash func-
tion to hash data blocks down to 16 bits. Aliasing repre-
sents a probability of a false negative, i.e., not detecting 
an error that occurs. By choosing the hash function and 
the value of n, one can make the probability of a false 
negative arbitrarily small. For example, CRC-16 will not 
produce false negatives for blocks with fewer than 16 
erroneous bits and has a probability of 1/65535 of false 
negatives for all other blocks.
I/O. Memory consistency models, such as SC, do not 
consider I/O accesses. However, commercial systems 
often specify consistency models that include I/O 
requests. Future work will address the issue of how to 
incorporate I/O into the DVSC framework. For now, one 
simple solution for handling DMA transfers from I/O 
space into memory space is to create a special I/O epoch 
for each transfer; thus, the data block value written by 
the I/O device will be correctly propagated from epoch 
to epoch for DVSC-Indirect. DVSC-Indirect currently 
does not consider I/O accesses that do not modify the 
memory space.

4.4.  Summary of DVSC-Indirect
DVSC-Indirect performs DVSC while overcoming 

the interconnection network bandwidth problem associ-
ated with DVSC-Direct. We show in Section 5. that 
DVSC-Indirect’s bandwidth usage is far less than that of 
DVSC-Direct. DVSC-Indirect still has costs, though, 
including: the need for DIVA (or another microproces-
sor-level dynamic verification scheme), a CET at each 
cache hierarchy, an MET and VWB at each memory 
controller, a timestamp scrubbing FIFO at each cache 
and memory controller, and ECC on caches and memo-
ries (same as DVSC-Direct). While DVSC-Indirect adds 
several storage structures, none of them are large or 
complicated. Given the modest interconnection network 
bandwidth and hardware costs of DVSC-Indirect, we 
believe that the error detection benefits of DVSC far out-
weigh these costs. 

5.  Evaluation
The goals of this evaluation are to determine the 

error coverage, performance impact, and implementa-
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tion costs of our implementable design, DVSC-Indirect. 
For comparison, we evaluate the bandwidth usages of 
both DVSC-Indirect and DVSC-Direct, since this is the 
primary difference between the two.

5.1.  Methodology
We simulate an 8-node multiprocessor target system 

with the Simics full-system, multiprocessor, functional 
simulator [9], and we extend Simics with a memory 
hierarchy simulator to compute execution times. Each 
node consists of a processor, two levels of cache, cache 
controller, some portion of the shared memory, memory 
controller, support for backward error recovery with 
SafetyNet [17], and a network interface. 
Simics. Simics is a system-level architectural simulator 
developed by Virtutech AB. We use Simics/sun4u, 
which simulates Sun Microsystems’s SPARC V9 plat-
form architecture (e.g., used for Sun E6000s) in suffi-
cient detail to boot unmodified Solaris 8. Simics is a 
functional simulator only, but it provides an interface to 
support detailed timing simulation of the processors and 
the memory system. 
Processor Model. We use TFSim [10], a timing-accu-
rate simulator of a dynamically scheduled microproces-
sor. This processor implements SC, but it speculates in 
order to achieve performance closer to that of more 
relaxed memory models. Table 1 provides the details of 
the processor that we model. We do not model DIVA’s 
timing in detail.
Memory Model. We have implemented a cycle-accu-
rate memory hierarchy simulator that captures all state 
transitions (including transient states) in the cache and 
memory controllers. We have configured it to be able to 
model both a MOSI directory and a MOSI snooping 
cache coherence protocol. We model the interconnec-
tion network and contention within it. Table 2 presents 
the design parameters of our target memory systems.
Backward Error Recovery. Our memory system simu-
lator models the details of SafetyNet checkpoint/recov-
ery [17], although other hardware or even software BER 
schemes could be used. We use the same checkpoint log 
buffer size (512 kbytes) at each cache and memory con-
troller and the same latencies as Sorin et al. [17]. With a 

checkpoint interval of 8000 logical cycles for a directory 
system (10000 for snooping) and four outstanding 
checkpoints, SafetyNet can recover to a checkpoint of 
the system that is earlier than any error detected by 
DVSC-Indirect or DVSC-Direct.
Benchmarks. Commercial applications are an impor-
tant workload for high availability multithreaded sys-
tems. As such, we evaluate our system with four 
commercial applications from the Wisconsin Commer-
cial Workload Suite and one scientific application. 
These workloads are described briefly in Table 3 and in 
more detail by Alameldeen et al. [1]. To handle the runt-
ime variability inherent in commercial workloads, we 
run each simulation three times with small pseudo-ran-
dom perturbations. Our experimental results show mean 
result values as well as error bars that represent one 
standard deviation below and above the mean. 

5.2.  Experiment #1: Error Coverage
In this experiment, we seek to demonstrate the abil-

ity of DVSC, both DVSC-Direct and DVSC-Indirect, to 

TABLE 1. Processor Parameters
Pipeline Stages fetch (3),decode (4),execute,retire (3)

Pipeline Width 4

Branch Predictor YAGS

Scheduling Window 64 entries

Reorder Buffer 128 entries

Physical Registers 224 integer, 192 floating point

DIVA timing not modeled in detail

TABLE 2. Memory System Parameters
L1 Cache (I and D) 32 KB, 4-way set associative

L2 Cache 1 MB, 4-way set-associative

Memory 2 GB, 64 byte blocks

 For Directory Protocol

Interconnection Network 2-dimensional torus, 2.5 
GBytes/s links, no ordering 

Logical Time Base loosely synch. physical clock

For Snooping Protocol

Address (request) Network broadcast tree, 2.5 GBytes/s 
links, totally ordered

Data (response) Network 2-dimensional torus, 2.5 
GBytes/s links, no ordering

Logical Time Base number of snooping requests 
processed thus far

Backward Error Recovery (SafetyNet)

Checkpoint Log Buffer 512 kbytes each

Checkpoint Interval 8000 log. cycles for directory, 
10000 log. cycles for snooping

For DVSC-Direct

VWB 1024 entries

Verif. Memory Cache 4K entries,4-way set assoc.

For DVSC-Indirect

VWB 256 entries

Cache Epoch Table one entry per line in cache: each 
entry is 34 bits

Memory Epoch Table one entry per line in memory: 
each entry is 48 bits

Log. Time Scrubbing FIFO 128 entries

Logical Time Size 16 bits
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detect low-level errors. We thus injected single errors 
into the simulated system, including:

• corrupted, dropped, misrouted, reordered, and 
duplicated messages (for all kinds of messages)

• corrupted cache and memory blocks, including 
associated block state

We did not inject errors into the processor core, 
since DIVA has already been shown to detect and cor-
rect processor errors and to provide an in-order abstrac-
tion to the memory system [2]. 

Our experimental results, for both snooping and 
directory systems, showed that both DVSC-Direct and 
DVSC-Indirect detected all injected errors. For DVSC-
Indirect, the only possibilities of false negatives are if 
(a) an error in cache or memory state is undetectable by 
the ECC, or (b) hashing the block values leads to alias-
ing that masks an error. None of these scenarios 
occurred in our experiments. For DVSC-Indirect, the 
only possibility of false positives is if (a) the VWB is 
not large enough to prevent out-of-order processing of 
Inform-Epochs to the same block, and (b) at least one of 
the reordered Inform-Epochs to the same block is for an 
Exclusive epoch. In Figure 3a (3b), for a directory 
(snooping) system, we plot the fraction of Inform-
Epochs to the same block that are processed out of order 
as a function of the logical time size, since the number 
of bits in a logical time determines the frequency of log-
ical time scrubbing and is related to potential reorder-
ings. We observe that, for all logical time sizes, there is 
a miniscule fraction (often zero) of Inform-Epochs to 
the same block that are processed out of order; more-
over, none of these reorderings leads to a false positive 
since zero reorderings involved Exclusive epochs. Intu-
itively, this result is not surprising, since the only sce-
nario in which reordering to the same block can 
practically occur is when a very long Shared epoch 
wholly contains another very short Shared epoch.

5.3.  Experiment #2: Performance
In this set of experiments, we seek to determine the 

performance impact of DVSC-Indirect, as compared to 
a system without any fault protection (i.e., no DVSC-
Indirect and no SafetyNet). We compare these systems 
in an error-free scenario. The primary causes of poten-

TABLE 3. Wisconsin Commercial Workload 
Suite and a SPLASH benchmark

OLTP: Our OLTP workload is based on the TPC-C v3.0 
benchmark using IBM’s DB2 v7.2 EEE database manage-
ment system. We use a 1 GB 10-warehouse database on five 
raw disks and an additional dedicated database log disk. 
There are 8 simulated users per processor. We warm up for 
10,000 transactions, and we run for 100. 

Java Server: SPECjbb2000 is a server-side java benchmark 
that models a 3-tier system with driver threads. We used 
Sun’s HotSpot 1.4.0 Server JVM. Our experiments use 24 
threads and 24 warehouses (~500 MB of data). We warm up 
for 100,000 transactions, and we run for 10,000. 

Static Web Server: We use Apache 1.3.19 
(www.apache.org) for SPARC/Solaris 8, configured for 
pthread locks and minimal logging. We use SURGE to gen-
erate web requests. We use a repository of 2,000 files (total-
ling ~50 MB). There are 10 simulated users per processor. 
We warm up for ~80,000 requests, and we run for 1,000. 

Dynamic Web Server: Slashcode is based on the dynamic 
web message posting system slashdot.com. We use Slash-
code 2.0, Apache 1.3.20, and Apache’s mod_perl 1.25 mod-
ule for the web server. MySQL 3.23.39 is the database 
engine. The database is a snapshot of slashcode.com with 
~3,000 messages. A multithreaded driver simulates browsing 
and posting for 3 users per processor. We warm up for 240 
transactions, and we run for 20.

Scientific Application: We use barnes-hut from the 
SPLASH-2 suite [18], with the 16K body input set. We mea-
sure from the start of the parallel phase.
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Figure 3. Out-of-order processing of Inform-Epochs to the same block, as a function of logical 
time size (in number of bits). None of these reorderings led to a false positive.

(a) Directory System (b) Snooping System
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tial slowdown due to DVSC-Indirect are SafetyNet and 
increased interconnection network congestion due to 
Inform-Epochs. In Figure 4a, we plot the normalized 
runtime for three systems: unprotected directory, direc-
tory with SafetyNet, and directory with DVSC-Indirect 
(and SafetyNet). Figure 4b plots the results of the same 
experiment for the snooping systems. We observe that, 
in both systems, performance degradation due to DVSC-
Indirect is minimal and usually nearly equivalent to that 
of just SafetyNet. The mean results for some of the runt-
imes suggest implausible situations (e.g., a system with 
SafetyNet outperforming an unprotected system), but 
the error bars show that these discrepancies are not sig-
nificant. While previous work has shown that SafetyNet 
does not incur a significant performance penalty [17], it 
is an interesting result that Inform-Epoch traffic does not 
significantly degrade performance even for the modest 
interconnection network link bandwidth provided by 
these systems. The bandwidth results in Section 5.4.
reveal that DVSC-Direct would require a system to pro-
vide significantly more link bandwidth than the 2.5 

GB/sec assumed here to avoid performance degradation 
due to Inform congestion. 

5.4.  Experiment #3: Bandwidth Usage
The interconnection network bandwidth usage of 

DVSC-Indirect is critical. In fact, it is DVSC-Direct’s 
costly usage of bandwidth that inspired DVSC-Indirect. 
In this experiment, we compare the link bandwidth 
usage on the most-utilized link of the interconnection 
network for: an unprotected system, DVSC-Indirect, 
and DVSC-Direct (with aggressive compression of 
Informs). For snooping, which has two interconnection 
networks (address and data), the most-utilized link is 
always in the data network. Unlike the other system 
models, the experiments for DVSC-Direct use intercon-
nection network links with unbounded available band-
width, since 2.5 GB/s is not sufficient. Figure 5a (5b) 
shows the results for the directory (snooping) system, 
normalized to the unprotected system. The results show 
that DVSC-Direct uses a whopping 8-53 times more 
bandwidth than an unprotected system. However, for 
DVSC-Indirect, the directory system incurs only 8-25% 
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Figure 4. Error-Free performance of DVSC-Indirect compared to unprotected system
(a) Directory System (b) Snooping System
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(a) Directory System (b) Snooping System

Figure 5. Bandwidth on most-utilized link in interconnection network
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more bandwidth than an unprotected system, while 
snooping only uses between 0-15% more bandwidth. In 
snooping, the Inform traffic spreads out more on the 
lightly loaded links. For further insight into this effect, 
we studied the total traffic communicated by the entire 
interconnection network (address plus data for snoop-
ing). In Figure 6a (6b), we compare the total number of 
bytes transferred in the entire interconnection network 
for directory (snooping) systems. The results show that 
the snooping system with DVSC-Indirect communicates 
26-30% more traffic than the unprotected snooping sys-
tem. While the link bandwidth experiment only studied 
mean bandwidths, we are assured that peak instanta-
neous bandwidths are not a major problem for DVSC-
Indirect since otherwise its performance in Section 5.3.
would be much worse than that of the unprotected sys-
tem.

The increase in the number of messages sent with 
DVSC-Indirect is larger than the increase in consumed 
bandwidth, because Informs are small. DVSC-Indirect 
generates 44-66% more messages for directories and 
33-38% more messages for snooping than the respective 
unprotected system. In systems that cannot handle the 
larger number of messages, multiple Informs can easily 
be bundled into a single message, since Informs are not 
latency sensitive. 

One other concern we had with respect to intercon-
nection network bandwidth was DVSC-Indirect’s sensi-
tivity to the logical time size (i.e., number of bits). With 
larger times, each Inform-Epoch becomes slightly larger 
and uses more bandwidth. However, larger times also 
reduce the need for timestamp scrubbing, since times-
tamp wraparound occurs less frequently; thus, larger 
times lead to somewhat fewer Inform-Open-Epochs. 
Results (not shown) reveal that varying the logical time 
size between 12 and 18 bits has a negligible effect. This 

result is positive in that it shows that DVSC-Indirect’s 
design is robust with respect to this parameter.

5.5.  Discussion
We have experimentally demonstrated that DVSC-

Indirect (a) performs DVSC and thus detects errors that 
affect sequential consistency, (b) does not significantly 
degrade performance, and (c) requires less than 25% 
more interconnection network bandwidth than an unpro-
tected system. Thus, the only remaining obstacle to 
DVSC-Indirect’s adoption is its hardware cost and com-
plexity. DVSC-Indirect requires DIVA. If DIVA was 
added solely for DVSC-Indirect’s purposes, this would 
be a questionable cost, but DIVA has been shown to be a 
valuable and relatively inexpensive scheme for micro-
processor fault tolerance. DVSC-Indirect also requires 
several storage structures. The Verification Window 
Buffers (VWBs), which order Inform-Epochs, are 
small—at 1024 entries, we observe no false positives 
due to reorderings. The Cache Epoch Tables (CETs), 
which hold epoch state at each cache, have as many 
entries as each cache, but each entry is small (34 bits). 
The Memory Epoch Tables (METs) have one entry per 
block of memory, but once again each entry is small (48 
bits). In the presented configuration, the total size of 
each CET is 68 KB, which is about 2.5 times the size of 
the cache tag array, and every memory node has a 102 
KB MET. The FIFOs for avoiding timestamp wrap-
around at the cache and memory controllers have only 
128 entries. None of these structures is more compli-
cated or requires more bandwidth or ports than pre-
existing storage structures, such as the directory.

6.  Related Work
There has been a variety of research in dynamic ver-

ification. At the single-threaded uniprocessor level, 
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Figure 6. Total interconnection network traffic relative to unprotected system

(a) Directory System (b) Snooping System
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DIVA uses a simple, provably correct checker processor 
core to dynamically verify an aggressive speculative 
processor core [2]. At the multithreaded level, Sorin et 
al. dynamically verify end-to-end invariants of the cache 
coherence protocol and interconnection network [16], 
but they stop short of verifying memory consistency. 
Cantin et al. propose a scheme to dynamically verify 
snooping cache coherence protocols [4]. This scheme 
requires manual construction of the checker protocol 
and significant extra bandwidth for validation. Cain and 
Lipasti propose an algorithm based on vector clocks for 
dynamically verifying SC, but they leave for future 
work the issue of implementation of the algorithm [3].

7.  Conclusions
We have demonstrated how to use DVSC as an end-

to-end mechanism to detect errors in multithreaded 
memory systems. We first presented an intuitive, proof-
of-concept DVSC scheme called DVSC-Direct that 
implements the SC invariant directly. Its drawback is the 
substantial amount of additional bandwidth usage that 
this scheme incurs, even after optimizing it with com-
pression techniques. This drawback motivated our sec-
ond scheme, DVSC-Indirect, which dynamically 
verifies a set of invariants that taken together have been 
proven to be equivalent to SC. DVSC-Indirect’s 
approach enables it to use far less bandwidth and thus 
makes it an attractive option for comprehensive error 
detection in multithreaded memory systems. 
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