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Abstract
Increased power densities (and resultant temperatures)

and other effects of device scaling are predicted to cause
significant lifetime reliability problems in the near future.
In this paper, we study two techniques that leverage mi-
croarchitectural structural redundancy for lifetime reliabil-
ity enhancement. First, instructural duplication (SD),
redundant microarchitectural structures are added to the
processor and designated as spares. Spare structures can
be turned on when the original structure fails, increasing
the processor’s lifetime. Second,graceful performance
degradation (GPD) is a technique which exploits existing
microarchitectural redundancy for reliability. Redundant
structures that fail are shut down while still maintaining
functionality, thereby increasing the processor’s lifetime,
but at a lower performance.

Our analysis shows that exploiting structural redun-
dancy can provide significant reliability benefits, and we
present guidelines for efficient usage of these techniques
by identifying situations where each is more beneficial. We
show that GPD is the superior technique when only limited
performance or cost resources can be sacrificed for relia-
bility. Specifically, on average for our systems and appli-
cations , GPD increased processor reliability to1:42 times
the base value for less than a5% loss in performance. On
the other hand, for systems where reliability is more impor-
tant than performance or cost, SD is more beneficial. SD
increases reliability to3:17 times the base value for2:25
times the base cost, for our applications. Finally, a combi-
nation of the two techniques (SD+GPD) provides the high-
est reliability benefit.
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1 Introduction

Lifetime reliability due to wear-out related hard errors
in processor components is emerging as a critical challenge
in modern microprocessors. The steady processor perfor-
mance increases seen over the last twenty years have been
driven by aggressive scaling of CMOS devices. At the same
time, scaling leads to higher temperatures and reduced de-
vice feature sizes which results in lower processor lifetime
reliability [19]. Device, manufacturing, and fabricationre-
searchers have been aware of the lifetime reliability prob-
lem for many years and there exists a large body of research
at the device level. On the other hand, there is a dearth of
architectural lifetime reliability research as microarchitects
have traditionally not viewed the subject as a problem.

As a first step towards addressing this issue, in [18], we
proposed RAMP, a microarchitecture-level model that dy-
namically tracks processor lifetime reliability, accounting
for the behavior of the executing application. In [19], we
integrated device scaling models in RAMP and quantified
the impact of technology scaling on reliability, showing that
scaling has a significant and increasing effect on proces-
sor hard failure rates. For a contemporary superscalar pro-
cessor running Spec2000 applications, our results in [19]
show an average increase of 316% in processor failure rates
when scaling from 180nm to 65nm. In such a reliability-
constrained environment, some performance and/or die area
(and resultant cost) will have to be sacrificed for reliability.
In this paper, we examine efficient usage of these perfor-
mance and cost budgets through structural redundancy for
lifetime enhancement.

1.1 Exploiting Structural Redundancy for Life-
time Reliability

Redundancy is a commonly used technique for reliabil-
ity enhancement. However, most previous work for lifetime
reliability focused on redundancy at the processor granu-
larity. Due to the large area overheads involved in dupli-
cating entire processors, such redundancy does not provide
a cost-effective reliability solution. Structural redundancy
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addresses some of these shortcomings of processor redun-
dancy by incurring less area overheads and allowing run-
time processor reconfiguration for reliability.

We examine two methods by which structural redun-
dancy can be used for reliability enhancement. In the first
case, referred to asstructural duplication (SD), certain re-
dundant microarchitectural structures are added to the pro-
cessor and designated as ”spares”. Spare structures can be
turned on during the processor’s lifetime when the origi-
nal structure fails. Hence, in a situation where a processor
would have normally failed, the spare structure extends the
processor’s lifetime. With SD, the processor fails only in
the case where a structure without a spare fails, or all avail-
able spares have been used. It should be noted that the main
function of the spare units is to increase reliability, and not
performance. As a result, the spare structures are power
gated and not used at the beginning of the processor’s life
(a power gated structure would suffer almost no hard errors
since there would be no gate-oxide breakdown or intercon-
nect wear-out).

Next, we examinegraceful performance degradation
(GPD) which allows the processor to exploit existing mi-
croarchitectural redundancy for reliability. Modern proces-
sors have replicated structures that are used for increasing
performance for some high parallelism applications. How-
ever, the replicated structures are not required for functional
correctness. If a replicated structure fails in the course of a
processor’s lifetime, the processor can shut down the struc-
ture and still maintain functionality, thereby increasinglife-
time. Hence, rather than fail when the first structure on chip
fails, a processor with GPD would fail only when all redun-
dant structures of a type fail. We also examine architectures
that use a combination of SD and GPD.

Both SD and GPD incur overheads while increasing re-
liability. In the case of SD, extra processor die area is re-
quired due to the introduction of spare structures. This area
overhead translates into a cost overhead. However, SD re-
sults in no performance loss relative to the base processor.
Conversely, GPD results in a processor’s performance de-
grading during its lifetime when replicated structures fail.
However, since no extra structures are added to the proces-
sor, this technique comes with no area overhead.

Given a reliability-constrained design situation, some
performance and/or cost will have to be sacrificed for re-
liability. Our analysis shows that structural redundancy can
use this performance or cost tradeoff for significant reliabil-
ity benefit. In addition, we provide guidelines for intelligent
reliability decisions by identifying the superior design tech-
nique for a given performance or cost trade-off. For our
systems and applications, we show that GPD is a superior
technique when only limited performance or area resources
can be sacrificed for reliability. On average for our appli-
cations, GPD increases processor reliability to1:41 times

the base value for less than a5% loss in performance. On
the other hand, for systems where reliability is more impor-
tant than performance or cost, SD is more beneficial. SD
increases reliability to3:17 times the base value for2:25
times the base cost. Finally, a combination of SD and GPD
increases reliability to as much as4:16 times the base value
for our applications.

1.2 Enhancements to the Reliability Model

Our reliability modeling methodology is based on
RAMP [18], which represents the current state-of-the-art.
However, to use RAMP to evaluate SD and GPD, we had
to enhance some parts of the model. Currently, RAMP as-
sumes all processors are series failure systems [18]; i.e.,the
first failure anywhere on chip will cause the entire proces-
sor to fail. However, processors that use redundancy for SD
or GPD are series-parallel failure systems. Also, RAMP
assumes all failure mechanisms have an exponential distri-
bution, which implies that they have a constant failure rate
throughout the processor lifetime [18]. This is inaccurate–
a typical wear-out failure mechanism will have a low fail-
ure rate at the beginning of the component’s lifetime and the
value will grow as the component ages. We address this lim-
itation in RAMP by modeling failure mechanisms with log-
normal distributions. Lognormal distributions better model
failure mechanisms than exponential distributions [1], and
allow us to model the dependence on time of the failure
mechanisms. We then use Monte-Carlo simulation methods
in RAMP to calculate total processor reliability for series-
parallel systems with lognormal distributions.

Finally, we incorporate a model for a new failure mech-
anism, negative bias temperature instability (NBTI), into
RAMP. Currently RAMP models four critical mechanisms
– electromigration, stress migration, time dependent dielec-
tric breakdown, and thermal cycling. NBTI has recently
emerged as a critical failure mode, and is expected to grow
in importance with scaling [22].

2 Related Work
Redundancy has been a commonly used technique for

lifetime reliability enhancement in processor design, and
there exists a large body of work on the subject [2, 17].
However, this work has primarily focused on redundancy at
the processor granularity for systems. In particular, much
has been shown and done on systems that require man-
ual ”hot-swapping” of a new processor when a processor
fails [17]. Structural redundancy addresses some of these
shortcomings of processor redundancy by providing a more
cost and performance effective solution.

There are some systems that duplicate at a structural
granularity within a processor for soft error detection and
tolerance. Prominent among such systems is the IBM S/390
System [17] and the Compaq NonStop Himalaya Systems
[2]. However, in both systems, all replicated processor units



are concurrently utilized, and the replication is not intended
for hard error tolerance.

Redundancy is also used in microprocessor yield en-
hancement techniques [11, 15]. These are not run-time
techniques and are instead used during processor testing.
They are based on detecting and disabling faulty proces-
sor resources like cache lines [11]. Shivakumar et al.
extend this concept and propose disabling defective re-
dundant microarchitectural structures during testing to im-
prove yield [15], resulting in gracefully degraded proces-
sors. They also suggest that this redundancy can be ex-
ploited to increase useful processor lifetime.

Finally, redundancy is also utilized in array structures for
lifetime enhancement. Many current memory systems uti-
lize built-in self test (BIST) and built-in self repair (BISR)
to detect and disable faulty memory elements. Redundant
spares are then swapped in [9]. Recently, Bower et al. pro-
posed self-repairing array structures (SRAS), a techniqueto
mask hard faults in array structures like the reorder buffer
and branch history table [4]. These techniques are limited to
array structures and replicate at the granularity of individual
array entries.

3 Enhancements to RAMP

3.1 RAMP Overview

As mentioned in Section 1, our reliability modeling
methodology is based on RAMP [18]. RAMP uses indus-
trial strength analytic models for four failure mechanisms,
electromigration, stress migration, time-dependent dielec-
tric breakdown, and thermal cycling, and provides lifetime
estimates based on the executing application. Much like
previous power and temperature models [6, 16], RAMP di-
vides the processor into discrete structures like the func-
tional units and caches, and applies the analytic failure mod-
els to the structure as a whole.

The failure models in RAMP provide reliability esti-
mates in terms of mean time to failure (MTTF). RAMP
combines the MTTFs due to each failure mechanism across
all the structures to provide a total processor MTTF for
the given application. This is done using the industry-
standard sum-of-failure-rates (SOFR) model. The SOFR
model makes two assumptions [21]: (1) The processor is a
series failure system – in other words, the first failure of any
structure due to any failure mechanism would cause the en-
tire processor to fail; and (2) each individual failure mech-
anism has a constant failure rate (equivalently, every failure
mechanism has an exponential lifetime distribution). A con-
stant failure rate implies that the probability of failure of a
processor does not vary with its age. Both assumptions limit
RAMP’s applicability. First, many redundant structures on
chip can fail without the entire processor failing. Hence, the
ability to model series-parallel failure systems in addition to
series failure systems is required. Second, wear-out failure

mechanisms do not exhibit constant failure rates. Instead,
wear-out mechanisms have low failure rates at the begin-
ning of the processor’s lifetime and the value will grow as
the processor ages (the probability that a processor will fail
will increase, the older the processor gets).

In order to use RAMP to evaluate structural duplica-
tion and graceful performance degradation, we address the
above two limitations of the SOFR model. We use log-
normal distributions (instead of exponential) for the failure
mechanisms, and we use a Monte-Carlo simulation method
to model series-parallel systems with lognormal distribu-
tions. In Section 3.2, we describe lognormal distributions,
and we explain our Monte-Carlo simulation methodology
for series-parallel systems in Section 3.3. Finally, we add
a model for an emerging critical failure mechanism, NBTI,
to the existing four failure mechanisms in RAMP. This is
discussed in Section 3.4.

3.2 Lognormal Distributions

The lognormal distribution has been found to be a much
better model than the exponential for degradation processes
common to semiconductor failure mechanisms. This can be
shown using the multiplicative degradation argument [1],
briefly explained below.

For a structure undergoing wear-out due to some failure
mechanism, letx1; x2; :::xn be the amount of degradation
seen at successive discrete time intervals. Let us assume that
the amount of degradation seen in a time interval tends to
depend on the total amount of degradation already present.
This is known as multiplicative degradation [1]. In other
words, the amount of degradation experienced in thenth
time interval,(xn � xn�1), will be some multiple of the
total degradation already present at the end of the(n� 1)th
time interval,xn�1. Hence,xn � xn�1 = �nxn�1 =) xn = (1 + �n)xn�1 (1)

where�n is a small positive random value. Based on the
above, we can express the total amount of degradation at
the end of thenth time interval,xn, as:xn = [ nYi=1(1 + �i)℄x0 (2)

wherex0 is the degradation at time0 and is a constant, and�i are small random values. Taking the natural logarithm of
both sides,

ln xn = nXi=1 ln(1 + �i) + lnx0 � nXi=1 �i + lnx0 (3)

sinceln(1 + x) � x for small values ofx. Since�i are
random values, the Central Limit Theorem [21] implies thatlnxn has a normal distribution. Hence,xn has a lognor-
mal distribution for anyn (or any timet). Since failure
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occurs when the amount of degradation reaches a critical
point, time of failure will be modeled successfully by a log-
normal for this type of process. The multiplicative degra-
dation model has been shown to be a good fit for chemical
reactions, diffusion of ions, and crack growth and propaga-
tion. Most semiconductor failure models are caused by one
of these three degradation processes [1]. Hence, the lognor-
mal distribution is a good fit for wear-out mechanisms.

The probability density function for the lognormal dis-
tribution is given by [21]:f(x) = 1xp2��e� (ln x)22� (4)

where� is the shape function, dictating the shape of the
distribution.� = 0:5 is commonly used for wear-out based
failure mechanisms [3].

3.3 Monte Carlo Simulation for Reliability

To obtain the lifetime distribution and MTTF for the pro-
cessor as a whole, we need to combine the effects of the in-
dividual lognormal distributions across all the mechanisms
and structures. Due to the complexity of the lognormal
distribution, and the large cross product of structures and
mechanisms, calculating processor reliability analytically is
exceedingly difficult1. To address this problem, we use a
Monte Carlo simulation method to calculate total processor
reliability. A Monte Carlo method is an algorithm which
solves a problem by generating suitable random numbers
and observing the fraction of the numbers that obey some
property or properties. The method is useful for obtaining
numerical solutions to problems which are too complicated
to solve analytically [14].

3.3.1 Generating Lognormal Distributions
The uniform distribution between 0 and 1 can be used to
generate a lognormal distribution. Ify is a random number
with uniform distribution, we get a random number,x, with
a lognormal distribution by solving forx in:1Axp2�� e� (lnAx)22� = y (5)

whereA is a scaling factor. Solving, we getAx = e�1+p1�4(ln�p2��2�2 ln y)2 (6)

Hence, for a random numbery with a uniform distribution,
Equation 6 gives a random numberx with a lognormal dis-
tribution. By changing the value of the scaling factorA, a
separate random variable can be generated corresponding to
the lifetime of each structure on chip for each failure mech-
anism. The average value of each of these random variables
gives the MTTF of the lognormal distribution (in terms ofA). Now, RAMP provides MTTF values for each structure

1If the individual failure distributions were exponential,the total pro-
cessor MTTF can be easily calculated as the inverse of the sumof the
failure rates of the individual structures and mechanisms [21].

for each failure mechanism, for a given application. Using
these MTTF values from RAMP, we can determine the scal-
ing factorA for each structure and failure mechanism for a
given application.

3.3.2 Modeling Systems with the MIN-MAX Method
Next, we need a method to compute the MTTF of series-
parallel failure systems. Unlike a series failure system
where the processor will fail when its first structure fails,
a series parallel system can survive structure failures when
a parallel or redundant unit is available. We use a simple
MIN-MAX analysis to determine the lifetime of such sys-
tems. Consider a single processor that consists of two struc-
tures,A andB, with lifetimes, tA and tB . It should be
noted thattA andtB are not the MTTFs ofA andB, but are
the lifetimes of the structures for asingle random proces-
sor. The average value oftA andtB across many processors
would give the MTTFs ofA andB.

If A and B are in series, failure would occur atMIN(tA; tB) because the first structure to fail will cause
the processor to fail. On the other hand, ifA andB are
in parallel, failure would occur atMAX(tA; tB) because
both structures have to fail for the processor to fail. If a
structure,C, with lifetime, tC , is added in series toA andB in parallel, the new lifetime of the processor would beMIN(MAX(tA; tB); tC). This simple concept can be ex-
tended to any processor represented in a series or series-
parallel fashion to obtain total MTTF.

Now, in any single iteration of the Monte-Carlo exper-
iment, we use Equation 6 to generate a random lifetime
for each failure mechanism and structure on chip. A MIN-
MAX analysis of these lifetimes based on the processor’s
configuration would give the lifetime of the entire proces-
sor for that iteration. The MTTF of the processor can now
be calculated by repeating this process over many iterations
and averaging the processor lifetimes obtained. As in any
other Monte-Carlo experiment, the accuracy of the analysis
increases with the number of iterations performed.

Figure 1 illustrates this method. Consider two proces-
sors,P1 andP2. Both processors have four structures,A,B,C, andD. As can be seen in Figure 1,P1 is a series fail-
ure system whileP2 is a series-parallel failure system. For
any single iteration of the Monte-Carlo algorithm, the life-
time of P1 is tP1 = MIN(tA; tB ; tC ; tD), while the life-
time ofP2 is tP2 = MIN(tA;MAX(tB; tC); tD), wheretA, tB , tC , andtD are the randomly generated lifetimes of
each structure. IfN iterations are performed, the MTTF of
processorP1 isMTTFP1 =P tP1N , and the MTTF of pro-

cessorP2 is MTTFP2 = P tP2N . In our experiments, we
use a value ofN = 107.
3.4 Negative Bias Temperature Instability (NBTI)

Currently, RAMP models four critical failure mecha-
nisms – electromigration, stress migration, time dependent
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Figure 1. Monte Carlo simulation of MTTF
of two processors, P1 and P2. The MIN-MAX
method to determine processor lifetime is il-
lustrated for sample lifetime values for both
processors.

dielectric breakdown, and thermal cycling. We add a model
for another emerging critical failure mechanism, NBTI,
which is an electro-chemical reaction that takes place in
PFETs when the gate is biased negative with respect to
the source and drain. This typically occurs when the in-
put to a gate is low while the output is high, resulting in
an accumulation of positive charges in the gate oxide. This
accumulation causes the threshold voltage of the transistor
to increase. Higher threshold voltages result in gate over-
drive (supply voltage - threshold voltage) decreasing, which
slows down the performance of the gate. This eventually
leads to processor failure due to timing constraints [22].

NBTI has a strong positive temperature and field depen-
dence. As a result, the higher temperatures seen on chip
due to scaling exacerbate this problem. Similarly, thinning
of the gate oxide due to scaling also increases NBTI relia-
bility concerns [22].

The NBTI model we use is based on recent work by Za-
far et al. at IBM, and is a physics-based model verified us-
ing new and published NBTI failure data [22]. The model
shows that MTTF due to NBTI has a large dependence on
temperature. The MTTF due to NBTI at a temperature,T ,
is given by:MTTF / [(ln( A1 + 2e BkT )�ln( A1 + 2e BkT �C))� Te�DkT ℄ 1�

(7)

whereA;B;C;D, and� are fitting parameters, andk is
Boltzmann’s constant. Based on the data in [22], the values
we use areA = 1:6328, B = 0:07377, C = 0:01, D =�0:06852, and� = 0:3.

4 Structural Redundancy for Lifetime Relia-
bility

In a reliability-constrained scenario, some performance
and/or cost will have to be traded-off for reliability. In this
section, we examine methods by which structural redun-
dancy can be used to enhance the processor so that it may ef-
ficiently exploit this performance and cost overhead. These
enhancements to the processor would allow run-time recon-
figuration resulting in longer processor lifetimes. Specifi-
cally, we examine three techniques by which structural re-
dundancy can be beneficial to reliability.
Structural Duplication (SD): In SD, extra structural re-
dundancy is added over and above the required base proces-
sor resources during microarchitectural specification. The
extra structures that are added are designated asspares, and
are power gated and not used at the beginning of the pro-
cessor’s lifetime. During the course of the processor’s life,
if a structure with an available spare fails, the processor
would reconfigure and use the spare structure. This extends
the processor’s life beyond the point when it would have
normally failed, and instead, processor failure would oc-
cur only when a structure without a spare, or all available
spares fail. It is important to note that spare structures are
added over and above the required processor resources for
optimal performance. Most modern high-performance pro-
cessors have enough redundancy to exploit all the available
parallelism in common applications, resulting in very little
performance benefit from the spares. As a result, the spares
would be power gated to prevent any unnecessary wear-out,
and would be powered on only when the original structure
fails.

SD increases processor reliability without any loss of
performance. However, duplication adds a cost (due to the
increased die area) overhead to the original microarchitec-
tural specification.
Graceful Performance Degradation (GPD):GPD allows
existing processor redundancy to be leveraged for lifetime
enhancement without the addition of extra units. As men-
tioned, most modern high-performance microprocessors al-
ready use redundancy to exploit available parallelism in
common applications. However, only a subset of these units
is required for functional correctness. If a structure wereto
fail at run-time, a processor with GPD would disable the
failed structure and continue to function, thereby extending
its lifetime beyond its original point of failure. Processor
failure would then occur only whenall redundant structures
of any type fail.

Unlike SD, GPD does not add an area overhead to the
base processor as no extra units are added. However, dis-
abling redundant structures that fail lowers the processor’s
performance for the latter part of the processor’s lifetime.
Hence, theguaranteedperformance of a processor with
GPD is its performance in the fully degraded state. We



report GPD results for both guaranteed and actual perfor-
mance in Section 6.2.
Structural Duplication + Graceful Performance Degra-
dation (SD+GPD): We also examine architectures which
use a combination of SD and GPD. Such processors can
have spares for structures that arealsoallowed to degrade.
Hence, after all available spares for a structure are used,
the structure would also be allowed to degrade. Processor
failure would occur only when all available spares failand
all available existing redundancy is used. This technique
incurs both a performance overhead and a cost overhead.
However, the benefits in reliability will be larger.
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Figure 2. Steps to failure for a base proces-
sor (base), base processor with SD, with GPD,
and with SD+GPD. The relationship between
the performance (P), area (A), and MTTF of
each of the processors is also given.

Figure 2 illustrates the differences between the three
techniques. Consider a base processor with two structures,A andB. Now, if the lifetimes of structuresA andB
for a random instance of the base processor aretA andtB , the base processor’s lifetime in that instance would beMIN(tA; tB), as the first structure to fail would cause
the processor to fail. Next, consider the base processor
with SD, where another structureC is added as a spare
to A andB. If the lifetime of C for the same instance
of the processor istC , then the processor’s lifetime would
beMIN((MIN(tA; tB)+tC);MAX(tA; tB)). Since the
spareC is turned on only afterA orB fails,C ’s lifetime is
added toA orB. The processor would then fail only when
either the spare or the remaining original structure fails.

Next, consider the base processor with GPD. The pro-
cessor would continue to function even if one ofA or B
were to fail. Hence, the lifetime of the processor with GPD
would beMAX(tA; tB), since both structures have to fail
for processor failure.

Finally, consider a processor with SD+GPD. A spareC
is added forA andB. In addition, the processor requires
all units to fail before total failure. In this case, the life-
time of the processor would beMAX((MIN(tA; tB) +

tC);MAX(tA; tB)). The spareC is used as soon as one of
the original structures fails. The processor then fails only
when both the spare and the remaining original structure
fail.

4.1 Design Issues

A key requirement for SD, GPD, and SD+GPD is the
ability of the processor to detect and disable structures that
have failed during normal processor operation. Detecting
errors is a critical issue for hard and soft error tolerance,and
there is significant ongoing work on detection techniques.
However, much work still has to be done on the subject –
currently, efficient detection techniques with high coverage
for processor logic do not exist, and a detailed discussion of
such functionality is beyond the scope of this paper. How-
ever, we expect detection and coverage issues to impact SD
and GPD similarly, allowing a relative comparison of the
techniques.

Also, both SD and GPD require additional hardware for
detection and disabling/enabling of failed units. This extra
hardware and resultant wiring will adversely affect proces-
sor power and performance (due to the larger communica-
tion distance between critical units). Accounting for these
effects requires a detailed design for these techniques which
is beyond the scope of this paper. Therefore we do not ac-
count for these overheads in the results in this paper.

5 Experimental Methodology

5.1 Base Processor and Performance Simulation

The base processor we use for our simulations is a
65nm, out-of-order, 8-way superscalar processor, concep-
tually similar to a single core POWER4-like processor [20].
The 65 nm processor parameters were derived by scal-
ing down parameters from the 180nm POWER4 proces-
sor [19]. Although we model the performance impact of
the L2 cache, we do not model its reliability as its temper-
ature is much lower than the processor core [20] resulting
in very few L2 cache hard failures. Table 1 summarizes the
base 65nm processor modeled.

Our architectures are modeled using Turandot, a trace-
driven research simulator developed at IBM’s T.J. Watson
Research Center [12]. As described in [13], Turandot was
calibrated against a pre-RTL, detailed, latch-accurate pro-
cessor model. Despite the trace-driven nature of Turandot,
the extensive validation methodology provides high confi-
dence in its results.

5.2 Power, Temperature, and Reliability Models

To estimate processor power dissipation, we use the
PowerTimer toolset developed at IBM’s T.J. Watson Re-
search Center [5]. This toolset, in its default form, is built



Technology Parameters
Process technology 65 nmVdd 1.0 V
Processor frequency 2.0 GHz
Processor size (not including L2) 11.52mm2 (3.6mm x 3.2mm)
Leakage power density at383K 0.60 W/mm2

Base Processor Parameters
Fetch/finish rate 8 per cycle
Retirement rate 1 dispatch-group (=5, max) per cycle
Functional units 2 Int, 2 FP, 2 Load-Store

1 Branch, 1 LCR
Integer FU latencies 1/7/35 add/multiply/divide (pipelined)
FP FU latencies 4 default, 12 div. (pipelined)
Reorder Buffer size 150
Register file size 120 integer, 96 FP
Memory queue size 32 entries

Base Memory Hierarchy Parameters
L1 (Data) 32KB
L1 (Instr) 32KB
L2 (Unified) 2MB

Table 1. Base 65 nm POWER4-like processor.
Some of the buffer and cache sizes are differ-
ent from those in the actual POWER4 proces-
sor.

around the Turandot cycle-accurate performance simula-
tor referred to in the previous section. The power mod-
els that are built into the Turandot-based PowerTimer are
based on circuit accurate power estimations from the 180nm
POWER4 processor [20]. For our simulations, we use real-
istic clock gating assumptions in PowerTimer, in tune with
actual data available from current generation microproces-
sors.

For temperature simulation, we use the HotSpot
tool [16]. HotSpot models temperature at a structural level
(using power information from PowerTimer). The large
time constant of the processor heat sink prevents significant
heat sink changes from occurring during simulations [16].
As a result, HotSpot has to be initialized with an accurate
heat sink temperature for every simulation. For this pur-
pose, we run everything twice – the first run is used to ob-
tain the average power consumption of the processor which
can be used to initialize the temperature of the heat sink.
Once the heat sink is initialized, the second run produces
accurate temperature results.

We use an area based leakage power model, with a leak-
age power density of 0.60 W/mm2 at 383K. This value is
a rough estimate, based on leakage trends for 65nm pro-
cessors of the type and complexity of the POWER4, and
assumes standard leakage power control techniques like the
use of high-threshold devices in non-critical logic paths and
arrays. We also model the impact of temperature on leak-
age power using the technique in [8]. At a temperature T,
the leakage power,Pleakage(T ), is given byPleakage(T ) =Pleakage(383K) � e�(T�383) where� is a curve fitting con-
stant with a value of 0.017 [8].

As discussed previously, we use an enhanced version of
RAMP [18] for reliability measurements. For a simulated
application, based on temperature estimates from HotSpot

Type Application Max. Temp. (K)
Spec2000 ammp 341.27
Float sixtrack 342.76

applu 343.82
mgrid 345.63
mesa 345.87

facerec 346.52
apsi 348.49

wupwise 348.56
SpecFP average 345.36

Spec2000 vpr 341.40
Int twolf 343.22

bzip2 342.52
gzip 343.49

perlbmk 347.13
gcc 348.22
gap 348.93

crafty 349.55
SpecInt average 345.52

Table 2. Maximum temperature seen for Spec
2K benchmarks

and power estimates from PowerTimer sampled at a gran-
ularity of 1 �second, RAMP calculates an MTTF estimate
for each structure and failure mechanism on the processor.
The Monte-Carlo simulation method is then used to deter-
mine the MTTF of the processor.

5.3 Die Cost Model

In order to evaluate the cost impact of area increases
imposed by structural duplication, we use the Hennessy-
Patterson die cost model [7]. The cost,C, of a die of area,A is: C / 1(�r2waferA � 2�rwaferp2A ) � (1 + DA� )� (8)

whererwafer is the wafer radius,D is the defects per unit
area during manufacture of the wafer, and� is a parameter
that corresponds inversely to the number of masking levels.
We assume a300mm wafer process,D = 0:6 per square
centimeter, and� = 4:0 [7]. In our experiments, we nor-
malize our base processor cost to 1.0 (for a base area of11:52mm2).
5.4 Workload Description

Our experimental results are based on an evaluation of
16 SPEC2000 benchmarks (8 SpecInt + 8 SpecFP). The
SPEC2000 trace repository used in this study was generated
using the Aria trace facility in the MET toolkit [12], and
was generated using the full reference input set. Sampling
was used to limit the trace length to 100 million instruc-
tions per program. The sampled traces have been validated
with the original full traces for accuracy and correct repre-
sentation [10]. As can be seen in Table 2, the applications
exhibit a wide range in maximum temperatures, resulting
in a large range in MTTF. For this study, it was more im-
portant to study applications that show a wide range of be-
havior, rather than perform a comprehensive analysis of the
SPEC2000 suite.



Group Units in Group Area (mm2) Original Configuration Degraded Configuration

1 FPU 0.96 2 float units + 96 float regs 1 float unit + 48 float regs
2 FXU 0.96 2 int units + 120 int regs 1 int unit + 60 int regs
3 BXU+IFU 2.56 16K BHT entries + 32KB ICache 8K BHT entries + 16KB ICache
4 LSU 4.0 2 load/store queues + 32KB DCache 1 load/store queue + 16KB ICache
5 IDU+ISU 3.04 N/A N/A

Table 3. Groups replicated in SD and allowed to degrade in GPD . The IDU+ISU is not allowed to
degrade. The areas of each group for SD and the structures in t he original and degraded group for
GPD area also given.

5.5 Processor Configurations Evaluated

The base 65nm POWER4-like processor evaluated has a
total area of11:52mm2. The chip is divided into 7 distinct
structures: floating point unit (FPU), fixed point unit (FXU),
instruction decode unit (IDU), instruction scheduling unit
(ISU), load store unit (LSU), instruction fetch unit (IFU),
and branch prediction unit (BXU).

5.5.1 SD Configurations
To limit our configuration space, we do not allow all the
structures on chip to be replicated individually for SD. In-
stead, we clubbed the processor’s structures into 5 logi-
cal groups that can act as spares – FPU, FXU, BXU+IFU,
LSU, IDU+ISU. Table 3 summarizes these groups and the
area overhead imposed on the processor by replicating each
group. With these 5 groups, based on whether a group is
replicated or not in the processor, we create 32 (25) SD
processors. If more than one group is replicated, the area
overhead for that processor is the sum of the areas of the
replicated groups.

5.5.2 GPD Configurations
Like SD, we limit our configuration space in GPD by not al-
lowing every structure to degrade individually. Instead, the
structures are grouped into 4 logical groups that can degrade
– FPU, FXU, BXU+IFU, LSU. Unlike structural duplica-
tion, we do not allow the IDU+ISU to degrade. Each group
can be in one of two states, full size or degraded to half size;
i.e., the group can be fully functional, or if a failure occurs
in a structure, the half of the group that contains the fail-
ure would be shut down (although many structures like the
caches can degrade to levels other than half size, we do not
study them to limit the configuration space). With these 4
groups, based on whether a group is allowed to degrade to
half size or not, 16 (24) processor configurations including
the base can be created. Table 3 shows the configuration of
the groups before and after degradation.

5.5.3 SD+GPD configurations
SD and GPD can act orthogonally on the processor (a
duplicated structure can also degrade). Hence, the num-
ber of configurations for SD+GPD is the cross product of
the number of SD configurations and GPD configurations
(25 � 24 = 512).

Figure 3. Reliability benefit from SD for differ-
ent costs. The vertical axis shows normalized
MTTF, with the MTTF of the application on the
base processor normalized to 1.0 (the bottom
segment of each bar). Each additional seg-
ment in the bars represents the normalized
gain in MTTF from moving to higher costs.

6 Results

6.1 SD Results

Figure 3 shows the SD reliability benefit for various cost
points for each of our applications, and also the average
for all SpecFP and SpecInt applications. The vertical axis
shows normalized MTTF. The results are presented in a
stacked-bar format. The MTTF of each application on the
base processor (which has a cost of 1.0), is the lowest seg-
ment in each bar, and is normalized to 1.0. Each additional
segment in the bars represents the incremental normalized
MTTF benefit obtained from moving to higher costs. For
each segment, we selected the SD configuration which had
the highest MTTF among the configurations which satisfied
the cost requirement. Figure 4 shows the fraction of appli-
cations for which different groups of structures are chosen
for duplication with SD, for different costs. In addition, the
average frequency across all costs is also shown.

As seen in Figure 3, SD provides significant reliability
benefit, particularly for higher cost values. At a cost of2:25
times the base cost, SD provides an average MTTF3:17
times better than base MTTF. However, at a cost of1:25
times the base cost, the MTTF is only5% greater than base



Figure 4. Fraction of applications for which
different groups of structures are chosen for
duplication with SD, for different costs. The
average frequency across all costs is also
given.

MTTF. These results can be understood with Figure 4 – for
costs less than1:5 times the base cost, only the FPU and
FXU are chosen for duplication. Although the FPU and
FXU do not provide large reliability benefit, they are the
only structures that have areas small enough to satisfy the
cost limit at1:25 times the base cost (Table 3). As we move
to higher cost points (left to right in Figure 4), larger struc-
tures which have higher failure rates can be duplicated, re-
sulting in significant impact on reliability. At1:5 times the
base cost, the IDU+ISU can be duplicated, and at1:75 times
the base cost, the LSU can be duplicated. For points beyond1:75 times the base cost, combinations of structures are used
in SD. Finally, from the average bar in Figure 4, we can see
that the FPU and FXU are chosen equally often. This is due
to our equal mix of SpecFP and SpecInt applications.

6.2 GPD Results

Figures 5 (a) and (b) show the GPD reliability benefit
for various performance levels for each of our applications,
and also the average for all SpecFP and SpecInt applica-
tions. Like Figure 3, the vertical axis represents normal-
ized MTTF. The MTTF of each application on the base pro-
cessor (which has a cost of 1.0), is the lowest segment in
each bar, and is normalized to 1.0. Each additional segment
shows the incremental benefit from moving to lower perfor-
mance. Figure 5(a) showsguaranteedperformance values,
while Figure 5(b) showsactual performance values. Un-
like SD, where the cost overhead of a configuration applies
for the entire lifetime of the processor, the performance
degradation in GPD is not seen for the entire lifetime of
the processor. At the beginning of the processor’s lifetime,
it will run at full performance. The degraded performance
level is encountered only after one or more structures on

(a) Guaranteed Performance

(b) Actual Performance

Figure 5. Reliability benefit from GPD for dif-
ferent (a) guaranteedand (b) actualperformance
levels. The vertical axis shows normalized
MTTF, with the lowest segment in each bar
representing the normalized base MTTF of the
application (performance of 1.0). Each addi-
tional segment shows the incremental MTTF
benefit from moving to lower performance
values.

chip fail. Due to the statistical nature of wear-out failures,
for a given processor, no performance greater than the de-
graded value can beguaranteed(in a random batch of pro-
cessors, some might have structures failing immediately).
Figure 5(a) presents GPD results for this lowest guaranteed
performance level. However, most processors will have a
higheractualperformance (which is the time-weighted av-
erage of all the IPCs seen during the lifetime of the pro-
cessor). These actual performance values are reported in
Figure 5(b). For each performance value (guaranteed or ac-
tual), we identified the GPD configuration which had the
highest MTTF among the configurations which satisfied the



performance requirement.
As can be seen, GPD results in significant MTTF bene-

fit, particularly for small performance overheads. A guaran-
teed loss of5% in performance (performance value of0:95
in Figure 5(a)) provides an average MTTF1:41 times bet-
ter than base MTTF. An actual loss of5% in performance
(performance value of0:95 in Figure 5(b)) provides an aver-
age MTTF1:57 times better than base MTTF. As we move
to lower performance values, the incremental MTTF bene-
fit from GPD reduces on average. Also, as expected, much
smaller decreases in actual performance provide the same
reliability benefit as larger decreases in guaranteed perfor-
mance.

The results in Figure 5 show that processor resources in
current high performance microprocessors likely exceed the
requirements for performance and functionality of many ap-
plications. Most applications do not regularly use all the ex-
tra replicated units. As a result, when a failure occurs in one
of these relatively unused structures, the processor can de-
grade to half the structure’s size without a significant lossin
performance, but with large reliability benefit. Once all the
structures that are not used have degraded, further perfor-
mance reductions result in much smaller reliability benefit.

Figure 6. Fraction of applications for which
different groups of structures are chosen for
degradation with GPD, for different perfor-
mance levels. The average frequency across
all performance levels is also given.

As in Figure 4, Figure 6 shows the fraction of applica-
tions for which different groups of structures are chosen
for degradation with GPD, for different performance levels.
The average frequency across all performance levels is also
given. Unlike SD where different structures were chosen
for duplication at different costs, all structures are chosen
with nearly the same frequency for degradation in GPD.
For higher performance values (left side of Figure 6), the
frequencies are similar because different applications inour
workload rely on different processor structures for perfor-

mance. This shows that no structure in the fully functional
state is performance critical for all applications. For lower
performance values (right side of Figure 6), the frequencies
are similar because most applications have reached the fully
degraded state, shutting down half of every structure.

6.3 SD+GPD Results

(a) Guaranteed Performance

(b) Actual Performance

Figure 7. Highest SD+GPD MTTF (averaged
across all our applications) possible for each
cost and performance constraint. MTTF value
(represented by the height of the bars) is the
average normalized MTTF across all applica-
tions, where the average MTTF at a perfor-
mance of 1.0 and a cost of 1.0 is normalized
to 1.0

Figures 7(a) and (b) show the highest average MTTF
possible for each cost and performance constraint. That is,
for each point with cost=C and performance=P, we report
the highest MTTF (averaged across all applications) among



all the SD+GPD configurations with cost� C and perfor-
mance� P. Each MTTF value (represented by the height of
the bars) is the average normalized MTTF across all appli-
cations, where the average MTTF at a performance of 1.0
and a cost of 1.0 (no SD or GPD) is normalized to 1.0. In
the figure, when performance is 1.0, the values show av-
erage MTTF using only SD. When cost is 1.0, the values
show average MTTF using only GPD. Every other point in
the figures shows average MTTF for some degraded perfor-
mance level and cost value (SD+GPD). Like Figures 5(a)
and (b), Figures 7(a) and (b) representguaranteedandac-
tual performance levels, respectively.

As can be seen, SD+GPD (points with both a perfor-
mance loss and cost increase) provides larger MTTF ben-
efit than SD or GPD alone. In particular, at the extreme
point, a guaranteed loss of50% or an actual loss of15%
in performance (performance value of0:5 in Figure 7(a)
and 0:85 in Figure 7(b)), coupled with a cost2:25 times
the base cost, provides an average MTTF4:16 times better
than base MTTF. As discussed in Section 6.1, SD provides
low average reliability benefit at very low cost values, but
large benefits at higher cost values, for any given perfor-
mance level. Similarly, as discussed in Section 6.2, GPD
provides a larger incremental reliability benefit for smaller
performance degradations (larger performance values), for
any given cost. Also, the overall increase from SD is higher
than that for GPD. Finally, as expected, much smaller de-
creases in actual performance provide the same reliability
benefit as larger decreases in guaranteed performance. As
explained earlier, this is due to the processor running at full
performance at the beginning of its lifetime.

6.4 Comparison of SD, GPD, and SD+GPD using
Performance/Cost

Figure 8. Average normalized MTTF benefit
versus PC for SD, GPD, and SD+GPD across
all applications. For GPD and SD+GPD, both
guaranteedand actual performance values are
given.

In order to understand performance and cost tradeoffs
simultaneously, we use the ratio of performance and cost
(PC ), a standard industrial metric, to evaluate SD, GPD, and
SD+GPD. The normalizedPC for all our applications on the
base processor is 1.0. In SD, cost will increase, leading
to PC values lower than 1.0. In GPD, performance will de-
crease, leading toPC values lower than 1.0, and in SD+GPD,
both increases in cost and decreases in performance lower
the value ofPC . Figure 8 shows the average MTTF benefit
across all our applications from each of the three techniques
for a range ofPC values. The vertical axis represents nor-
malized MTTF. The horizontal axis represents differentPC
design points. For both GPD and SD+GPD, both guaran-
teed and actual performance levels are evaluated.

The results in Figure 8 clearly reflect the trends seen in
Figures 3, 5, and 7. At highPC values (low performance or
cost overhead), GPD provides much more benefit than SD.
However, the benefit from GPD tapers off as we move to
lower values ofPC . On the other hand, SD provides much
more MTTF benefit at lowerPC values, and overtakes GPD.
The combination of both techniques always provides the
highest MTTF benefit. This is intuitive because SD+GPD
can choose any configuration SD or GPD can choose, in ad-
dition to the cross product of the two. However, SD+GPD
chooses the same configurations as GPD chooses at high
values of PC . Finally, since processors run at full perfor-
mance at the beginning of their lifetime, the same MTTF
benefit for GPD (Actual) and SD+GPD (Actual) comes
at higherPC values than GPD (Guaranteed) and SD+GPD
(Guaranteed).

6.4.1 Discussion
The above results present some clear guidelines for the use
of structural redundancy for reliability:� Due to the high level of redundancy already built into

current high-performance processors to exploit appli-
cation parallelism, GPD is an attractive technique for
performance-effective reliability benefit. This is par-
ticularly true for scenarios where only limited perfor-
mance or area resources can be diverted to reliability
because of cost issues. However, the benefit from GPD
is limited – once extra redundant units degrade, the re-
maining units are essential for processor performance
and can not degrade further.� SD is an attractive option when larger performance
or cost overheads are available, because large critical
structures on chip can be duplicated. Unlike GPD, the
benefit from SD does not taper off. Hence, in scenarios
where reliability is more important than cost or perfor-
mance, SD is the more beneficial technique.� Finally, the combination of SD and GPD, SD+GPD,



always provides the highest reliability increases be-
cause it can exploit the benefits of both SD and GPD.

7 Conclusions
Aggressive scaling of CMOS devices is accelerating the

onset of wear-out related lifetime reliability problems. This
implies that future processors will be designed in reliability-
constrained environments where some processor perfor-
mance or die cost will have to be sacrificed for reliability.
In this paper, we examined the efficient usage of these per-
formance and cost tradeoffs through structural redundancy.

Specifically, we evaluated two techniques, structural
duplication (SD), and graceful performance degradation
(GPD). In SD, extra or spare structures are added to the
processor during microarchitectural definition. Spare struc-
tures can be turned on during the processor’s lifetime when
the original structure fails, thereby extending processorlife-
time. Although SD results in no performance loss relative
to the base processor, the spare structures incur an area and
resultant cost overhead for the processor. GPD, on the other
hand, does not require extra structures to be added to the
base processor. Instead, GPD exploits existing structural
redundancy on chip for reliability. If a redundant struc-
ture fails in a processor with GPD, the structure can be shut
down and the processor would still be functional. This how-
ever, comes at a performance loss to the processor.

Our analysis provides clear guidelines for the use of SD
and GPD for reliability enhancement. If only limited perfor-
mance or area resources can be diverted to reliability, GPD
presents a more attractive option for reliability enhancement
for our systems. On the other hand, in scenarios where re-
liability is more important than performance or cost, SD is
the more beneficial technique. A combination of SD and
GPD (SD+GPD) provides the highest reliability increases
for the lowest performance and cost overheads because it
can exploit the benefits of both techniques.

We also enhance the RAMP reliability model by address-
ing some of its limitations. In particular, we incorporate
time dependence in RAMP’s failure mechanisms by mod-
eling them as lognormal distributions, and use Monte-Carlo
methods to calculate processor lifetimes. We also add a fail-
ure model for a critical emerging failure mechanism, NBTI.

This paper has focused on an analysis of the benefits of
structural redundancy for reliability. For such techniques
to be used in practice, several design issues need to be ad-
dressed. Specifically, techniques to efficiently detect and
disable/enable failed structures need to be developed. Given
that detection techniques are unlikely to offer 100% cover-
age, our model must incorporate the incomplete coverage.
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