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Abstract  
Performance asymmetry in multicore architectures 

arises when individual cores have different performance. 
Building such multicore processors is desirable because 
many simple cores together provide high parallel per-
formance while a few complex cores ensure high serial 
performance. However, application developers typically 
assume computational cores provide equal performance, 
and performance asymmetry breaks this assumption. 

This paper is concerned with the behavior of commer-
cial applications running on performance asymmetric 
systems. We present the first study investigating the im-
pact of performance asymmetry on a wide range of com-
mercial applications using a hardware prototype. We 
quantify the impact of asymmetry on an application’s 
performance variance when run multiple times, and the 
impact on the application’s scalability.  

Performance asymmetry adversely affects behavior of 
many workloads. We study ways to eliminate these effects. 
In addition to asymmetry-aware operating system kernels, 
the application often itself needs to be aware of perform-
ance asymmetry for stable and scalable performance. 

1. Introduction 
A multicore processor provides increased total compu-

tational capability on a single chip without requiring a 
complex microarchitecture. As a result, simple multicore 
processors have better performance per watt and area 
characteristics than complex single-core processors. The 
diminishing returns on serial performance with increas-
ingly complex cores make multicore organizations par-
ticularly attractive.  

A performance-asymmetric multicore organization, 
where individual cores have different compute capabili-
ties, is attractive because a few high-performance complex 
cores can provide good serial performance, and many 
low-performance simple cores can provide high parallel 
performance. Simple cores provide efficient use of tran-
sistors for computation in addition to meeting power and 
thermal budgets. Complex cores, while inefficient, pro-
vide computational power for single threads that require 
it. Researchers have proposed numerous such asymmetric 
processor organizations for power and performance effi-

formance efficiency, and have investigated the behavior of 
multi-programmed single threaded applications on them 
[5, 8, 9, 11, 17]. 

Performance asymmetry in multicore systems breaks a 
long-standing assumption made by multi-threaded appli-
cation developers. These developers typically assume all 
computational cores provide equal performance when 
they write their parallel algorithms and applications. 
However, no study has investigated the impact, if any, of 
computational asymmetry on the behavior of these multi-
threaded applications. For example, does computational 
asymmetry result in unpredictable performance character-
istics of a commercial server, which must meet certain 
performance guarantees? Does the asymmetry expose an 
application’s scalability problem, that otherwise would 
not have manifested? Ensuring that applications run as 
expected on a new architecture is crucial for the architec-
ture’s adoption. Answering questions regarding applica-
tion behavior predictability and scalability are therefore 
important for understanding the implications of asymmet-
ric architectures on software that runs on them. This paper 
tries to answer these questions.  

We present the first study investigating the impact of 
performance asymmetry on the behavior of numerous 
multithreaded applications. We use a hardware prototype 
of a multiprocessor system to perform our study. We ap-
proximate performance asymmetry by varying the indi-
vidual processor frequencies in a multiprocessor. Varying 
frequency is an effective way to create the property of 
performance asymmetry on real hardware. 

We focus on two questions: 

1. Does performance asymmetry in a multiprocessor 
system have a negative impact on an application’s 
performance characteristics? Can we predict per-
formance of an application on an asymmetric sys-
tem? Does the application scale as expected or does 
it experience scalability bottlenecks that were oth-
erwise not present on a symmetric system?  

2. For applications that do suffer due to performance 
asymmetry, what methods can help alleviate the 
problem? Is exposing the asymmetry to the operat-
ing system sufficient or, do the applications also 
need to consider asymmetry at an algorithmic level? 



 

We establish a baseline performance behavior by study-
ing the applications on a performance-symmetric system 
and ensuring their performance is predictable on such 
systems, and then vary individual frequencies (at ¼ frac-
tion increments) to study the impact of performance 
asymmetry. We determine whether the application pro-
vides predictable performance by running the same appli-
cation multiple times on the same asymmetric setup. We 
also determine whether the application performance scales 
predictably in proportion to the total compute power in 
the system (even if the cores are performance asymmet-
ric).  

We then investigate ways to eliminate anomalous be-
haviors if any. Does re-structuring the operating systems 
scheduler help? Do we also need to modify the applica-
tion? 

Our benchmarks include commercial managed runtime 
servers (SPECjbb and SPECjAppServer), database serv-
ers (TPC-H), web servers (Zeus and Apache), scientific 
applications with closely coupled synchronization (SPEC 
OMP), a media application (H.264), and an application 
development tool (PMAKE).  

Using the above workloads, the paper quantitatively 
makes the following four key points:  

1. Performance asymmetry in systems adversely affects 
the predictability of a number of commercial work-
loads, and makes them less scalable. This effect in-
creases with increasing concurrency. 

2. An asymmetry-aware operating system helps elimi-
nate unpredictability in some applications. In others, 
the application also needs to be asymmetry-aware.  

3. An asymmetric multiprocessor gives higher per-
formance than a multiprocessor in which all cores 
are slow because the fast core is effective for serial 
portions of the threaded program. 

4. Mechanisms for exchanging asymmetry information 
between hardware and software, and application de-
sign methods tolerant of asymmetry need investiga-
tion. 

Section 2 discusses the experimental methodology and 
Section 3 presents workload description and analysis. 
Section 4 summarizes the results, Section 5 presents re-
lated work, and Section 6 concludes. 

2. Experimental methodology 
Our experimental platform comprises a 4-way 2.8 GHz 

Intel® Xeon™ multiprocessor (Shasta series). Our 
benchmark under test runs on this platform. We disable 
Hyper-Threading in all processors by using the BIOS. The 
system has 2-MB of unified Level-3 cache. We use 
Windows Server 2003 and Linux operating systems. 

Intel Xeon processors allow software to change the ac-
tive duty cycle of processors for thermal management [6]. 

Duty cycle is the time-period during which the clock sig-
nal drives the processor chip. A stop clock mechanism 
disables the processor clock, during which time every-
thing on the processor stops. This does not affect any 
modules outside the processor, e.g., coherence network or 
memory (DRAM) is unaffected, and only the processor 
appears to slow down. We vary duty cycle in multiple 
steps: 12.5%, 25%, 37.5%, 50%, 63.5%, 75%, and 87.5%. 

We developed a device driver to control asymmetry in 
Windows Server 2003. The driver, running in privileged 
mode, controls the duty cycle by changing the clock 
modulation register. Linux kernel 2.4 requires a new 
module to read and write the clock modulation register. 
Linux kernel 2.6 provides a thermal monitoring infrastruc-
ture and does not require the user to write to the clock 
modulation register directly. A process-affinity API se-
lects specific processors. 

Using the above duty cycle modulation to emulate per-
formance asymmetry is effective for this paper’ s study 
because the unpredictability of performance and limita-
tions in scalability arise due to differences in the computa-
tion power of the individual cores and not due to commu-
nication latencies. The results therefore should hold when 
the communication network and latencies change. 

3. Results and analysis 
All applications were set up according to the rules pro-

vided by the respective organizations (SPEC and TPC). 
An industrial performance evaluation group ensured strict 
compliance. Many of these setups were multi-tier, and 
only the application, whose behavior we were studying, 
ran on the system described in Section 2. 

We focus on two key predictability metrics: 

1. Is the application’ s performance stable? 

2. Is the application’ s performance scalable? 

An nf-ms/scale label means n fast cores and m slow 
cores running at 1/scale the speed of the fast cores. The 
total compute power of this system is (n + m/scale)). 
Symmetric configurations are 4f-0s, 0f-4s/4, and 0f-4s/8, 
and asymmetric configurations are 3f-1s/4, 3f-1s/8, 2f-
2s/4, 2f-2s/8, 1f-3s/4, and 1f-3s/8. Performance asymme-
try was validated using runtimes of computationally inten-
sive micro benchmarks. 

3.1 SPECjbb 
SPECjbb2000 [19] is an online-transaction processing 

business Java application emulating a three-tier system. A 
thread represents an individual terminal, and maps to a 
specific warehouse. Increasing the number of warehouses 
increases concurrency in the workload. A probability dis-
tribution determines queries to the system. The throughput 
of business operations per second is the primary perform-
ance metric. The backend database is memory resident  



 

(25MB) and has 20 warehouses. The workload focuses on 
the middle tier running the Java application server. 

Our application server operating system is Linux 2.6, 
and we study two virtual machines for the application 
server: BEA Weblogic JRockit (8.1) and Sun Hotspot 
(1.4.2). The virtual machine flags were set for the highest 
machine optimization. 

Since garbage collection (GC) is integral to managed 
runtime systems, we include their effect in this study. We 
use two garbage collectors: a parallel and a concurrent 
generational. A parallel collector interrupts all application 
threads prior to performing collection, and is well suited 
for high-throughput long-running workloads. The genera-
tional concurrent collector runs concurrently with the ap-
plication, reclaiming objects. This collector is well suited 
for applications requiring minimal pause times and those 
that are unaffected by the collectors interference.  

3.1.1 Analysis  
Figure 1(a) shows SPECjbb throughput (increasing 

warehouses increases concurrency) with two different 
virtual machines (BEA JRockit with parallel GC and Sun 
HotSpot with a generational concurrent GC) running on a 

2f-2s/8 asymmetric configuration. Multiple runs are 
shown for each configuration to determine predictability. 
The absolute performance variance for the HotSpot con-
figuration is higher. Minor instability exists with JRockit. 
Figure 1(b) shows SPECjbb throughput (with increasing 
warehouses) with BEA JRockit and a generational con-
current GC (instead of the parallel GC). The new collector 
has a significant negative impact on application behavior. 
Instability in asymmetric configurations increases signifi-
cantly across multiple runs, and increases as concurrency 
in the system increases. This increased instability is due to 
the concurrently running garbage collector interfering 
with the main application.  

Figure 2(a) shows scalability and predictability (when 
run multiple times) as computational power is varied. For 
symmetric configurations (4f-0s, 0f-4s/4, and 0f-4s/8), 
performance decreases predictably and linearly with com-
putational power. The workload is inherently stable and 
predictably scalable on a symmetric system. While asym-
metric configurations (3f-1s/4, 3f-1s/8, 2f-2s/4, 2f-2s/8, 
1f-3s/4, and 1f-3s/8) scale, they show significant variabil-
ity (as shown by the error bars in the figure). 

We investigated various potential sources of instability: 
scheduling, locking and synchronization, and cache 

Figure 1. SPECjbb performance predictability. 
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Figure 2. SPECjbb. (a) Scalability & predictability. Error bars indicate variability in throughput for multiple runs. 
(b) Predictability with an asymmetry-aware kernel scheduler. 
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thrashing. We identified the operating system scheduler as 
the primary source of instability. Instability is often due to 
work imbalance among various threads, and a computa-
tionally important thread’ s schedule—whether it runs on a 
slow processor or a fast processor—will vary performance 
significantly. A kernel scheduler typically aims to keep all 
processors occupied approximately with the same load. 

To better balance computational power, we imple-
mented a new kernel scheduler. We made the scheduler 
aware of the underlying hardware’ s performance asymme-
try.  In the new algorithm, the kernel scheduler ensures 
faster cores never go idle before slower cores. A process 
is explicitly migrated from a slow core to an idle fast core, 
if one is available. Figure 2(b) shows the throughput using 
the new kernel scheduler. As we can see, the new sched-
uler eliminates the application instability (compare this 
with Figure 1 which showed significant instability for the 
same configuration). For SPECjbb, exposing performance 
asymmetry to the operating system for smart scheduling is 
effective in fixing instability. 

3.1.2 Discussion 
Garbage collection has significant impact on throughput 

in an asymmetric system. The current study used single-
thread concurrent garbage collection and a parallel multi-
threaded non-concurrent collector. Future garbage collec-
tor designs should take into account underlying perform-
ance asymmetry, to ensure stable application behavior. 

3.2 SPECjAppServer 
SPECjAppServer2002 [19] is a complex client/server 

business J2EE™ application to measure the scalability 
and performance of J2EE servers and EJB containers. The 
setup consists of three machines: a front-end driver, a 
middle-tier jAppServer, and a backend database server. 
The study focuses on the jAppServer, and its interaction 
with asymmetry. 

SPECjAppServer models four business domains, each 
with its own database and applications. These domains 

interact as needed. We focus on two of these domains: 
manufacturing and customer. The customer domain fo-
cuses on order processing, and the manufacturing domain 
handles production scheduling.  

A driver generates requests for orders at a specific in-
jection rate to the jAppServer using a pre-defined transac-
tion mix. A complex sequence follows involving all do-
mains, and the request must be serviced within a response 
time requirement. If the jAppServer cannot respond 
within a fixed time, the driver is informed, and the injec-
tion rate of requests is scaled down. This feedback loop is 
an integral part of the workload. SPEC rules require 
specified and actual injection rates to be identical for con-
formance. Our baseline setup where all cores have equal 
performance satisfies this requirement. Introducing asym-
metry makes some runs non-conforming, but correct. Such 
runs are acceptable for this paper since they provide 
intuition on how asymmetry affects application behavior. 

The front-end driver runs on a 4-way 2.8GHz Intel 
Xeon multiprocessor with 4GB memory, and the back-end 
database server is Microsoft SQL with Windows Server 
2003 running on a 4-way Pentium III multiprocessor. 
These machines are powerful enough to stress test the 
jAppServer, and are not bottlenecks. A gigabit network 
connects all machines. 

The jAppServer uses BEA Weblogic (8.1) application 
server and a BEA JRockit (8.1) virtual machine. Run pa-
rameters conforming to SPEC are used. We assume two 
ordering and two manufacturing agents, and the runs in-
clude a 600 seconds ramp-up, a steady state of 1800 sec-
onds, and a 300 seconds ramp-down.  

3.2.1 Analysis 
Figure 3(a) shows SPECjAppServer throughput for 

transactions in the manufacturing and customer (NewOr-
der) domains. Average throughput for 4f-0s, 3f-1s/4, and 
3f-1s/8 is mostly constant, and sees a linear reduction for 
the remaining configurations. The workload is predictably 
scalable on symmetric systems. The throughput specified 
for the configurations 2f-2s/8, 1f-3s/4, and 1f-3s/8 actu-

Figure 3. SPECjAppServer. (a) Performance scalability. (b) Performance predictability measured as response time. 
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ally reflect a slower injection rate because the slow system 
cannot sustain a high rate and the feedback provided to 
the driver slows it down. The configurations 3f-1s/4 and 
3f-1s/8 can sustain the specified injection rates and thus 
provides the same throughput.  

Throughput shown in Figure 3(a) demonstrates scalabil-
ity, but does not directly demonstrate stability. We inves-
tigated numerous secondary metrics and found no instabil-
ity under symmetric and asymmetric configurations. 
Figure 3(b) shows one such metric, the manufacturing 
domain response time (for three different injection rates). 
Three bars plot average, maximum, and 90%ile response 
times. The response times are not constant, mainly be-
cause of complex interactions in the system, but they scale 
well. The 90%ile response is closer to the average, thus 
indicating a significant number of transactions take an 
average time to complete. Further, the difference between 
the 90%ile and the average response times scales and is 
stable across various configurations. These bars would 
have reflected any significant instability introduced due to 
asymmetry. 

3.2.2 Discussion 
SPECjAppServer adapts to dynamic performance vari-

ability by automatically scaling back and performing load 
balancing. This allows for stability and prevents the sys-
tem from overloading. In contrast, SPECjbb discussed 
earlier suffered from significant instability due to per-
formance asymmetry. This suggests that application de-
sign is an important consideration when dealing with per-
formance asymmetry. Exposing asymmetry to software 
developers and application optimizers can ensure applica-
tion stability.  

3.3 TPC-H 
TPC-H [20] is a decision support benchmark consisting 

of 22 non-trivial queries. Each query has varying com-
plexity, and performs concurrent data updates on a com-
mon database. The database server used is IBM DB2 (8.2) 
running on Linux 2.4. We use a memory-resident setup (1 

setup (1 GB with a scale factor of 1) to isolate the impact 
of processor execution on the database server.  

The database server uses the degree of intra-query par-
allelization parameter to parallelize a query into sub-
queries and execute them in parallel. It also uses the de-
gree of optimization parameter to optimize the query plan 
and its execution. Parallelization and optimization of 
TPC-H queries significantly improves their performance. 

We focus on TPC-H query execution time during a 
power run. The power run measures the raw query execu-
tion time with a single active user. We discard the first 
few power runs and warm up the buffer spaces. 

3.3.1 Analysis 
We first run the benchmark with the highest optimiza-

tion degree (seven) and a parallelization degree of four. 
Figure 4(a) shows the runtime for the power run (where 
all queries are run in series to completion). Multiple such 
runs are shown. The symmetric configurations of 4f-0s, 
0f-4s/4, and 0f-4s/8 show stability across multiple runs—
these points are closely clustered. TPC-H also shows good 
scalability, when compute power is varied. However, the 
asymmetric configurations (3f-1s/4, 3f-1s/8, 2f-2s/4, 2f-
2s/8, 1f-3s/4, and 1f-3s/8) display significant variability 
across multiple runs.  

To understand behavior of individual queries on per-
formance asymmetric systems, we looked at various indi-
vidual queries. Figure 4(b) shows multiple runtimes for 
one specific query— query number 3. Similar to the power 
runs, symmetric configurations are stable but asymmetric 
configurations show significant instability.  

We explicitly turned off intra-query parallelization 
(graph not shown). The query showed two distinct run-
times over multiple runs— one where the runtime corre-
sponds to the fastest processor, and another where the 
runtime corresponds to the slowest processor. Thus, the 
scheduling decisions have an impact on the application 
stability and this information needs to be available to the 
DB2 server for helping it make scheduling decisions. 

Figure 4. TPC-H. (a) Runtime for power run (all queries). (b) Runtime for one query (Query 3). 
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We expected that increasing the degree of paralleliza-
tion might reduce asymmetry effects by forcing more load 
on certain processors. Figure 5(a) shows the impact of 
increasing the degree of parallelization to eight. Contrary 
to our expectation, the runtime for various configurations 
show even more variance, at times twice the variance of 
the configuration with the parallelization set to four. 

Since the parallelized queries execute on an asymmetric 
processor setup, the scheduling decisions to run certain 
parallel sub-queries on slow or fast processors over multi-
ple runs affects the stability of the application. Our modi-
fied kernel scheduler did not fix the instability. The DB2 
server controls the scheduling of query execution on 
server processes, which are bound by the server to various 
processors, thus making our kernel fix ineffective. 

We approximated changes to the program itself by con-
trolling the query optimization degree— the higher the 
degree, the more aggressive the query plan. The results we 
have discussed so far have used the highest optimization 
degree. Figure 5(b) shows the impact of reducing the op-
timization level significantly. Expectedly, the runtimes 
have also slowed down for various configurations as com-
pared to the highest optimization level. However, the in-
stability has significantly decreased for the asymmetric 
configurations, at times nearly a factor of 10 lesser than 
with the high query optimizations. 

3.3.2 Discussion 
The query optimization experiment strongly suggests 

that the application itself, and not the operating system 
scheduler, contributes to the instability. This suggests 
exposing hardware performance asymmetry to the appli-
cation. Query plan generators already take into account 
latency of memory accesses and disk access when com-
puting cost and the target plan. Incorporating performance 
asymmetry and compute power of available processors 
will ensure stable performance and execution behavior for 
these queries. 

3.4 Apache and Zeus web servers 
We evaluate two commonly used webservers: an open-

source webserver, Apache (2.0.40), and a commercial 
webserver, Zeus (4.3).  

Apache maintains several idle processes waiting for in-
coming requests. A single control process launches child 
processes, and these processes wait for incoming requests. 
Optimally selecting the number of such pre-forked proc-
esses and the maximum number of such processes allowed 
prevents system thrashing. A process handles a pre-
defined number of requests, and then terminates and recy-
cles. The control process also terminates excessively idle 
processes. 

Zeus utilizes a small, fixed number of single-threaded 
I/O multiplexing processes, and these processes handle 
tens of thousands of simultaneous connections. 

We use ApacheBench to drive these webservers. We 
calculate processing performance of a single static file. 
This allows us to focus on multi-threaded webserver be-
havior in the presence of performance asymmetry, and 
removes dependency of results on the web-caching infra-
structure that is otherwise necessary for complex setups. 
We emulate two modes: (a) heavy load and full utilization 
processing 60 requests concurrently with up to 1,000,000 
requests in total and (b) light load with 10 concurrent re-
quests with up to total 100,000 requests. 

3.4.1 Analysis 
Figure 6(a) shows system throughput for Apache under 

heavy and light load, and Figure 7 shows the same for 
Zeus. We plot six runs for each configuration to determine 
stability. Performance-symmetric configurations (4f-0s, 
0f-4s/4, and 0f-4s/8) are scalable and show stability for 
both light and heavy load; the throughput of these runs 
cluster together for both Apache and Zeus.  
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Figure 5. TPC-H power run.  (a) High parallelization degree. (b) Low optimization degree. 
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However, as can be seen by the vertical spread of the 
data points in Figure 6(a) for a given asymmetric configu-
ration, Apache performance under light load on asymmet-
ric setups is significantly unstable. The process scheduling 
decisions and the server design contribute to the instabil-
ity. Apache forks processes in advance to handle incom-
ing web serving requests. Since these processes are visible 
to the kernel, the kernel scheduler decisions affect their 
scheduling. Sometimes the kernel scheduler places proc-
esses on slower cores even though a faster core is avail-
able because it is agnostic to the relative speed of the 
processors.  

We found Apache performance under heavy load to be 
stable with no variance over multiple runs. The through-
put with varying configurations is stable and scalable and 
a function of the underlying computational power of the 
system, because in a throughput benchmark under heavy 
load, each processor is always busy. Instability with per-
formance-asymmetry typically arises in throughput-
oriented applications when some processors are idle. In 
such situations, threads may randomly schedule on fast or 
slow processors. 

Unlike the Apache webserver, Zeus displays significant 
variance and instability for both heavily loaded and lightly 
loaded systems. However, Zeus provides a significantly 
higher throughput than Apache does, up to a factor of 2.5.  
Due to significant instability, we cannot determine 
whether Zeus is predictably scalable. Since Zeus is a 
commercial product and we do not have access to its 
source code, we cannot isolate the reasons for instability. 

We replaced the Linux kernel scheduler with our modi-
fied scheduler described earlier in Section 3.1.1. Our new 
scheduler is aware of the performance asymmetry of the 
underlying system and makes scheduling decisions ac-
cordingly. Figure 6(b) shows the result for Apache with 
light load. As can be seen, the kernel fix solves the insta-
bility problem and the runs are now repeatable. 

We ran Zeus with our modified Linux kernel scheduler. 
The scheduler did not have any effect on the significant 
instability, suggesting that Zeus runs its own threading 
scheduler. This again demonstrates that simply exposing 
the asymmetry to the operating system is not sufficient. 
The webserver also needs to be aware of the asymmetry.  

Figure 6. Apache throughput. (a) Light load. (b) With two techniques to reduce asymmetry impact. 
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Figure 7. Zeus throughput. (a) Light load. (b) Heavy load. 
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3.4.2 Discussion 
The degree of instability varies as asymmetry is varied. 

Higher instability exists for the 3f-1s/8 and 3f-1s/4 con-
figurations over the 2f-2s/8 and 2f-2s/4 configurations. 
Introducing slight asymmetry (for e.g., a system with 
mostly fast processors but one slow processor) seems to 
introduce more instability than a system in which the 
compute power provided by the fast processor is a small 
fraction of the total compute power in the system.  

Fine-granularity threading impact: Since instability 
occurs due to poor load balance, it could be eliminated if 
for example a large number of short-lived processes were 
available. In Apache, we can vary the lifetime of a request 
handling process after which time the process is re-cycled.  
So far, we assume optimal server parameters and the re-
cycling occurs after handling 5,000 requests. Since re-
quest-handling processes take a short time to complete, 
we reduce the re-cycling threshold to 50 requests. This 
creates many processes.  Figure 6(b) shows the results. 
The throughput of such a configuration is significantly 
lower than optimal parameters, and the throughput does 
not scale. This is because of the frequent re-cycling of 
processes, which causes significant overhead. However, 
instability under light load disappears. Instability disap-
pears because now the scheduler has large number of 
short-lived processes available for scheduling. This results 
in automatic load balancing, however with low perform-
ance. The randomized and short use of fast and slow 
processors minimizes asymmetry’ s negative effects. 

This suggests an alternative approach to eliminating 
asymmetry: dividing the task into a finer granularity if the 
overhead of managing large number process creations is 
acceptable. 

3.5 SPEC OMP 
SPEC OMP is a high-performance scientific application 

suite consisting of parallelized FORTRAN programs 
based on OpenMP libraries. We compile the suite using 

the Intel Fortran compiler (8.1) with the highest optimiza-
tion flags. We use the OMPM2001 medium input set with 
a minimum memory requirement of over 1.6 GB. The 
OpenMP implementation uses the pthreads library in 
Linux to support various parallelization primitives. The 
benchmarks primarily use work-sharing parallel and for-
all constructs to parallelize loop executions. A barrier at 
the end of loops synchronizes different threads running on 
the processors. These applications infrequently use criti-
cal-section synchronization constructs. 

Figure 8(a) shows the runtimes for the SPEC OMP 
benchmarks (gafort is not shown because of compila-
tion issues). Multiple runs for a given configuration are 
shown. As can be seen, the symmetric configurations (4f-
0s, 0f-4s/4, and 0f-4s/8) are stable and scalable. Many 
benchmarks in the suite are also stable in the 2f-2s/8 
asymmetric configuration. However, they do not show 
predictable scaling. Except for ammp, other benchmarks 
have a 2f-2s/8 runtime closer to the 0f-4s/8 runtime. The 
2f-2s/8 runtime for galgel and fma3d is worse than a 
0f-4s/4 runtime, but a 2f-2s/8 configuration has more 
computation power than a 0f-4s/4 configuration. In the 2f-
2s/8 configuration, the slowest processor limits applica-
tion performance, thus forcing it to behave similar to a 0f-
4s/8 configuration. 2f-2s/8 is a little better than 0f-4s/8 as 
the faster processors in 2f-2s/8 can improve serial per-
formance. 

To understand why SPEC OMP programs on asymmet-
ric systems are not predictably scalable, we analyzed their 
algorithms. The applications mainly use do-all and paral-
lel loops. OpenMP [18] provides three major paralleliza-
tion modes: static, dynamic, and guided parallelization of 
loops. In static mode, equal division of loops among proc-
essors occurs at the beginning of execution. In guided and 
dynamic modes, processors request more work in chunks, 
as they complete work. The two modes differ in the work 
assigned to the requesting processors. In guided mode, all 
processors start with the same chunk size, and the chunk 
size decreases exponentially as processors finish execu-

Figure 8. SPEC OMP runtimes. (a) Unmodified source. (b) Source modified to use parallelization directives. 
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tion, while dynamic mode assigns constant chunk sizes. 
Most loops in SPEC OMP are statically parallelized and 
only a few have guided parallelization directives. 

Intuitively, static parallelization should limit scalability 
on an asymmetric system, and we observe this in Figure 
8(a) where the slowest processor limits performance. 
While all processors get equal work, they do not have the 
same performance. Guided parallelization performs better 
than static parallelization due to on-demand allocation of 
jobs. However, slow processors unaware of its capabilities 
might request chunks that are same size as fast processors. 
This leads to scalability issues with asymmetric systems. 
We next discuss why some benchmarks perform better in  
Figure 8(a) than expected. 
ammp has seven large parallel tasks. Each task is a par-

allel for-loop over multiple iterations. For the runs in the 
figure, the OpenMP library, mapped two iterations each to 
the two fast processors, and one iteration each to the two 
slow processors. Such an assignment makes the applica-
tion susceptible to scalability issues when it executes on 
an asymmetric system because the mapping library is un-
aware of the system’ s asymmetry, and could easily map 
them in a different order. This would affect performance. 
galgel has 30 parallel regions with short loop bodies. 

Three most commonly executed parallel regions had a no-
wait directive, which means the application need not wait 
at the loop end. This allows faster processors to continue 
without waiting for slower processors. Many loops in 
galgel use guided parallelization. 

To fix the scalability issues, we focus on the applica-
tion’ s work assignment. To prevent scheduling decisions 
from affecting performance, we use dynamic paralleliza-
tion for all loops in all benchmarks. However, for loops 
executing a large number of iterations, we chose a large 
chunk size to reduce allocation overhead. Figure 8(b) 
shows the runtimes with our modifications to the paral-
lelization algorithm. These runtimes are higher than 
Figure 8(a) because our modifications were not focused 
on performance tuning but on eliminating asymmetry ef-

fects. Hence, these absolute runtime numbers are not di-
rectly comparable.  We notice significant performance 
benefits of asymmetry— runtimes of 2f-2s/8 are near those 
of 4f-0s. This is due to efficient dynamic scheduling of 
loops. Asymmetric configurations perform better than the 
midpoints of 4f-0s and 0f-4s/8, clearly indicating that 
asymmetric systems can be effective for 
power/performance efficiency. 

3.6 H.264 multithreaded media encoding 
The H.264 workload [2, 10] is a high-performance 

multi-threaded version of the H.264 video encoder [7], a 
new video coding standard providing superior compres-
sion while preserving image quality. The standard divides 
a video picture, called frame, into numerous small blocks, 
called macro-blocks. These blocks are processed, and 
then re-synchronized and re-arranged for final delivery. 

The application has five concurrent threads. A main 
thread handles image pre-processing and post-processing, 
and consumes 2-5% of CPU time. Pre-processing involves 
reading raw image data and setting up parameters, and 
post-processing checks encoding status, generates the 
output bit stream, and performs image interpolation and 
reconstruction activity. Pre-processing and post-
processing are sequentially handled for correctness. 

The encoding process is parallel and involves opera-
tions on macro-blocks. This deals with motion estimation 
and selecting the optimal coding mode for each macro-
block. A spatial dependence exists among various macro-
blocks within a frame: macro-block encoding occurs only 
after its adjacent (upper left and right in an image), blocks 
are encoded. The application exploits temporal parallel-
ism: parallel encoding of frames occurs by estimating and 
compensating predicted frames. 

Figure 9(a) shows execution time of H.264 for four dif-
ferent runs on various processor configurations. All con-
figurations show stability across multiple runs, and are 
predictably scalable. The application has abundant paral-
lelism: there is significant slowdown going from 4f-0s to 

Figure 9. Execution times for multiple runs. (a) H.264 multithreaded media encoding. (b) PMAKE. 
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3f-1s/8; replacing one fast core with a slow core brings 
down the runtime significantly since all threads need to 
wait for the slower core. In the 2f-2s/8 and 1f-3s/8 con-
figurations, the slowdowns are smaller since the fast proc-
essors do more work; the slower processors do less work. 
Going from a 1f-3s/8 to a 0f-4s/8 shows a significant drop 
since the 0f-4s/8 does not have any fast processor to take 
over work. 

This application demonstrates how some performance 
asymmetry is good for performance. The slowdowns in-
duced by adding some asymmetry is significantly lesser 
than a system in which all cores are slow. A 1f-3s/8 sys-
tem (performance asymmetric) is significantly better than 
a 0f-4s/4 or a 0f-4s/8 (symmetric, all slow cores) because 
of the availability of one fast core. 

3.7 PMAKE 
The PMAKE application performs a parallel compila-

tion of the Linux kernel (~7900 C files). We run PMAKE 
with “make –j4” indicating the number of processors in 
the system.  

PMAKE shows stable and scalable speedups for all 
configurations (Figure 9(b)). Similar to the H.264 applica-
tion, one fast processor improves performance as com-
pared to when all processors are slow. Having one fast 
processor can significantly improve performance because 
it can provide high utilization when necessary. 

4. Results summary 
Table 1 qualitatively summarizes our results and Figure 

10 quantitatively shows the predictability and scalability 
of the various applications. The figure also shows error 
bars for each configuration. These error bars represent the 
performance variation when the benchmark is run multiple 
times on the same configuration. All speedups are over 
the corresponding 0f-4s/8 configuration to show 
scalability. We now discuss the key points of the study 
below. 
 
1. Asymmetry adversely affects performance predict-

ability of shared-memory workloads. 

SPECjbb, a managed runtime (MRTE) server, dis-
plays significant performance instability in the presence 
of asymmetry, and the underlying virtual machine and 
garbage collector can exacerbate this instability. Other 
servers also show similar instability (query processing 
in DB2/TPC-H, and Apache and Zeus web servers).  

Applications with tight coupling among different 
threads (e.g., SPEC OMP), display stability but provide 
poor scalability on asymmetric systems. This is because 
applications and optimizers assume all processors pro-
vide equal performance. In these applications, the slow-
est core forces faster cores to idle, waiting for the slow-
est core to complete its task.  

 
2. Making the operating system kernel asymmetry-

aware helps eliminate unpredictability in some ap-
plications. In others, the application also needs to 
be asymmetry-aware. 

The performance unpredictability in SPECjbb and 
Apache was eliminated after we made the operating sys-
tems scheduler aware of the performance asymmetry in 
the system. However, other applications needed 
changes in their structure. 

We approximate application changes in DB2/TPC-H 
by varying the degree of parallelization and optimiza-
tion levels of TPC-H queries. We saw instability disap-
pear as we reduced the degree of query optimization 
significantly. This suggests the role of application opti-
mizers in ensuring stability under performance asym-
metric conditions. We changed the load balancing 
OpenMP directives in SPEC OMP programs. Using the 
dynamic parallelization directives helped eliminate un-
predictability. 

 
3. An asymmetric chip multiprocessor is better than a 

chip multiprocessor where all cores are slow.  

We observe the benefit of having a fast core, specifi-
cally in executing serial portions of multi-threaded pro-
grams. For example, in PMAKE and SPEC OMP, a 
configuration with two fast and two slow cores does 
better than the expected midpoint performance between 

Table 1 Results summary 

Application Section Class Is performance predictable? Is scalability predictable? 
SPECjbb Section 3.1 MRTE No (Yes with asymmetry aware kernel) Yes 

SPECjAppServer Section 3.2 MRTE Yes Yes 

TPC-H Section 3.3 Database No (Yes, if application changes) Yes 

Apache Section 3.4 Web server No (Yes with asymmetry aware kernel) Yes 

Zeus Section 3.4 Web server No Yes 

SPEC OMP Section 3.5 Scientific Sometimes (Yes with application change) No (Yes with application change) 

H.264 Section 3.6 Multimedia Yes Yes (asymmetry helps perf.) 

PMAKE Section 3.7 Development Yes Yes (asymmetry helps perf.) 
 



 

that of a system with four fast cores and a system with 
four slow cores.  

 
4. Mechanisms for exchanging asymmetry informa-

tion between hardware and software, and applica-
tion design methods tolerant of asymmetry need 
investigation.  

While the instability introduced due to performance 
asymmetry varies across workloads, the existence of 
such instability makes it necessary for researchers to re-
think the hardware and software interface and structur-
ing of multi-threaded software. Exposing the relative 
performance of processors in a system to the operating 
system and software scheduler may be sufficient, and 
absolute information of each processor’ s performance 
may not be necessary. 

We show evidence of the benefits of fine-grained 
threading to help alleviate the problem due to asymme-
try for the Apache webserver. Providing numerous 
short-running threads allows the kernel to cope with 
asymmetry. However, the overhead associated with 
managing many threads may become large. 

5. Related work 
Enslow [3] presented a survey of multiprocessor or-

ganizations and predicted future trend of asymmetric 
processing, with processors dedicated to a hierarchy of 
functions. Withington [21] called this organization a 
“poly-processor.” Miled et al. proposed a heterogeneous 
hierarchical organization, called HPAM [14], and studied 
instruction and data temporal locality of statically 
parallelized benchmarks. Figueiredo et al. [4] proposed a 

lelized benchmarks. Figueiredo et al. [4] proposed a simi-
lar organization for distributed shared memory systems. 
Bender et al. [1] proposed a scheduler for scheduling par-
allel programs on heterogeneous multiprocessors, and our 
kernel scheduling algorithm uses this prior work.  

The CDC6700 was an asymmetric setup of two proces-
sors— the CDC 6400 and CDC 6600 [15]. 

Researchers have investigated single-chip systems with 
multiple asymmetric cores. Kumar et al. [9] demonstrated 
performance such a system’ s benefits by using simulation 
and SPEC CPU2000 benchmarks. They used phase and 
execution profile information of these single-thread appli-
cations to schedule optimally. Kumar et al. [8] identified 
asymmetry as beneficial for power reduction. A program 
schedules on a core with the best performance to power 
ratio. Grochowski et al. [5] and Morad et al. [17] studied 
the usefulness of such cores for saving energy and im-
proving throughput. 

Moncrieff et al. [16] and Menasce et al. [13] analyti-
cally studied tradeoffs of fast and slow processors in het-
erogeneous systems. They observe that a system with 
many slow and few fast processors are cost and perform-
ance effective. Liu et al. [12] studied optimal scheduling 
of independent programs on a pre-emptive heterogeneous 
multiprocessor system. Miller [15] presented scheduling 
algorithm for an asymmetric system called Single Archi-
tecture Heterogeneous Multiprocessor or SAHM, which 
did not support multi-programming.  

6. Concluding remarks 
Predictability and scalability of performance are impor-

tant for successful system deployment. We have presented 

Figure 10. Performance predictability and scalability for all benchmarks. For each benchmark, 9 configurations 
are shown. The left-most bar (4f-0s) and the two right-most bars (0f-4s/4, 0f-4s/8) are the symmetric configurations. 
Speedups (y-axis) are normalized to the 0f-4s/8 configuration. Total computation power of the system decreases as we 
go from left (4f-0s) to right (0f-4s/8) for each benchmark. The benchmark performance as total computation power is 
varied (scalability) can be seen by directly comparing the bars for each benchmark. SPEC OMP and H.264 show that 
performance is limited by the slowest core in the system. The error bars show the performance variance over multiple 
runs for the benchmark on a given configuration. SPECjbb, Apache (light load), Zeus (light load), and TPC-H show sig-
nificant variance for the asymmetric configurations (2nd through 7th bar for each benchmark). The symmetric configura-
tions for all benchmarks do not show any variability. 
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a detailed study of the behavior of commercial workloads 
running on a multicore system where individual cores 
have different performance. We observe that such asym-
metry in performance can have unintended negative im-
pact on workloads, making their performance difficult to 
predict.  This occurs because software developers assume 
all cores provide equal performance, and thus do not 
worry about the interactions of core performance with the 
application algorithm structure. We observe that in work-
loads that consider compute capability during runtime 
(e.g., SPECjAppServer uses performance feedback) the 
impact of performance asymmetry is non-existent. This 
suggests robust application designs that can adjust dy-
namically to the varying compute power of the system.  

We demonstrated how exposing performance asymme-
try to the operating system kernel, and using this informa-
tion to make scheduling decisions, eliminated unpredict-
ability on numerous applications. However, in other ap-
plications (e.g., TPC-H and SPEC OMP), this was insuf-
ficient. The application structure itself needed to change 
to adjust to the asymmetry. 

We conclude that some degree of performance asym-
metry is beneficial. This is because all applications, 
whether multi-threaded or single-threaded, have serial 
portions, and providing a high-performance core helps 
speed these serial portions. We conjecture that to elimi-
nate unintended interactions between applications and 
performance asymmetry, the compute power from the 
high-performance core should be a small fraction of the 
total compute power of the system. 

We argue that computer architects should consider the 
implications of multicore proposals on application behav-
ior, and that the developers must design applications that 
are robust enough to dynamically deal with changing 
compute power. 
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