

The Impact of Performance Asymmetry in Emerging Multicore Architectures

Saisanthosh Balakrishnan† Ravi Rajwar‡ Mike Upton§ Konrad Lai‡
†Computer Sciences Department
University of Wisconsin-Madison

sai@cs.wisc.edu

 ‡Microarchitecture Research Lab §Digital Enterprise Group
Intel Corporation

{ravi.rajwar, mike.upton, konrad.lai}@intel.com

Abstract
Performance asymmetry in multicore architectures

arises when individual cores have different performance.
Building such multicore processors is desirable because
many simple cores together provide high parallel per-
formance while a few complex cores ensure high serial
performance. However, application developers typically
assume computational cores provide equal performance,
and performance asymmetry breaks this assumption.

This paper is concerned with the behavior of commer-
cial applications running on performance asymmetric
systems. We present the first study investigating the im-
pact of performance asymmetry on a wide range of com-
mercial applications using a hardware prototype. We
quantify the impact of asymmetry on an application’s
performance variance when run multiple times, and the
impact on the application’s scalability.

Performance asymmetry adversely affects behavior of
many workloads. We study ways to eliminate these effects.
In addition to asymmetry-aware operating system kernels,
the application often itself needs to be aware of perform-
ance asymmetry for stable and scalable performance.

1. Introduction
A multicore processor provides increased total compu-

tational capability on a single chip without requiring a
complex microarchitecture. As a result, simple multicore
processors have better performance per watt and area
characteristics than complex single-core processors. The
diminishing returns on serial performance with increas-
ingly complex cores make multicore organizations par-
ticularly attractive.

A performance-asymmetric multicore organization,
where individual cores have different compute capabili-
ties, is attractive because a few high-performance complex
cores can provide good serial performance, and many
low-performance simple cores can provide high parallel
performance. Simple cores provide efficient use of tran-
sistors for computation in addition to meeting power and
thermal budgets. Complex cores, while inefficient, pro-
vide computational power for single threads that require
it. Researchers have proposed numerous such asymmetric
processor organizations for power and performance effi-

formance efficiency, and have investigated the behavior of
multi-programmed single threaded applications on them
[5, 8, 9, 11, 17].

Performance asymmetry in multicore systems breaks a
long-standing assumption made by multi-threaded appli-
cation developers. These developers typically assume all
computational cores provide equal performance when
they write their parallel algorithms and applications.
However, no study has investigated the impact, if any, of
computational asymmetry on the behavior of these multi-
threaded applications. For example, does computational
asymmetry result in unpredictable performance character-
istics of a commercial server, which must meet certain
performance guarantees? Does the asymmetry expose an
application’s scalability problem, that otherwise would
not have manifested? Ensuring that applications run as
expected on a new architecture is crucial for the architec-
ture’s adoption. Answering questions regarding applica-
tion behavior predictability and scalability are therefore
important for understanding the implications of asymmet-
ric architectures on software that runs on them. This paper
tries to answer these questions.

We present the first study investigating the impact of
performance asymmetry on the behavior of numerous
multithreaded applications. We use a hardware prototype
of a multiprocessor system to perform our study. We ap-
proximate performance asymmetry by varying the indi-
vidual processor frequencies in a multiprocessor. Varying
frequency is an effective way to create the property of
performance asymmetry on real hardware.

We focus on two questions:

1. Does performance asymmetry in a multiprocessor
system have a negative impact on an application’s
performance characteristics? Can we predict per-
formance of an application on an asymmetric sys-
tem? Does the application scale as expected or does
it experience scalability bottlenecks that were oth-
erwise not present on a symmetric system?

2. For applications that do suffer due to performance
asymmetry, what methods can help alleviate the
problem? Is exposing the asymmetry to the operat-
ing system sufficient or, do the applications also
need to consider asymmetry at an algorithmic level?

We establish a baseline performance behavior by study-
ing the applications on a performance-symmetric system
and ensuring their performance is predictable on such
systems, and then vary individual frequencies (at ¼ frac-
tion increments) to study the impact of performance
asymmetry. We determine whether the application pro-
vides predictable performance by running the same appli-
cation multiple times on the same asymmetric setup. We
also determine whether the application performance scales
predictably in proportion to the total compute power in
the system (even if the cores are performance asymmet-
ric).

We then investigate ways to eliminate anomalous be-
haviors if any. Does re-structuring the operating systems
scheduler help? Do we also need to modify the applica-
tion?

Our benchmarks include commercial managed runtime
servers (SPECjbb and SPECjAppServer), database serv-
ers (TPC-H), web servers (Zeus and Apache), scientific
applications with closely coupled synchronization (SPEC
OMP), a media application (H.264), and an application
development tool (PMAKE).

Using the above workloads, the paper quantitatively
makes the following four key points:

1. Performance asymmetry in systems adversely affects
the predictability of a number of commercial work-
loads, and makes them less scalable. This effect in-
creases with increasing concurrency.

2. An asymmetry-aware operating system helps elimi-
nate unpredictability in some applications. In others,
the application also needs to be asymmetry-aware.

3. An asymmetric multiprocessor gives higher per-
formance than a multiprocessor in which all cores
are slow because the fast core is effective for serial
portions of the threaded program.

4. Mechanisms for exchanging asymmetry information
between hardware and software, and application de-
sign methods tolerant of asymmetry need investiga-
tion.

Section 2 discusses the experimental methodology and
Section 3 presents workload description and analysis.
Section 4 summarizes the results, Section 5 presents re-
lated work, and Section 6 concludes.

2. Experimental methodology
Our experimental platform comprises a 4-way 2.8 GHz

Intel® Xeon™ multiprocessor (Shasta series). Our
benchmark under test runs on this platform. We disable
Hyper-Threading in all processors by using the BIOS. The
system has 2-MB of unified Level-3 cache. We use
Windows Server 2003 and Linux operating systems.

Intel Xeon processors allow software to change the ac-
tive duty cycle of processors for thermal management [6].

Duty cycle is the time-period during which the clock sig-
nal drives the processor chip. A stop clock mechanism
disables the processor clock, during which time every-
thing on the processor stops. This does not affect any
modules outside the processor, e.g., coherence network or
memory (DRAM) is unaffected, and only the processor
appears to slow down. We vary duty cycle in multiple
steps: 12.5%, 25%, 37.5%, 50%, 63.5%, 75%, and 87.5%.

We developed a device driver to control asymmetry in
Windows Server 2003. The driver, running in privileged
mode, controls the duty cycle by changing the clock
modulation register. Linux kernel 2.4 requires a new
module to read and write the clock modulation register.
Linux kernel 2.6 provides a thermal monitoring infrastruc-
ture and does not require the user to write to the clock
modulation register directly. A process-affinity API se-
lects specific processors.

Using the above duty cycle modulation to emulate per-
formance asymmetry is effective for this paper’ s study
because the unpredictability of performance and limita-
tions in scalability arise due to differences in the computa-
tion power of the individual cores and not due to commu-
nication latencies. The results therefore should hold when
the communication network and latencies change.

3. Results and analysis
All applications were set up according to the rules pro-

vided by the respective organizations (SPEC and TPC).
An industrial performance evaluation group ensured strict
compliance. Many of these setups were multi-tier, and
only the application, whose behavior we were studying,
ran on the system described in Section 2.

We focus on two key predictability metrics:

1. Is the application’ s performance stable?

2. Is the application’ s performance scalable?

An nf-ms/scale label means n fast cores and m slow
cores running at 1/scale the speed of the fast cores. The
total compute power of this system is (n + m/scale)).
Symmetric configurations are 4f-0s, 0f-4s/4, and 0f-4s/8,
and asymmetric configurations are 3f-1s/4, 3f-1s/8, 2f-
2s/4, 2f-2s/8, 1f-3s/4, and 1f-3s/8. Performance asymme-
try was validated using runtimes of computationally inten-
sive micro benchmarks.

3.1 SPECjbb
SPECjbb2000 [19] is an online-transaction processing

business Java application emulating a three-tier system. A
thread represents an individual terminal, and maps to a
specific warehouse. Increasing the number of warehouses
increases concurrency in the workload. A probability dis-
tribution determines queries to the system. The throughput
of business operations per second is the primary perform-
ance metric. The backend database is memory resident

(25MB) and has 20 warehouses. The workload focuses on
the middle tier running the Java application server.

Our application server operating system is Linux 2.6,
and we study two virtual machines for the application
server: BEA Weblogic JRockit (8.1) and Sun Hotspot
(1.4.2). The virtual machine flags were set for the highest
machine optimization.

Since garbage collection (GC) is integral to managed
runtime systems, we include their effect in this study. We
use two garbage collectors: a parallel and a concurrent
generational. A parallel collector interrupts all application
threads prior to performing collection, and is well suited
for high-throughput long-running workloads. The genera-
tional concurrent collector runs concurrently with the ap-
plication, reclaiming objects. This collector is well suited
for applications requiring minimal pause times and those
that are unaffected by the collectors interference.

3.1.1 Analysis
Figure 1(a) shows SPECjbb throughput (increasing

warehouses increases concurrency) with two different
virtual machines (BEA JRockit with parallel GC and Sun
HotSpot with a generational concurrent GC) running on a

2f-2s/8 asymmetric configuration. Multiple runs are
shown for each configuration to determine predictability.
The absolute performance variance for the HotSpot con-
figuration is higher. Minor instability exists with JRockit.
Figure 1(b) shows SPECjbb throughput (with increasing
warehouses) with BEA JRockit and a generational con-
current GC (instead of the parallel GC). The new collector
has a significant negative impact on application behavior.
Instability in asymmetric configurations increases signifi-
cantly across multiple runs, and increases as concurrency
in the system increases. This increased instability is due to
the concurrently running garbage collector interfering
with the main application.

Figure 2(a) shows scalability and predictability (when
run multiple times) as computational power is varied. For
symmetric configurations (4f-0s, 0f-4s/4, and 0f-4s/8),
performance decreases predictably and linearly with com-
putational power. The workload is inherently stable and
predictably scalable on a symmetric system. While asym-
metric configurations (3f-1s/4, 3f-1s/8, 2f-2s/4, 2f-2s/8,
1f-3s/4, and 1f-3s/8) scale, they show significant variabil-
ity (as shown by the error bars in the figure).

We investigated various potential sources of instability:
scheduling, locking and synchronization, and cache

Figure 1. SPECjbb performance predictability.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Th
ou

sa
nd

s

Warehouses

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

BEA JRockit JVM, Parallel GC on 2f-2s/8 (3 runs)

Sun HotSpot JVM, Gen. concurrent GC on 2f-2s/8 (3 runs)

(a)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Th
ou

sa
nd

s

Warehouses

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

BEA JRockit JVM, Gen. concurrent GC on 4f-0s (2 runs)

BEA JRockit JVM, Gen. concurrent GC on 2f-2s/8 (4 runs)

(b)

Figure 2. SPECjbb. (a) Scalability & predictability. Error bars indicate variability in throughput for multiple runs.
(b) Predictability with an asymmetry-aware kernel scheduler.

0

5

10

15

20

25

30

35

40

45

50

Th
ou

sa
nd

s

Configurations

A
ve

ra
ge

 th
ro

ug
hp

ut

BEA JRockit JVM (4 runs)

4f- 3f- 3f- 2f- 2f- 0f- 0f-1f- 1f-
0s 1s/4 1s/8 2s/4 2s/8 4s/4 4s/83s/4 3s/8

(a)

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Th
ou

sa
nd

s

Warehouses

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d BEA JRockit JVM, Gen. concurrent GC on 2f-2s/8 (3 runs)

Sun HotSpot JVM, Gen. concurrent GC on 2f-2s/8 (3 runs)

(b)

thrashing. We identified the operating system scheduler as
the primary source of instability. Instability is often due to
work imbalance among various threads, and a computa-
tionally important thread’ s schedule—whether it runs on a
slow processor or a fast processor—will vary performance
significantly. A kernel scheduler typically aims to keep all
processors occupied approximately with the same load.

To better balance computational power, we imple-
mented a new kernel scheduler. We made the scheduler
aware of the underlying hardware’ s performance asymme-
try. In the new algorithm, the kernel scheduler ensures
faster cores never go idle before slower cores. A process
is explicitly migrated from a slow core to an idle fast core,
if one is available. Figure 2(b) shows the throughput using
the new kernel scheduler. As we can see, the new sched-
uler eliminates the application instability (compare this
with Figure 1 which showed significant instability for the
same configuration). For SPECjbb, exposing performance
asymmetry to the operating system for smart scheduling is
effective in fixing instability.

3.1.2 Discussion
Garbage collection has significant impact on throughput

in an asymmetric system. The current study used single-
thread concurrent garbage collection and a parallel multi-
threaded non-concurrent collector. Future garbage collec-
tor designs should take into account underlying perform-
ance asymmetry, to ensure stable application behavior.

3.2 SPECjAppServer
SPECjAppServer2002 [19] is a complex client/server

business J2EE™ application to measure the scalability
and performance of J2EE servers and EJB containers. The
setup consists of three machines: a front-end driver, a
middle-tier jAppServer, and a backend database server.
The study focuses on the jAppServer, and its interaction
with asymmetry.

SPECjAppServer models four business domains, each
with its own database and applications. These domains

interact as needed. We focus on two of these domains:
manufacturing and customer. The customer domain fo-
cuses on order processing, and the manufacturing domain
handles production scheduling.

A driver generates requests for orders at a specific in-
jection rate to the jAppServer using a pre-defined transac-
tion mix. A complex sequence follows involving all do-
mains, and the request must be serviced within a response
time requirement. If the jAppServer cannot respond
within a fixed time, the driver is informed, and the injec-
tion rate of requests is scaled down. This feedback loop is
an integral part of the workload. SPEC rules require
specified and actual injection rates to be identical for con-
formance. Our baseline setup where all cores have equal
performance satisfies this requirement. Introducing asym-
metry makes some runs non-conforming, but correct. Such
runs are acceptable for this paper since they provide
intuition on how asymmetry affects application behavior.

The front-end driver runs on a 4-way 2.8GHz Intel
Xeon multiprocessor with 4GB memory, and the back-end
database server is Microsoft SQL with Windows Server
2003 running on a 4-way Pentium III multiprocessor.
These machines are powerful enough to stress test the
jAppServer, and are not bottlenecks. A gigabit network
connects all machines.

The jAppServer uses BEA Weblogic (8.1) application
server and a BEA JRockit (8.1) virtual machine. Run pa-
rameters conforming to SPEC are used. We assume two
ordering and two manufacturing agents, and the runs in-
clude a 600 seconds ramp-up, a steady state of 1800 sec-
onds, and a 300 seconds ramp-down.

3.2.1 Analysis
Figure 3(a) shows SPECjAppServer throughput for

transactions in the manufacturing and customer (NewOr-
der) domains. Average throughput for 4f-0s, 3f-1s/4, and
3f-1s/8 is mostly constant, and sees a linear reduction for
the remaining configurations. The workload is predictably
scalable on symmetric systems. The throughput specified
for the configurations 2f-2s/8, 1f-3s/4, and 1f-3s/8 actu-

Figure 3. SPECjAppServer. (a) Performance scalability. (b) Performance predictability measured as response time.

� � � � � � � �
� � � �

� � �
� � � � � � � � �

� � �
� � �
� � � � � � �

� � � �
� � � �
� � � �

� � �
� � �
� � � 	 	 	

	 	 	

� � �
� � �
� � � � � � �

� � � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �� � �
� � �
� � �
� � �
� � �
� � �
� � �

0

5

10

15

20

25

30

35

40

25
0

29
0

32
0

25
0

29
0

32
0

25
0

29
0

32
0

25
0

29
0

32
0

25
0

29
0

32
0

25
0

29
0

32
0

25
0

29
0

32
0

25
0

29
0

32
0

25
0

29
0

32
0

4f-0s 3f-1s/4 3f-1s/8 2f-2s/4 2f-2s/8 1f-3s/4 1f-3s/8 0f-4s/4 0f-4s/8

Configurations

M
an

uf
ac

tu
ri

ng
 R

es
po

ns
e

tim
e

(s
ec

s)

Avg� � � � �
� � � � � 90%

Max

(b)

0

10

20

30

40

50

60

70

80

4f-0s 3f-1s/4 3f-1s/8 2f-2s/4 2f-2s/8 1f-3s/4 1f-3s/8 0f-4s/4 0f-4s/8

H
un

dr
ed

s

Configurations

Th
ro

ug
hp

ut
 p

er
 s

ec
on

d

Manufacturing
NewOrder

Injection rate = 320

(a)

ally reflect a slower injection rate because the slow system
cannot sustain a high rate and the feedback provided to
the driver slows it down. The configurations 3f-1s/4 and
3f-1s/8 can sustain the specified injection rates and thus
provides the same throughput.

Throughput shown in Figure 3(a) demonstrates scalabil-
ity, but does not directly demonstrate stability. We inves-
tigated numerous secondary metrics and found no instabil-
ity under symmetric and asymmetric configurations.
Figure 3(b) shows one such metric, the manufacturing
domain response time (for three different injection rates).
Three bars plot average, maximum, and 90%ile response
times. The response times are not constant, mainly be-
cause of complex interactions in the system, but they scale
well. The 90%ile response is closer to the average, thus
indicating a significant number of transactions take an
average time to complete. Further, the difference between
the 90%ile and the average response times scales and is
stable across various configurations. These bars would
have reflected any significant instability introduced due to
asymmetry.

3.2.2 Discussion
SPECjAppServer adapts to dynamic performance vari-

ability by automatically scaling back and performing load
balancing. This allows for stability and prevents the sys-
tem from overloading. In contrast, SPECjbb discussed
earlier suffered from significant instability due to per-
formance asymmetry. This suggests that application de-
sign is an important consideration when dealing with per-
formance asymmetry. Exposing asymmetry to software
developers and application optimizers can ensure applica-
tion stability.

3.3 TPC-H
TPC-H [20] is a decision support benchmark consisting

of 22 non-trivial queries. Each query has varying com-
plexity, and performs concurrent data updates on a com-
mon database. The database server used is IBM DB2 (8.2)
running on Linux 2.4. We use a memory-resident setup (1

setup (1 GB with a scale factor of 1) to isolate the impact
of processor execution on the database server.

The database server uses the degree of intra-query par-
allelization parameter to parallelize a query into sub-
queries and execute them in parallel. It also uses the de-
gree of optimization parameter to optimize the query plan
and its execution. Parallelization and optimization of
TPC-H queries significantly improves their performance.

We focus on TPC-H query execution time during a
power run. The power run measures the raw query execu-
tion time with a single active user. We discard the first
few power runs and warm up the buffer spaces.

3.3.1 Analysis
We first run the benchmark with the highest optimiza-

tion degree (seven) and a parallelization degree of four.
Figure 4(a) shows the runtime for the power run (where
all queries are run in series to completion). Multiple such
runs are shown. The symmetric configurations of 4f-0s,
0f-4s/4, and 0f-4s/8 show stability across multiple runs—
these points are closely clustered. TPC-H also shows good
scalability, when compute power is varied. However, the
asymmetric configurations (3f-1s/4, 3f-1s/8, 2f-2s/4, 2f-
2s/8, 1f-3s/4, and 1f-3s/8) display significant variability
across multiple runs.

To understand behavior of individual queries on per-
formance asymmetric systems, we looked at various indi-
vidual queries. Figure 4(b) shows multiple runtimes for
one specific query— query number 3. Similar to the power
runs, symmetric configurations are stable but asymmetric
configurations show significant instability.

We explicitly turned off intra-query parallelization
(graph not shown). The query showed two distinct run-
times over multiple runs— one where the runtime corre-
sponds to the fastest processor, and another where the
runtime corresponds to the slowest processor. Thus, the
scheduling decisions have an impact on the application
stability and this information needs to be available to the
DB2 server for helping it make scheduling decisions.

Figure 4. TPC-H. (a) Runtime for power run (all queries). (b) Runtime for one query (Query 3).

0

50

100

150

200

250

Configurations

R
un

tim
e

(s
ec

on
ds

)
Run 1
Run 2
Run 3
Run 4

Parallelization Degree = 4
Optimization Degree = 7

4f- 3f- 3f- 2f- 2f- 0f- 0f-1f- 1f-
0s 1s/4 1s/8 2s/4 2s/8 4s/4 4s/83s/4 3s/8

(a)

0

2

4

6

8

10

12

14

16

18

20

Configurations

R
un

tim
e

(s
ec

on
ds

)

Runtimes for 13 runs

Parallelization Degree = 4
Optimization Degree = 7

4f- 3f- 3f- 2f- 2f- 0f- 0f-1f- 1f-
0s 1s/4 1s/8 2s/4 2s/8 4s/4 4s/83s/4 3s/8

(b)

We expected that increasing the degree of paralleliza-
tion might reduce asymmetry effects by forcing more load
on certain processors. Figure 5(a) shows the impact of
increasing the degree of parallelization to eight. Contrary
to our expectation, the runtime for various configurations
show even more variance, at times twice the variance of
the configuration with the parallelization set to four.

Since the parallelized queries execute on an asymmetric
processor setup, the scheduling decisions to run certain
parallel sub-queries on slow or fast processors over multi-
ple runs affects the stability of the application. Our modi-
fied kernel scheduler did not fix the instability. The DB2
server controls the scheduling of query execution on
server processes, which are bound by the server to various
processors, thus making our kernel fix ineffective.

We approximated changes to the program itself by con-
trolling the query optimization degree— the higher the
degree, the more aggressive the query plan. The results we
have discussed so far have used the highest optimization
degree. Figure 5(b) shows the impact of reducing the op-
timization level significantly. Expectedly, the runtimes
have also slowed down for various configurations as com-
pared to the highest optimization level. However, the in-
stability has significantly decreased for the asymmetric
configurations, at times nearly a factor of 10 lesser than
with the high query optimizations.

3.3.2 Discussion
The query optimization experiment strongly suggests

that the application itself, and not the operating system
scheduler, contributes to the instability. This suggests
exposing hardware performance asymmetry to the appli-
cation. Query plan generators already take into account
latency of memory accesses and disk access when com-
puting cost and the target plan. Incorporating performance
asymmetry and compute power of available processors
will ensure stable performance and execution behavior for
these queries.

3.4 Apache and Zeus web servers
We evaluate two commonly used webservers: an open-

source webserver, Apache (2.0.40), and a commercial
webserver, Zeus (4.3).

Apache maintains several idle processes waiting for in-
coming requests. A single control process launches child
processes, and these processes wait for incoming requests.
Optimally selecting the number of such pre-forked proc-
esses and the maximum number of such processes allowed
prevents system thrashing. A process handles a pre-
defined number of requests, and then terminates and recy-
cles. The control process also terminates excessively idle
processes.

Zeus utilizes a small, fixed number of single-threaded
I/O multiplexing processes, and these processes handle
tens of thousands of simultaneous connections.

We use ApacheBench to drive these webservers. We
calculate processing performance of a single static file.
This allows us to focus on multi-threaded webserver be-
havior in the presence of performance asymmetry, and
removes dependency of results on the web-caching infra-
structure that is otherwise necessary for complex setups.
We emulate two modes: (a) heavy load and full utilization
processing 60 requests concurrently with up to 1,000,000
requests in total and (b) light load with 10 concurrent re-
quests with up to total 100,000 requests.

3.4.1 Analysis
Figure 6(a) shows system throughput for Apache under

heavy and light load, and Figure 7 shows the same for
Zeus. We plot six runs for each configuration to determine
stability. Performance-symmetric configurations (4f-0s,
0f-4s/4, and 0f-4s/8) are scalable and show stability for
both light and heavy load; the throughput of these runs
cluster together for both Apache and Zeus.

0

100

200

300

400

500

600

700

Configurations

R
un

tim
e

(s
ec

on
ds

)

Run 1
Run 2
Run 3
Run 4

Parallelization Degree = 4
Optimization Degree = 2

4f- 3f- 3f-
0s 1s/4 1s/8

2f- 2f- 1f-
2s/4 2s/8 3s/4

0f- 0f-1f-
4s/4 4s/83s/8

(b)

Figure 5. TPC-H power run. (a) High parallelization degree. (b) Low optimization degree.
.

0

50

100

150

200

250

Configurations

R
un

tim
e

(s
ec

on
ds

)

Run 1
Run 2
Run 3
Run 4

Parallelization Degree = 8
Optimization Degree = 7

4f- 3f- 3f- 2f- 2f- 0f- 0f-1f- 1f-
0s 1s/4 1s/8 2s/4 2s/8 4s/4 4s/83s/4 3s/8

(a)

However, as can be seen by the vertical spread of the
data points in Figure 6(a) for a given asymmetric configu-
ration, Apache performance under light load on asymmet-
ric setups is significantly unstable. The process scheduling
decisions and the server design contribute to the instabil-
ity. Apache forks processes in advance to handle incom-
ing web serving requests. Since these processes are visible
to the kernel, the kernel scheduler decisions affect their
scheduling. Sometimes the kernel scheduler places proc-
esses on slower cores even though a faster core is avail-
able because it is agnostic to the relative speed of the
processors.

We found Apache performance under heavy load to be
stable with no variance over multiple runs. The through-
put with varying configurations is stable and scalable and
a function of the underlying computational power of the
system, because in a throughput benchmark under heavy
load, each processor is always busy. Instability with per-
formance-asymmetry typically arises in throughput-
oriented applications when some processors are idle. In
such situations, threads may randomly schedule on fast or
slow processors.

Unlike the Apache webserver, Zeus displays significant
variance and instability for both heavily loaded and lightly
loaded systems. However, Zeus provides a significantly
higher throughput than Apache does, up to a factor of 2.5.
Due to significant instability, we cannot determine
whether Zeus is predictably scalable. Since Zeus is a
commercial product and we do not have access to its
source code, we cannot isolate the reasons for instability.

We replaced the Linux kernel scheduler with our modi-
fied scheduler described earlier in Section 3.1.1. Our new
scheduler is aware of the performance asymmetry of the
underlying system and makes scheduling decisions ac-
cordingly. Figure 6(b) shows the result for Apache with
light load. As can be seen, the kernel fix solves the insta-
bility problem and the runs are now repeatable.

We ran Zeus with our modified Linux kernel scheduler.
The scheduler did not have any effect on the significant
instability, suggesting that Zeus runs its own threading
scheduler. This again demonstrates that simply exposing
the asymmetry to the operating system is not sufficient.
The webserver also needs to be aware of the asymmetry.

Figure 6. Apache throughput. (a) Light load. (b) With two techniques to reduce asymmetry impact.

0

1

2

3

4

5

6

7
Th

ou
sa

nd
s

Configurations

R
eq

ue
st

s
pe

r
se

co
nd

Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Series7

Heavy load throughput

4f- 3f- 3f-
0s 1s/4 1s/8

2f-
2s/4

2f-
2s/8

1f-
3s/4

1f-
3s/8

0f-
4s/4

0f-
4s/8

(a)

0

10

20

30

40

50

60

H
un

dr
ed

s

Configurations

R
eq

ue
st

s
pe

r
se

co
nd

Asymmetry-aware Kernel (6 runs)
Fine-grained Threads (6 runs)

4f-
0s

3f-
1s/4

3f-
1s/8

2f-
2s/4

2f-
2s/8

1f-
3s/4

1f-
3s/8

0f-
4s/4

0f-
4s/8

(b)

Figure 7. Zeus throughput. (a) Light load. (b) Heavy load.

0

2

4

6

8

10

12

14

Th
ou

sa
nd

s

Configurations

R
eq

ue
st

s
pe

r
se

co
nd

Run 1
Run 2
Run 3
Run 4
Run 5
Run 6

2f-
2s/8

2f-
2s/4

3f-
1s/8

3f-
1s/4

4f-
0s

1f-
3s/4

1f-
3s/8

0f-
4s/4

0f-
4s/8

(a)

0

2

4

6

8

10

12

14

Th
ou

sa
nd

s

Configurations

R
eq

ue
st

s
pe

r
se

co
nd

Run 1
Run 2
Run 3
Run 4
Run 5
Run 6

2f-
2s/8

2f-
2s/4

3f-
1s/8

3f-
1s/4

4f-
0s

1f-
3s/4

1f-
3s/8

0f-
4s/4

0f-
4s/8

(b)

3.4.2 Discussion
The degree of instability varies as asymmetry is varied.

Higher instability exists for the 3f-1s/8 and 3f-1s/4 con-
figurations over the 2f-2s/8 and 2f-2s/4 configurations.
Introducing slight asymmetry (for e.g., a system with
mostly fast processors but one slow processor) seems to
introduce more instability than a system in which the
compute power provided by the fast processor is a small
fraction of the total compute power in the system.

Fine-granularity threading impact: Since instability
occurs due to poor load balance, it could be eliminated if
for example a large number of short-lived processes were
available. In Apache, we can vary the lifetime of a request
handling process after which time the process is re-cycled.
So far, we assume optimal server parameters and the re-
cycling occurs after handling 5,000 requests. Since re-
quest-handling processes take a short time to complete,
we reduce the re-cycling threshold to 50 requests. This
creates many processes. Figure 6(b) shows the results.
The throughput of such a configuration is significantly
lower than optimal parameters, and the throughput does
not scale. This is because of the frequent re-cycling of
processes, which causes significant overhead. However,
instability under light load disappears. Instability disap-
pears because now the scheduler has large number of
short-lived processes available for scheduling. This results
in automatic load balancing, however with low perform-
ance. The randomized and short use of fast and slow
processors minimizes asymmetry’ s negative effects.

This suggests an alternative approach to eliminating
asymmetry: dividing the task into a finer granularity if the
overhead of managing large number process creations is
acceptable.

3.5 SPEC OMP
SPEC OMP is a high-performance scientific application

suite consisting of parallelized FORTRAN programs
based on OpenMP libraries. We compile the suite using

the Intel Fortran compiler (8.1) with the highest optimiza-
tion flags. We use the OMPM2001 medium input set with
a minimum memory requirement of over 1.6 GB. The
OpenMP implementation uses the pthreads library in
Linux to support various parallelization primitives. The
benchmarks primarily use work-sharing parallel and for-
all constructs to parallelize loop executions. A barrier at
the end of loops synchronizes different threads running on
the processors. These applications infrequently use criti-
cal-section synchronization constructs.

Figure 8(a) shows the runtimes for the SPEC OMP
benchmarks (gafort is not shown because of compila-
tion issues). Multiple runs for a given configuration are
shown. As can be seen, the symmetric configurations (4f-
0s, 0f-4s/4, and 0f-4s/8) are stable and scalable. Many
benchmarks in the suite are also stable in the 2f-2s/8
asymmetric configuration. However, they do not show
predictable scaling. Except for ammp, other benchmarks
have a 2f-2s/8 runtime closer to the 0f-4s/8 runtime. The
2f-2s/8 runtime for galgel and fma3d is worse than a
0f-4s/4 runtime, but a 2f-2s/8 configuration has more
computation power than a 0f-4s/4 configuration. In the 2f-
2s/8 configuration, the slowest processor limits applica-
tion performance, thus forcing it to behave similar to a 0f-
4s/8 configuration. 2f-2s/8 is a little better than 0f-4s/8 as
the faster processors in 2f-2s/8 can improve serial per-
formance.

To understand why SPEC OMP programs on asymmet-
ric systems are not predictably scalable, we analyzed their
algorithms. The applications mainly use do-all and paral-
lel loops. OpenMP [18] provides three major paralleliza-
tion modes: static, dynamic, and guided parallelization of
loops. In static mode, equal division of loops among proc-
essors occurs at the beginning of execution. In guided and
dynamic modes, processors request more work in chunks,
as they complete work. The two modes differ in the work
assigned to the requesting processors. In guided mode, all
processors start with the same chunk size, and the chunk
size decreases exponentially as processors finish execu-

Figure 8. SPEC OMP runtimes. (a) Unmodified source. (b) Source modified to use parallelization directives.

0

100

200

300

400

500

600

700

800

900

1000

Benchmarks

R
un

tim
e

(s
ec

on
ds

)

4f-0s
2f-2s/8
2f-2s/8
0f-4s/4
0f-4s/8

wupwis swim mgrid equak apsi fma3d art ammpapplu galgel

4p
/4

 -
19

40

4p
/8

 -
29

60
2p

/8
 -

27
50

(a)

0

250

500

750

1000

1250

1500

Benchmarks

R
un

tim
e

(s
ec

on
ds

)

4f-0s
2f-2s/8
2f-2s/8
0f-4s/4
0f-4s/8

wupwis swim mgrid equak apsi fma3d art ammpapplu galgel

2p
/8

 -
 3

43
0

4p
/8

 -
 9

51
5

4p
/4

 -
 6

97
4

4p
/1

 -
 3

05
0

(b)

tion, while dynamic mode assigns constant chunk sizes.
Most loops in SPEC OMP are statically parallelized and
only a few have guided parallelization directives.

Intuitively, static parallelization should limit scalability
on an asymmetric system, and we observe this in Figure
8(a) where the slowest processor limits performance.
While all processors get equal work, they do not have the
same performance. Guided parallelization performs better
than static parallelization due to on-demand allocation of
jobs. However, slow processors unaware of its capabilities
might request chunks that are same size as fast processors.
This leads to scalability issues with asymmetric systems.
We next discuss why some benchmarks perform better in
Figure 8(a) than expected.
ammp has seven large parallel tasks. Each task is a par-

allel for-loop over multiple iterations. For the runs in the
figure, the OpenMP library, mapped two iterations each to
the two fast processors, and one iteration each to the two
slow processors. Such an assignment makes the applica-
tion susceptible to scalability issues when it executes on
an asymmetric system because the mapping library is un-
aware of the system’ s asymmetry, and could easily map
them in a different order. This would affect performance.
galgel has 30 parallel regions with short loop bodies.

Three most commonly executed parallel regions had a no-
wait directive, which means the application need not wait
at the loop end. This allows faster processors to continue
without waiting for slower processors. Many loops in
galgel use guided parallelization.

To fix the scalability issues, we focus on the applica-
tion’ s work assignment. To prevent scheduling decisions
from affecting performance, we use dynamic paralleliza-
tion for all loops in all benchmarks. However, for loops
executing a large number of iterations, we chose a large
chunk size to reduce allocation overhead. Figure 8(b)
shows the runtimes with our modifications to the paral-
lelization algorithm. These runtimes are higher than
Figure 8(a) because our modifications were not focused
on performance tuning but on eliminating asymmetry ef-

fects. Hence, these absolute runtime numbers are not di-
rectly comparable. We notice significant performance
benefits of asymmetry— runtimes of 2f-2s/8 are near those
of 4f-0s. This is due to efficient dynamic scheduling of
loops. Asymmetric configurations perform better than the
midpoints of 4f-0s and 0f-4s/8, clearly indicating that
asymmetric systems can be effective for
power/performance efficiency.

3.6 H.264 multithreaded media encoding
The H.264 workload [2, 10] is a high-performance

multi-threaded version of the H.264 video encoder [7], a
new video coding standard providing superior compres-
sion while preserving image quality. The standard divides
a video picture, called frame, into numerous small blocks,
called macro-blocks. These blocks are processed, and
then re-synchronized and re-arranged for final delivery.

The application has five concurrent threads. A main
thread handles image pre-processing and post-processing,
and consumes 2-5% of CPU time. Pre-processing involves
reading raw image data and setting up parameters, and
post-processing checks encoding status, generates the
output bit stream, and performs image interpolation and
reconstruction activity. Pre-processing and post-
processing are sequentially handled for correctness.

The encoding process is parallel and involves opera-
tions on macro-blocks. This deals with motion estimation
and selecting the optimal coding mode for each macro-
block. A spatial dependence exists among various macro-
blocks within a frame: macro-block encoding occurs only
after its adjacent (upper left and right in an image), blocks
are encoded. The application exploits temporal parallel-
ism: parallel encoding of frames occurs by estimating and
compensating predicted frames.

Figure 9(a) shows execution time of H.264 for four dif-
ferent runs on various processor configurations. All con-
figurations show stability across multiple runs, and are
predictably scalable. The application has abundant paral-
lelism: there is significant slowdown going from 4f-0s to

Figure 9. Execution times for multiple runs. (a) H.264 multithreaded media encoding. (b) PMAKE.

0

20

40

60

80

100

120

140

160

Configurations

R
un

tim
e

(s
ec

on
ds

)
Run 1
Run 2
Run 3
Run 4

3f-
1s/8

3f-
1s/4

4f-
0s

1f-
3s/4

2f-
2s/8

2f-
2s/4

0f-
4s/8

0f-
4s/4

1f-
3s/8

(a)

0

200

400

600

800

1000

1200

1400

1600

1800

Configurations

R
un

tim
e

(s
ec

on
ds

)

Run 1
Run 2

2f-
2s/8

1f-
3s/4

2f-
2s/4

3f-
1s/8

3f-
1s/4

4f-
0s

1f-
3s/8

0f-
4s/4

0f-
4s/8

(b)

3f-1s/8; replacing one fast core with a slow core brings
down the runtime significantly since all threads need to
wait for the slower core. In the 2f-2s/8 and 1f-3s/8 con-
figurations, the slowdowns are smaller since the fast proc-
essors do more work; the slower processors do less work.
Going from a 1f-3s/8 to a 0f-4s/8 shows a significant drop
since the 0f-4s/8 does not have any fast processor to take
over work.

This application demonstrates how some performance
asymmetry is good for performance. The slowdowns in-
duced by adding some asymmetry is significantly lesser
than a system in which all cores are slow. A 1f-3s/8 sys-
tem (performance asymmetric) is significantly better than
a 0f-4s/4 or a 0f-4s/8 (symmetric, all slow cores) because
of the availability of one fast core.

3.7 PMAKE
The PMAKE application performs a parallel compila-

tion of the Linux kernel (~7900 C files). We run PMAKE
with “make –j4” indicating the number of processors in
the system.

PMAKE shows stable and scalable speedups for all
configurations (Figure 9(b)). Similar to the H.264 applica-
tion, one fast processor improves performance as com-
pared to when all processors are slow. Having one fast
processor can significantly improve performance because
it can provide high utilization when necessary.

4. Results summary
Table 1 qualitatively summarizes our results and Figure

10 quantitatively shows the predictability and scalability
of the various applications. The figure also shows error
bars for each configuration. These error bars represent the
performance variation when the benchmark is run multiple
times on the same configuration. All speedups are over
the corresponding 0f-4s/8 configuration to show
scalability. We now discuss the key points of the study
below.

1. Asymmetry adversely affects performance predict-

ability of shared-memory workloads.

SPECjbb, a managed runtime (MRTE) server, dis-
plays significant performance instability in the presence
of asymmetry, and the underlying virtual machine and
garbage collector can exacerbate this instability. Other
servers also show similar instability (query processing
in DB2/TPC-H, and Apache and Zeus web servers).

Applications with tight coupling among different
threads (e.g., SPEC OMP), display stability but provide
poor scalability on asymmetric systems. This is because
applications and optimizers assume all processors pro-
vide equal performance. In these applications, the slow-
est core forces faster cores to idle, waiting for the slow-
est core to complete its task.

2. Making the operating system kernel asymmetry-

aware helps eliminate unpredictability in some ap-
plications. In others, the application also needs to
be asymmetry-aware.

The performance unpredictability in SPECjbb and
Apache was eliminated after we made the operating sys-
tems scheduler aware of the performance asymmetry in
the system. However, other applications needed
changes in their structure.

We approximate application changes in DB2/TPC-H
by varying the degree of parallelization and optimiza-
tion levels of TPC-H queries. We saw instability disap-
pear as we reduced the degree of query optimization
significantly. This suggests the role of application opti-
mizers in ensuring stability under performance asym-
metric conditions. We changed the load balancing
OpenMP directives in SPEC OMP programs. Using the
dynamic parallelization directives helped eliminate un-
predictability.

3. An asymmetric chip multiprocessor is better than a

chip multiprocessor where all cores are slow.

We observe the benefit of having a fast core, specifi-
cally in executing serial portions of multi-threaded pro-
grams. For example, in PMAKE and SPEC OMP, a
configuration with two fast and two slow cores does
better than the expected midpoint performance between

Table 1 Results summary

Application Section Class Is performance predictable? Is scalability predictable?
SPECjbb Section 3.1 MRTE No (Yes with asymmetry aware kernel) Yes

SPECjAppServer Section 3.2 MRTE Yes Yes

TPC-H Section 3.3 Database No (Yes, if application changes) Yes

Apache Section 3.4 Web server No (Yes with asymmetry aware kernel) Yes

Zeus Section 3.4 Web server No Yes

SPEC OMP Section 3.5 Scientific Sometimes (Yes with application change) No (Yes with application change)

H.264 Section 3.6 Multimedia Yes Yes (asymmetry helps perf.)

PMAKE Section 3.7 Development Yes Yes (asymmetry helps perf.)

that of a system with four fast cores and a system with
four slow cores.

4. Mechanisms for exchanging asymmetry informa-

tion between hardware and software, and applica-
tion design methods tolerant of asymmetry need
investigation.

While the instability introduced due to performance
asymmetry varies across workloads, the existence of
such instability makes it necessary for researchers to re-
think the hardware and software interface and structur-
ing of multi-threaded software. Exposing the relative
performance of processors in a system to the operating
system and software scheduler may be sufficient, and
absolute information of each processor’ s performance
may not be necessary.

We show evidence of the benefits of fine-grained
threading to help alleviate the problem due to asymme-
try for the Apache webserver. Providing numerous
short-running threads allows the kernel to cope with
asymmetry. However, the overhead associated with
managing many threads may become large.

5. Related work
Enslow [3] presented a survey of multiprocessor or-

ganizations and predicted future trend of asymmetric
processing, with processors dedicated to a hierarchy of
functions. Withington [21] called this organization a
“poly-processor.” Miled et al. proposed a heterogeneous
hierarchical organization, called HPAM [14], and studied
instruction and data temporal locality of statically
parallelized benchmarks. Figueiredo et al. [4] proposed a

lelized benchmarks. Figueiredo et al. [4] proposed a simi-
lar organization for distributed shared memory systems.
Bender et al. [1] proposed a scheduler for scheduling par-
allel programs on heterogeneous multiprocessors, and our
kernel scheduling algorithm uses this prior work.

The CDC6700 was an asymmetric setup of two proces-
sors— the CDC 6400 and CDC 6600 [15].

Researchers have investigated single-chip systems with
multiple asymmetric cores. Kumar et al. [9] demonstrated
performance such a system’ s benefits by using simulation
and SPEC CPU2000 benchmarks. They used phase and
execution profile information of these single-thread appli-
cations to schedule optimally. Kumar et al. [8] identified
asymmetry as beneficial for power reduction. A program
schedules on a core with the best performance to power
ratio. Grochowski et al. [5] and Morad et al. [17] studied
the usefulness of such cores for saving energy and im-
proving throughput.

Moncrieff et al. [16] and Menasce et al. [13] analyti-
cally studied tradeoffs of fast and slow processors in het-
erogeneous systems. They observe that a system with
many slow and few fast processors are cost and perform-
ance effective. Liu et al. [12] studied optimal scheduling
of independent programs on a pre-emptive heterogeneous
multiprocessor system. Miller [15] presented scheduling
algorithm for an asymmetric system called Single Archi-
tecture Heterogeneous Multiprocessor or SAHM, which
did not support multi-programming.

6. Concluding remarks
Predictability and scalability of performance are impor-

tant for successful system deployment. We have presented

Figure 10. Performance predictability and scalability for all benchmarks. For each benchmark, 9 configurations
are shown. The left-most bar (4f-0s) and the two right-most bars (0f-4s/4, 0f-4s/8) are the symmetric configurations.
Speedups (y-axis) are normalized to the 0f-4s/8 configuration. Total computation power of the system decreases as we
go from left (4f-0s) to right (0f-4s/8) for each benchmark. The benchmark performance as total computation power is
varied (scalability) can be seen by directly comparing the bars for each benchmark. SPEC OMP and H.264 show that
performance is limited by the slowest core in the system. The error bars show the performance variance over multiple
runs for the benchmark on a given configuration. SPECjbb, Apache (light load), Zeus (light load), and TPC-H show sig-
nificant variance for the asymmetric configurations (2nd through 7th bar for each benchmark). The symmetric configura-
tions for all benchmarks do not show any variability.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

jAppServer jbb Apache Zeus TPC-H H.264 OMP PMAKE

S
pe

ed
up

 o
ve

r
4p

/8
4f-0s
3f-1s/4
3f-1s/8
2f-2s/4
2f-2s/8
1f-3s/4
1f-3s/8
0f-4s/4
0f-4s/8

a detailed study of the behavior of commercial workloads
running on a multicore system where individual cores
have different performance. We observe that such asym-
metry in performance can have unintended negative im-
pact on workloads, making their performance difficult to
predict. This occurs because software developers assume
all cores provide equal performance, and thus do not
worry about the interactions of core performance with the
application algorithm structure. We observe that in work-
loads that consider compute capability during runtime
(e.g., SPECjAppServer uses performance feedback) the
impact of performance asymmetry is non-existent. This
suggests robust application designs that can adjust dy-
namically to the varying compute power of the system.

We demonstrated how exposing performance asymme-
try to the operating system kernel, and using this informa-
tion to make scheduling decisions, eliminated unpredict-
ability on numerous applications. However, in other ap-
plications (e.g., TPC-H and SPEC OMP), this was insuf-
ficient. The application structure itself needed to change
to adjust to the asymmetry.

We conclude that some degree of performance asym-
metry is beneficial. This is because all applications,
whether multi-threaded or single-threaded, have serial
portions, and providing a high-performance core helps
speed these serial portions. We conjecture that to elimi-
nate unintended interactions between applications and
performance asymmetry, the compute power from the
high-performance core should be a small fraction of the
total compute power of the system.

We argue that computer architects should consider the
implications of multicore proposals on application behav-
ior, and that the developers must design applications that
are robust enough to dynamically deal with changing
compute power.

Acknowledgements

We thank Guri Sohi for comments on earlier drafts of
the paper. We thank Kai Ming Chan, Yen-Kuang Chen,
Kingsum Chow, William Clifford, Kshitij Doshi, Shih-
Lien Lu, and Hamesh Patel for assistance in setting up the
workloads. This work was supported in part by National
Science Foundation grants CCR-0311572 and EIA-
0071924, and donations from Intel Corporation.

References

[1] M. A. Bender and M. O. Rabin. Scheduling Cilk Multi-
threaded Parallel Programs on Processors of Different Speeds.
In Proceedings of the 12th Annual Symposium on Parallel Al-
gorithms and Architectures, July 2000.
[2] Y.-K. Chen, X. Tian, S. Ge, and M. Girkar. Towards Effi-
cient Multi-Level Threading of H.264 Encoder on Intel Hyper-
Threading Architectures. In Proceedings of the 18th Annual
International Symposium on Parallel and Distributed Sympo-
sium, April 2004.

[3] P. Enslow. Multiprocessor Organization Survey. ACM Com-
puting Survey, 9(1), 1977.
[4] R. Figueiredo and J. Fortes. Impact of Heterogeneity on
DSM Performance. In Proceedings of the 6th International
Symposium on High Performance Computer Architecture, Feb-
ruary 2000.
[5] E. Grochowski, R. Ronen, J. Shen, and H. Wang. Best of
Both Latency and Throughput. In Proceedings of the Interna-
tional Conference on Computer Design, October 2004.
[6] Intel, System Programming Guide, vol. 3: Intel Corporation,
2004.
[7] ITU, Advanced Video Coding for General Audiovisual Ser-
vices - Recommendation H.264: International Telecommunica-
tion Union - ITU, May 2003.
[8] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and
D. M. Tullsen. Single-ISA Heterogeneous Multi-Core Architec-
tures: The Potential for Processor Power Reduction. In Proceed-
ings of the 36th Annual International Symposium on Microar-
chitecture, December 2003.
[9] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and
D. M. Tullsen. Single-ISA Heterogeneous Multi-Core Architec-
tures for Multithreaded Workload Performance. In Proceedings
of the 31st Annual International Symposium on Computer Ar-
chitecture, June 2004.
[10] E. Li and Y.-K. Chen. Implementation of H.264 Encoder
on General-Purpose Processors with Hyper-Threading Technol-
ogy. In Proceeedings of SPIE Visual Communications and Im-
age Processing, January 2004.
[11] K. Li. The Case for Asymmetric Multiprocessor Architec-
ture. In ACM Workshop on General Purpose Computing on
Graphics Processors, 2004.
[12] J. Liu and A.-T. Yang. Optimal Scheduling of Independent
Tasks on Heterogeneous Computing Systems. In Proceedings of
the 1974 Annual Conference, 1974.
[13] D. Menasce and V. Almeida. Cost-Performance Analysis of
Heterogeneity in Supercomputer Architectures. In Proceedings
of the 4th International Conference on Supercomputing, June
1990.
[14] Z. B. Miled and J. Fortes. A Heterogeneous Hierarchical
Solution to Cost Efficient High Performance Computing. In
Proceedings of the 8th International Symposium of Parallel and
Distributed Processing, October 1996.
[15] L. J. Miller. A Heterogeneous Multiprocessor Design and
the Distributed Scheduling of Its Task Group Workload. In
Proceedings of the 9th Annual Symposium on Computer Archi-
tecture, May 1982.
[16] D. Moncrieff, R. E. Overill, and S. Wilson. Heterogeneous
Computing Machines and Amdahl's Law. Parallel Computing,
22(3), 1996.
[17] T. Morad, U. Weiser, and A. Kolodny, ACCMP - Asym-
metric Cluster Chip Multi-Processing. CCIT Technical Report
#488, 2004.
[18] OpenMP Architecture Review Board OpenMP Specifica-
tions for Fortran/C/C++ Version 2.0, 2002
[19] Standard Performance Evaluation Corporation
http://www.spec.org/
[20] Transaction Processing Council http://www.tpc.org/
[21] F. Withington. Beyond 1984: A Technology Forecast. In
Datamation, January 1975.

