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Abstract

As processor speeds increase and memory latency be-
comes more critical, intelligent design and management
of secondary caches becomes increasingly important. The
efficiency of current set-associative caches is reduced be-
cause programs exhibit a non-uniform distribution of mem-
ory accesses across different cache sets. We propose a tech-
nique to vary the associativity of a cache on a per-set basis
in response to the demands of the program. By increas-
ing the number of tag-store entries relative to the number
of data lines, we achieve the performance benefit of global
replacement while maintaining the constant hit latency of
a set-associative cache. The proposed variable-way, or V-
Way, set-associative cache achieves an average miss rate
reduction of 13% on sixteen benchmarks from the SPEC
CPU2000 suite. This translates into an average IPC im-
provement of 8%.

1. Introduction

Cache hierarchies in modern microprocessors play a cru-
cial role in bridging the gap between processor speed and
main-memory latency. As processor speeds increase and
memory latency becomes more critical, intelligent design
and management of secondary caches becomes increasingly
important. The performance of a cache system directly de-
pends on its success at storing data that will be needed by
the program in the near future while discarding data that
is either no longer needed or unlikely to be used soon. A
cache manages this through its replacement policy. In a
set-associative cache, the number of entries visible to the
replacement policy is limited to the number of ways in each
set. On a miss, a victim is identified from one of the ways
within the set. The replacement policy could potentially se-
lect a better victim by considering the global access history
of the cache rather than the localized set access history. This
is particularly true because memory references in a program
exhibit non-uniformity, causing some sets to be accessed
heavily while other sets remain underutilized.

To achieve the lowest possible miss rate, a cache should
be organized as fully-associative with Belady’s OPT re-
placement policy [2]. However, the power, latency, and
hardware costs of a fully-associative organization make it
impractical, and OPT replacement is impossible to achieve
without knowledge of the future. Figure 1 shows the aver-

age reduction in miss rate for four different configurations
of a second-level cache relative to a 256kB cache with 8
ways. Doubling the associativity to 16 ways marginally
improves the miss rate, whereas making the cache fully-
associative results in a much more significant improvement.
The fully-associative cache with OPT replacement even re-
duces miss rate more than a set-associative cache of dou-
ble its size. This result highlights the significant impact a
cache’s organization and replacement policy have in reduc-
ing cache misses. Furthermore, the upper bound provided
by the ideal cache indicates that there is much room for im-
provement with existing cache designs.
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Figure 1. Percent reduction in miss rate compared to a 256kB
8-way set-associative cache.

A fully-associative cache has two distinct advantages
over a set-associative cache: conflict-miss minimization and
global replacement. There is an inverse relationship be-
tween the number of conflict-misses in a cache and the asso-
ciativity of the cache. A fully-associative cache minimizes
conflict-misses by maximizing associativity. Furthermore,
as the associativity of a cache increases, the scope of the
information used to perform replacement also increases. A
four-way set-associative cache, for example, considers the
four cache lines in the target set when selecting a victim for
replacement. A fully-associative cache, on the other hand,
benefits from considering the entire contents of the cache
when selecting a victim. Global replacement allows a fully-
associative cache to choose the best possible victim every
time, limited only by the intelligence of the replacement
algorithm. Accessing a fully-associative cache is imprac-
tical, however, as it requires a tag comparison with every
tag-store entry, prohibitively increasing both access latency
and power consumption. Our work addresses the tradeoff
between cache performance and cost in a new way.
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The major contributions of our work are as follows:

1. We propose a novel mechanism to provide the benefit
of global replacement while maintaining the constant
hit latency of a set-associative cache. We call this the
Variable-Way Set Associative Cache, or simply, the V-
Way Cache.

2. For the V-Way cache, we propose a practical global
replacement policy based on access frequency called
Reuse Replacement. Reuse Replacement performs
comparably to a perfect least recently used (LRU) pol-
icy at a fraction of the hardware cost and complexity.

The V-Way cache using Reuse Replacement achieves an av-
erage miss rate reduction of 13% on sixteen benchmarks
from the SPEC CPU2000 suite. This translates into an IPC
improvement of up to 44%, and an average IPC improve-
ment of 8%.

Section 2 further motivates the proposed technique. Sec-
tion 3 describes the structure of the V-Way cache, and Sec-
tion 4 explains Reuse Replacement. Experimental method-
ology is presented in Section 5, followed by results in Sec-
tion 6. Cost and performance analysis are presented in Sec-
tions 7 and 8, respectively. Related work is discussed in
Section 9, and concluding remarks are given in Section 10.

2. Motivation
2.1. Problem

Memory accesses in general purpose applications are
non-uniformly distributed across the sets in a cache [13]
[10]. This non-uniformity creates a heavy demand on some
sets, which can lead to conflict misses, while other sets re-
main underutilized. Substantial research effort has been put
forth to address this problem for direct-mapped caches. Vic-
tim caches [9] are small, fully-associative buffers that pro-
vide limited additional associativity for heavily utilized en-
tries in a direct-mapped cache. The hash-rehash cache [1],
the adaptive group-associative cache [13], and the predic-
tive sequential-associative cache [3] trade variable hit la-
tency for increased associativity. With these schemes, if
the first attempt to access the cache results in a miss, the
hash function that maps addresses to sets is changed, and
a new cache access is initiated. This process may be re-
peated multiple times until either the data is found or a miss
is detected. These techniques were proposed for first level
direct-mapped caches, and their effectiveness reduces as as-
sociativity increases due to the inherent performance benefit
of increased associativity.

Our work focuses on reducing the miss rate of large, set-
associative, secondary caches.! Caches at this level are typ-

1Though our model consists of only two levels of caches, the tech-
niques described in this paper may be applied to all non-primary (i.e. L2,
L3, etc.) caches in the memory hierarchy.

ically four to eight way set-associative, diminishing the im-
pact of the techniques described above. In the V-Way cache,
associativity varies on a per-set basis in response to the de-
mands of the application. By limiting the maximum degree
of associativity, we maintain the constant hit latency of a
set-associative cache.

2.2. Example

We illustrate the V-Way cache with an example. Con-
sider the traditional four-way set-associative cache shown
in Figure 2(a). For simplicity, the cache contains only two
sets: set A and set B. The data-store is shown as a linear
array for illustrative purposes. The memory references in
working set X all map to set A, while working set Y maps
to set B. The data lines for addresses x0, x1, etc. are repre-
sented in the figure as x0’, x1’, etc.

In a traditional set-associative cache there exists a static
one-to-one mapping between each tag-store entry and its
corresponding data-store entry. In the figure, set A is
mapped to the top half of the data-store, and set B is mapped
to the bottom half of the data-store.
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Figure 2. Traditional set-associative cache using local replace-
ment.

If cache accesses are totally uniform, as in Figure 2(a),
the demand on sets A and B is equal, and both halves of the
data-store are equally utilized. This is not the case in actual
applications, however, due to variable demand on sets in
the cache. In Figure 2(b), presumably at a different phase in
the program, working set X increases by one element, and
working set Y decreases by one element. Set A is unable to
accommodate all the elements of working set X, resulting
in conflict misses and thrashing. Set B, on the other hand,
has a dormant way. If set B could share its dormant way
with set A, the conflict misses would be avoided.

A traditional set-associative cache cannot adapt its as-
sociativity because lines in the data-store are statically
mapped to entries in the tag-store. This static partitioning
necessitates local replacement. When a cache miss occurs,
a victim is identified within the target set, and the corre-
sponding entries in the tag-store and data-store are replaced.
We refer to this as local replacement. This combination of
static mapping and local replacement prevents traditional
caches from exploiting underutilized sets and results in re-
duced cache performance.
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2.3. Solution

Increasing the number of tag-store entries relative to the
number of data lines provides the flexibility to accommo-
date cache demand on a per-set basis. Figure 3(a) shows
the same example from Figure 2, except the number of tag-
store entries in the cache has doubled. Doubling the num-
ber of tag-store entries is relatively inexpensive, typically
adding 2-3% to the overall storage requirements of a sec-
ondary cache. The extra tag-store entries have been added
as additional sets rather than additional ways in order to
keep the number of tag comparisons required on each ac-
cess unchanged at four. The number of data lines remains
constant. Note that the total number of valid tag-store en-
tries also remains constant. Invalid entries are shaded.
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Figure 3. Variable-way set-associative cache using global re-
placement.

Increasing the size of the tag-store creates the following
effects:

e The memory references are redistributed across the
cache sets.
After doubling the number of sets, the number of bits
used to index the tag-store increases by one. In Fig-
ure 3(a), the new most-significant bit of the index
redistributes working set X across sets A0 and Al.
Working set Y is similarly redistributed across sets BO
and B1.

e There no longer exists a static one-to-one mapping be-
tween tag-store entries and data lines.
Every valid tag-store entry now contains a pointer to a
unique location in the data-store. This mapping may
change dynamically and implies that tag comparison
and data lookup must be performed serially.?

With twice as many tag-store entries as data lines, each
set in the cache contains, on average, two out of four valid
entries. As the demand on individual sets fluctuates, the
cache responds by varying the associativity of the individ-
ual sets, as shown in Figure 3(b). When working set X in-
creases by one element, the demand on set AO increases,

2Existing processors serialize tag comparison and data lookup to re-
duce the power dissipation of large cache arrays[6][18]. Prior research
has made use of serialization to increase flexibility and to improve perfor-
mance in large caches [7][4]. Section 7.3 discusses energy savings due to
serialization.

and a new tag-store entry and data line must be allocated.
As in Figure 2(b), there exists a dormant way, now in set
B1. The data line associated with the dormant tag-store en-
try is detected by a global replacement policy and allocated
to the new tag-store entry in set AO. The tag-store entry of
the dormant way (previously belonging to y3) is then inval-
idated. The presence of additional tags, combined with the
use of a global replacement policy, allows the associativity
of sets AO and B1 to vary in response to changing demand.

3. V-Way Cache
3.1. Terminology

The defining property of the V-Way cache is the exis-
tence of more tag-store entries than data lines. We define
the tag-to-data ratio (TDR) as the ratio of the number of
tag-store entries to the number of data lines, where TDR >
1. The case TDR = 1 is equivalent to a traditional cache.
In the example in Section 2, TDR = 2 because there are
twice as many tag-store entries as data lines. Unless other-
wise specified, we assume TDR = 2 for the remainder of
the paper.

3.2. Structure

STATUS | TAG | FPTR

TAG-STORE DATA-STORE

DATA
ARRAY

V| RPTR

DATA

GLOBAL
REPLACEMENT
SCHEME

Figure 4. V-Way Cache.

Figure 4 shows the structure of the V-Way cache. The
V-Way cache consists of two decoupled structures: the tag-
store and the data-store. Each entry in the tag-store contains
status information (a valid bit, a dirty bit, and replacement
information), tag bits, and a forward pointer (FPTR) which
identifies the unique entry in the data-store to which the tag-
store entry is mapped. If the valid bit in a tag-store entry
is cleared, all other information in the entry, including the
FPTR, is considered invalid. Each data-store entry contains
a data line, a valid bit, and a reverse pointer (RPTR). The
RPTR identifies a unique entry in the tag-store. For every
valid tag-store entry, there exists a (FPTR, RPTR) pair that
point to each other. The tag-store and data-store form two
structurally independent entities linked only by the FPTR
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and RPTR, and both structures implement independent re-
placement algorithms. The tag-store uses a traditional re-
placement scheme such as LRU on a local, or per-set, ba-
sis. The data-store uses frequency information to imple-
ment global replacement. We describe the global replace-
ment scheme in detail in Section 4.

3.3. Operation

A V-Way cache access consists of one or two sequential
array lookups, depending on whether the first lookup results
in a miss or a hit. The tag-store lookup is performed first. If
the tag-store lookup results in a hit, the FPTR of the match-
ing entry is used to perform a direct-mapped lookup into
the data-store to retrieve the appropriate data line. Replace-
ment information is updated appropriately in both the tag-
store and the data-store after each access. If the tag-store
lookup fails to find a matching entry, a cache miss is sig-
naled. Because the tag-store and data-store are decoupled,
two victims must be identified for the ensuing line fill: a
tag-victim and a data-victim. The tag-victim is always one
of the entries in the target set of the tag-store and is cho-
sen before the data-victim. The selection of a data-victim is
based on one of two scenarios that can arise when selecting
the tag-victim:

e There exists at least one invalid tag-store entry in the
target set.
Since there are twice as many tags as data lines, the
probability of finding an invalid tag-store entry in the
target set is high. In twelve out of sixteen benchmarks
studied, more than 90% of the tag-victims were pro-
vided by invalid entries. When this occurs, the data-
victim is supplied by the data-store’s global replace-
ment policy, and the tag-store entry identified by the
RPTR of the data-victim is invalidated. The data-
victim is then evicted from the cache, and a write-
back is scheduled if necessary, followed by a line fill
with the new data. The tag-victim is updated with the
new tag bits, the FPTR is updated to point to the data-
victim, and the valid bit is set. The RPTR of the data-
victim is then updated to point to the newly validated
tag-store entry. Finally, replacement information is up-
dated in both the tag-store and the data-store.

o All the tag-store entries in the target set are valid.
In this uncommon case, the tag-victim is chosen us-
ing the local replacement scheme of the tag-store. We
use LRU as the local replacement scheme in our ex-
periments. The tag-victim in this case contains a valid
FPTR, and the data line to which it points is used as the
data-victim, bypassing the data-store’s global replace-
ment policy. The existing data line is evicted from the
cache, and a write-back is scheduled if necessary, fol-
lowed by a line fill with the new data. The RPTR re-

mains unchanged, as it already points to the correct
entry in the tag-store. Replacement information is then
updated in both the tag-store and data-store.

In a traditional set-associative cache, after an initial
warm-up period all the tag-store entries in the cache are
valid, barring any invalidations that occurred due to the im-
plementation of a cache coherency protocol. In the V-Way
cache, however, each time the data-store’s global replace-
ment engine is invoked to find a data-victim, a tag-store
entry that is unlikely to be used in the near future is invali-
dated.

The V-Way cache in Figure 4 has a maximum associa-
tivity of four ways, but the V-Way cache technique can
be applied, in general, to any set-associative cache. A V-
Way cache can potentially achieve miss-rates comparable
to a traditional cache of twice its size or a fully-associative
cache of the same size. The success of the V-Way cache de-
pends on how well the global replacement engine chooses
data-victims. We describe the global replacement algorithm
and implementation in the next section.

4. Designing a Practical Global Replacement
Algorithm

The ability of the V-Way cache to reduce miss rate de-
pends primarily on the intelligence of the global replace-
ment policy. A naive policy such as random or FIFO
replacement increases the miss rate when compared to
the baseline configuration (TDR=1). Perfect LRU is far
more effective than random but has a space complexity of
O(n?)[17]. Considering the fact that large caches typically
contain thousands of data lines, perfect LRU is an imprac-
tical choice. Two-handed clock replacement[5], commonly
used for page replacement in an operating system, uses only
a single bit per entry. Though inexpensive, it does not per-
form as well as perfect LRU when applied to caches[7]. Our
goal is to design a replacement algorithm that yields perfor-
mance comparable to a perfect global LRU scheme at a sub-
stantially lower cost in both hardware and latency. We start
by examining the characteristics of the memory reference
stream presented to the second level cache.

4.1. Reuse Frequency

The stream of references that access the second level
cache (L2) is a filtered version of the memory reference
stream seen by the first level cache (L1). In other words,
only those addresses that miss in the L1 are propagated to
the L2. This filtering effect typically results in a much lower
measure of locality in the L2 than in the L1. We define
reuse count as the number of L2 accesses to a cache line
after its initial line fill. When an L2 cache line is installed,
its reuse count is initialized to zero and then incremented by
one for each subsequent L2 access to the cache line. When
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a line is evicted from the L2 cache its reuse count is read,
and the appropriate bucket of the global reuse distribution
is incremented by one. Figure 5 shows the distribution of
reuse counts for all evicted L2 cache lines from all sixteen
benchmarks using a baseline cache configuration.
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Figure 5. Distribution of L2 cache line reuse.

4.2. Cost Effectiveness of Frequency Based Re-
placement

Prior research has identified the significance of access
frequency in relationship to cache performance [16]. Sev-
eral authors have proposed the use of frequency informa-
tion for placement and replacement of cache lines. John-
son [8] uses frequency information to make cache bypass
decisions. A non-uniform cache architecture [11] uses ac-
cess frequency to direct the placement of a cache line to
an appropriate distance group. Hallnor et al [7] use access
frequency with hysteresis to implement an algorithm called
generational replacement, which requires 33 bits of infor-
mation per tag-store entry. Tracking reuse information, on
the other hand, requires far less storage for a comparable
measure of frequency. In Figure 5, over 80% of L2 cache
lines are reused three or fewer times, and fewer than 10%
of the lines are reused more than 14 times. Two bits can be
used to track four unique reuse count states: 0, 1, 2, and 3+.

4.3. Reuse Replacement

We propose Reuse Replacement, a frequency based
global replacement scheme that is both fast and inexpen-
sive. Figure 6(a) shows the structures required to implement
Reuse Replacement.

Every data line in the cache has an associated reuse
counter. The reuse counters are two-bit saturating counters
and are kept in a structure called the Reuse Counter Table
(RCT). The RCT may be physically separate from the cache
to avoid accessing the data-store when reading or updating
the reuse counters. A PTR register points to the entry in
the RCT where the global replacement engine will begin
searching for the next data-victim.

REUSE COUNTER TABLE
(RCT)

INITJALIZE
REUSE REUSE REUSE
TEST TEST TEST TEST
VICTIMIZE
@ (b)

Figure 6. Reuse Replacement : (a) RCT and PTR register. (b)
State machine for the reuse counters.

When a cache line is installed in the cache, the reuse
counter associated with the data-store entry is initialized to
zero. For each subsequent access to the cache line, the reuse
counter is incremented using saturating arithmetic. When a
cache miss occurs, the global replacement engine searches
the RCT for a reuse counter equal to zero. Starting with the
counter indexed by PTR, the replacement engine tests and
decrements each non-zero reuse counter. Testing continues
until a data-victim is found, wrapping around when the bot-
tom of the RCT is reached. Once a data-victim is found,
PTR is incremented to point to the next reuse counter. In-
crementing PTR causes every other counter in the RCT to
be tested (and decremented) exactly once before the current
counter gets tested for the first time. This allows the reuse
counters for newly installed cache lines to reach a represen-
tative value before being tested and decremented.

4.4. Variable Replacement Latency

Although Reuse Replacement is guaranteed to find a
victim, the time required to do so can vary depending
on the overall level of reuse in the program. We refer
to the victim distance as the number of times the PTR
register is incremented before a victim is found. In the
theoretical worst case, where every reuse counter in the
RCT is saturated, the victim distance will have the value
(2N — 1)xNUM_REUSE_COUNTERS for an N-bit reuse
counter. Using two-bit reuse counters, the theoretical max-
imum victim distance is 6144 for a cache with 2048 data
lines. We expect the typical victim distance to be substan-
tially lower than the theoretical maximum for two reasons.
First of all, the majority of cache lines exhibit little reuse, as
shown in Figure 5. Second, decoupling the tag-store entries
from the data-store entries has the effect of randomizing the
cache lines in the data storage, reducing the likelihood of
stride-based memory access patterns generating long victim
distances. Table 1 shows the average and worst-case victim
distances for each of the benchmarks studied.
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Table 1. Average and observed worst case victim distance for Reuse Replacement.

[ Bmk [ bzip2 | crafty | gcc [ gzip | mcf [ parser | perlomk | twolf | vortex | vpr | ammp | apsi [ facerec | galgel | mesa [ swim |
Avg 2.2 4.7 4.4 2.8 2.8 2.2 18 2.1 45 4.6 2 2.7 15 34 3.6 1.6
Worst 462 258 140 | 1888 | 1741 706 1504 298 743 434 28 1593 1504 1338 225 212

The average victim distance in Table 1 is less than five
for all benchmarks except perlbmk. The worst case can be
several orders of magnitude greater than the average, as it is
with gzip and mcf. This variability in the victim distance is
unlikely to cause the processor to stall, however. The dead-
line for selecting a data-victim is the arrival of the incom-
ing data line from the next level of the memory hierarchy,
which could be tens or hundreds of cycles. Furthermore,
the logic associated with identifying a data-victim is very
simple. Testing a two-bit counter for a zero value can be
done with a single NOR gate. A simple logic circuit con-
taining eight parallel NOR gates followed by an 8:3 priority
encoder can test and decrement up to 8 reuse counters each
cycle based on a gate-delay timing budget of 12 FO4 (twelve
fanout-of-four gate stages). Assuming that eight counters
can be tested in one cycle, Table 2 shows the probability of
finding a victim as search time increases, based on experi-
mentation.

Table 2. Probability of finding a data-victim as replacement la-

tency increases.
[ Latency [ Lcycle [ 2cycles [ 3cycles | 4cycles | 5cycles |

[ Probability | 91.3% | 96.9% | 98.3% | 98.9% | 99.2% |

The probability of finding a victim within five cycles is
99.2%, and five cycles is well below the miss latency of
modern secondary caches. To avoid the latency of worst
case victim-distances, however, the global replacement en-
gine may simply terminate the search after five cycles and
use the entry pointed by the PTR as the data-victim. Early
termination limits the worst case replacement latency to five
cycles, yields an average replacement latency of 1.2 cycles,
and has a negligible impact on miss rate (<0.1%).

5. Experimental Methodology

The primary performance metric we use to evaluate the
V-Way cache is miss rate. We used a trace driven cache
simulator to generate all results except IPC. In Section 8.1
we analyze the impact of a V-Way cache on overall pro-
cessor performance (IPC) using an out-of-order, execution-
driven simulator. We defer the description of the simulator
configuration to that section.

5.1. CacheHierarchy

Table 3 shows the parameters of the first level instruction
(1) and data (D) caches that we used to generate the traces
for our second level cache. The L1 cache parameters were
kept constant for all experiments. Our baseline includes a
256kB unified second level cache with 8 ways. The size of
our first and second level cache is similar to the Itanium 11
processor [18]. The benchmarks used in this study do not
stress a very large sized cache. For this reason, we chose a
moderately sized L2. Section 8.3 analyzes the effectiveness
of V-Way cache when the cache size is increased. We do
not enforce inclusion in our memory model.

Table 3. Cache Configuration.
L1 I-Cache 16kB; 64B linesize; 2-way with LRU repl.
L1 D-Cache 16kB; 64B linesize; 2-way with LRU repl.

| Baseline L2 | 256kB; 128B linesize; 8-way with LRU repl. |

5.2. Benchmarks

The benchmarks used for all experiments were selected
from the SPEC CPU2000 suite and compiled for the Alpha
ISA with - f ast optimizations and profiling feedback en-
abled. To skip the initialization phase, all benchmarks using
the r ef input set were fast-forwarded for 15 billion instruc-
tions and simulated for 2 billion instructions. For bench-
marks bzip2, gcc, mcf, vpr, and ammp, a slice of 2 billion
instructions from the r ef input set was unable to capture
the varying phase behavior of the benchmarks. For these
benchmarks, the experiments were run with the t est input
set from start to completion with the exception of ammp
which was halted at 1 billion instructions. Benchmarks eon
and fma3d showed extremely low miss rates (<0.1%) for
the baseline configuration and were thus excluded from the
study. We also excluded benchmarks that showed less than a
4% difference in miss rate when the L2 cache size was dou-
bled from 256kB to 512kB. Based on this criteria, gap, art,
applu, equake, lucas, mgrid, sixtrack, and wupwise were
eliminated from consideration. Table 4 lists the total in-
struction count, the number of L2 cache accesses, the base-
line L2 miss rate, and the total size of the L2 footprint for
each benchmark used in our experiments. The L2 footprint
consists of both data and instruction accesses and is mea-
sured by multiplying the number of unique L2 cache lines
by the L2 linesize (128 bytes).
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Figure 7. Reduction in miss rate with : V-way cache (TDR=2), fully-associative cache, and double sized baseline.

Table 4. Benchmark characteristics
Benchmark Inst. | Num L2 Baseline | Footprint
count | accesses | L2 miss rate
bzip2 418 M 42 M 35.7% 6.8 MB
crafty 2000 M 117 M 1.6% 1.5MB
gcc 218 M 6.7M 4.0% 1.7 MB
gzip 2000 M 37M 2.4% 69 MB
mcf 173 M 15M 36.7% 193 MB
parser 2000 M 30 M 33.1% 15 MB
perlbmk 2000 M 34M 2.3% 3 MB
twolf 2000 M 50 M 36.8% 1.7 MB
vortex 2000 M 58M 10.7% 19 MB
vpr 567 M 16 M 11.9% 1.7 MB
ammp 1000 M 98B M 521% | 9.9MB
apsi 2000 M 59 M 44.8% 129 MB
facerec 2000 M 23 M 76.2% 15 MB
galgel 2000 M 218 M 8.1% 16 MB
mesa 2000 M 17M 5.5% 8.1 MB
swim 2000 M 90O M 65.3% 177 MB
6. Results

6.1. Performance of V-Way Cache

Figure 7 shows the relative miss rate reduction for three
different cache configurations compared to the baseline
cache described in Section 5.1. The V-Way cache has a
maximum associativity of 8 ways, and both the V-Way
and the fully-associative cache have a 256kB data-store.
The third cache configuration is a traditional set-associative
cache with the same linesize and associativity as the base-
line, but the data-store is doubled to 512kB. The bar marked
amean was computed by first taking the arithmetic mean of
the miss rates for a given configuration, then comparing this
value to the arithmetic mean of the miss rates for the base-
line cache. The V-Way cache provides an average miss rate
reduction of 13.2% compared to the baseline cache.

The V-Way cache centers around the use of global re-
placement for line fills. Ultimately, the V-Way cache at-

tempts to reduce the miss rate by the same measure as a
fully-associative cache. Thus, a primary upper bound on
the miss rate reduction for the \/-Way cache is provided by a
fully-associative cache of the same size. In Figure 7, we see
the VV-Way cache approach this upper bound for perlbmk,
facerec, and gcc. We refer to the primary upper bound
as a loose upper bound because differences in the LRU
and Reuse Replacement policies can result in the V-Way
cache outperforming the fully-associative cache, as seen
with crafty, vortex, vpr, and twolf. Another upper bound for
the V-Way cache is determined by the TDR value, which
determines the size of the VV-Way tag-store. This secondary
upper bound for the V-Way cache is provided by a tradi-
tional cache of TDR times its data-store size. In Figure 7,
where TDR = 2, the secondary upper bound is the reduction
in miss rate given by a double sized cache.

In general, the miss rate reduction provided by the V-
Way cache is limited by the lower of the two upper bounds.
When both upper bounds are high, as for perlbmk, the miss
rate reduction with V-Way is very significant. V-Way re-
duces the miss rate by 94% for perlomk. For most bench-
marks, increasing the size of the cache results in a greater
miss rate reduction than increasing the associativity. In
these cases, the V-Way cache is limited by the primary up-
per bound. The aberrant behavior of galgel can be attributed
to anti-conflict misses [12].

In some cases, a fully-associative cache outperforms a
larger sized cache due to the presence of sets with unusually
high demand. Mesa, apsi, and ammp exhibit this behavior.
In these cases, the V-Way cache is limited by the secondary
upper bound. In the case of apsi and ammp, the disparity
between the two upper bounds is significant. Note that in
these cases, the secondary upper bound can be controlled by
the cache designer by changing the TDR value. Section 8.2
explores the impact of varying the TDR in greater detail.
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Table 5. Percentage of misses that invoke global replacement.
[ bzip2 [ crafty | gec | gzip | mcf [ parser | perl. | twolf [ vortex | vpr | ammp | apsi [ facerec | galgel | mesa [ swim |

[98% | 90% [ 99% | 99.9% | 70% | 98% | 91% | 98% | 95% | 98.4% | 0.3% | 14% | 96.5% | 99.9% | 91% | 8/% |

Table 6. Comparison of miss rate percentage (lower is better) for perfect LRU replacement and Reuse Replacement.

[ Bmk [ bzip2 | crafty [ gcc | gzip | mcf | parser [ perl. | twolf | vortex | vpr [ ammp [ apsi | facerec [ galgel [ mesa | swim | amean |
LRU 34.6 11 3.8 24 29.5 32.7 0.1 36.5 8.5 11.0 50.0 34.8 50.7 8.3 34 65.3 23.3
Reuse 35.0 10 3.8 24 29.9 329 0.1 354 71 105 50.0 34.8 50.6 8.5 35 65.3 23.2

6.2. Comparing Reuse Replacement to LRU 7. Cost

When a cache miss occurs, the V-Way cache may or may
not use global replacement, depending on whether or not
an invalid entry is found in the target set of the tag-store.
Table 5 shows the percentage of cache misses that invoked
global replacement to find a data-victim.

For twelve of the sixteen benchmarks, global replace-
ment is invoked on more than 90% of the misses. Bench-
marks mcf, ammp, and applu are often forced to use lo-
cal replacement when the demand on sets in the tag-store
exceeds the maximum available associativity. Ammp uses
local replacement almost exclusively, invoking global re-
placement for only 0.3% of the L2 misses. The highly
skewed set-demand in these benchmarks prevents the use
of global replacement and reduces the overall impact of the
V-Way technique.

One of the most interesting results from Figure 7 is
that the V-Way cache outperforms the fully-associative
cache for crafty, vortex, vpr, and twolf. This result arises
from differences in behavior of the replacement policies
used by the two caches. The fully-associative cache uses
perfect LRU replacement, whereas the V-Way cache uses
Reuse Replacement. Perfect LRU requires that every line
remain resident in the cache until all other cache lines have
been either accessed or evicted. Reuse Replacement, on
the other hand, may test and decrement several counters
each time the replacement algorithm is invoked, evicting
low-reuse data lines more quickly than LRU. Also, Reuse
Replacement can potentially retain high reuse lines four
times as long as perfect LRU. Table 6 compares the miss
rate of a V-Way cache using perfect LRU replacement to
that of a V-Way cache using Reuse Replacement.

For vortex and vpr, Reuse Replacement outperforms per-
fect LRU, whereas perfect LRU outperforms Reuse Re-
placement in bzip2, mcf and galgel. Overall, Reuse Re-
placement is better than LRU for five benchmarks, there is a
tie for six benchmarks, and LRU is better for the remaining
five benchmarks. On average, Reuse Replacement performs
marginally better than perfect LRU, albeit at a substantially
lower cost and complexity.

In this section we evaluate the storage, latency, and en-
ergy costs associated with the \/-Way cache. Storage is mea-
sured in terms of register bit equivalents. To model cache
access latency and energy we used Cacti v3.2[19].

7.1. Storage

The additional hardware for the V-Way cache consists of
the following: (1) Extra tags; The exact number is deter-
mined by the TDR, (2) Forward pointers (FPTR) for each
tag-store entry, and (3) Reverse pointers (RPTR) + Reuse
Counters for each data-store entry. The total storage re-
quirements for both the baseline and the V-Way cache are
calculated in Table 7. A physical address space of 36 bits is
assumed.

Table 7. Storage cost analysis.
| | Baseline [ V-Way Cache |

Each tag-store entry contains:
status (v+dirty+LRU) 5 bits 5 bits
tag (36-logasets-log2128) 21 bits 20 bits
FPTR - 11 bits
Size of tag-store entry 26 bits 36 bits
Each data-store entry contains:
status (v+reuse) - 3 bits
data 128*8 bits 128*8 bits
RPTR (log24096) - 12 bits
Size of data-store entry 1024 bits 1039 bits
Number of tag-store entries 2048 4096
Number of data-store entries 2048 2048
Size of the tag-store 6.7 kB 18.4 kB
Size of the data-store 256 kB 259 kB

[ Total (tag-store+data-store) Size | 262.7kB | 2774kB |

For the experiments in this paper, the overhead of the

V-Way cache increases the total area of the baseline cache
by 5.8%. This overhead depends on linesize, however. Ta-
ble 8 shows the cost and performance benefit for various
linesizes. As the linesize increases, the benefit provided by
V-Way increases and the storage overhead decreases.

7.2. Latency

The V-Way cache incurs a latency penalty due to the ad-
ditional tag-store entries combined with the addition of the
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Table 8. Cost-benefit analysis for various linesizes.

Linesize | Baseline | V-Way cache | Missrate | Increase
miss rate miss rate reduction in area
64 B 34.2% 30.6% 10.5% 11.6%
128 B 26.7% 23.2% 13.2% 5.8%
256 B 22.9% 19.5% 14.9% 2.9%

FPTR to each individual entry. The access latency is also
extended by a mux delay to select the correct FPTR. Ta-
ble 9 shows the access time for two process technologies:
65nm and 90nm. The latency overhead of the V-Way cache
is 0.19ns in 90nm technology and 0.13ns in 65nm technol-
ogy. This delay can further be reduced with circuit level
optimizations. We assume this added latency will result in
at most one extra cycle for the cache access.

Table 9. Cache access latency.

Technology | Config Tag access time | Total access time
(tag+data)
90nm Baseline 0.48ns 2.45ns
V-Way 0.67ns 2.64ns
65nm Baseline 0.35ns 1.76ns
V-Way 0.48ns 1.89ns
7.3. Energy

The additional tag-store entries and control information
in the V-Way cache increase energy consumption compared
to the baseline. Table 10 shows the energy required per
cache hit for both the baseline and the V-Way cache. Both
the baseline and V-Way use serial tag and data lookup.

Table 10. Energy per cache access.

Technology | Parallel | Baseline | V-Way
lookup

90nm 1.52nJ 0.65nJ 0.73nJ

65nm 1.02nJ 0.35nJ 0.40nJ

The energy consumption for a traditional cache with par-
allel tag and data lookup is shown for reference. Both the
baseline and the V-Way cache reduce energy considerably
compared to the parallel lookup cache. The additional tag-
store entries in the VV-Way cache increase the energy per ac-
cess by 0.08nJ and 0.05nJ for 90nm and 65nm technologies,
respectively.

8. Analyss

In this section, we present the impact of the V-Way cache
on overall processor performance. We also evaluate the per-
formance of the V-Way cache for different TDR values and
cache sizes. Finally, we provide some intuition behind what
makes the V-Way cache work, and we discuss the limita-
tions of the technique.

8.1. Impact on System Performance

To evaluate the effect of the V-Way cache on overall pro-
cessor performance, we use an in-house execution-driven
simulator based on the Alpha ISA. The processor we model
is an eight-wide machine with out-of-order execution. Tag
comparison and data lookup are serial operations in the
baseline L2 cache, resulting in a hit-latency of 10 cycles.
The relevant parameters of the model are given in Table 11.
As the baseline L2 is 256kB, we assume that the next level
in the memory hierarchy is just 80 cycles away.

Table 11. Baseline processor configuration.

Fetch/Issue/Retire Width 8 instructions/cycle, 8 functional units

Instruction Window Size 128 instructions

Hybrid with 64k-entry gshare, 64k-entry
PAs and 64k-entry meta-predictor
misprediction penalty is 12 cycles min.

Branch Predictor

L1 Instruction Cache 16kB, 64B linesize, 2-way with LRU repl.

L1 Data Cache 16kB, 64B linesize, 2-way, 2 cycle hit

L2 Unified Cache 256kB, 128B linesize, 8 way, 10 cycle hit

L3/Main Memory Infinite size, 80 cycle access

Processor to bus frequency ratio 4:1
Latency one bus-cycle
Bandwidth 16B/bus-cycle

L3/Main Memory to L2 Bus

Figure 8 shows the performance improvement measured
in instructions per cycle (IPC) between the baseline proces-
sor and the same processor with a V-Way L2 cache. The
replacement latency of a V-Way cache miss was limited to a
worst case of five cycles. IPC improvements are shown for
both 10 and 11 cycle hit latencies The bar labeled gmean
is the geometric mean of the individual IPC improvements
seen by each benchmark.
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Figure 8. Percentage IPC improvement over the baseline for a
system with a V-Way L2 cache.

The processor with the V-Way cache outperforms the
baseline by an average of 8.5% for a 10 cycle latency. If
the latency of the V-Way cache increases by one cycle,
the IPC improves by an average of 6.8% compared to the
baseline. Mcf, perlbmk, vortex, ammp, apsi, and facerec
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show significant performance improvement using the V-
Way cache. The greatest performance improvement is seen
in apsi, where IPC increases by 44% for a 10 cycle V-Way
cache.

All benchmarks, except twolf, show an IPC improve-
ment at an access latency of 10 cycles. For crafty, gcc,
perlbmk, and vortex adding an additional cycle of latency
results in a considerable decrease in IPC. This can be at-
tributed to the relatively large instruction working set of
these benchmarks. While out-of-order execution can hide
the latency of a first level data cache miss by executing addi-
tional instructions, misses in the first level instruction cache
result in pipeline stalls. In such cases, the additional cycle
in the L2 access latency reduces the IPC improvement of
global replacement.

8.2. Impact of Varying Tag-to-Data Ratio

Our previous results have assumed TDR = 2. Here, we
analyze the impact on miss rate when the TDR is varied.
Figure 9 shows the reduction in miss rate relative to the
baseline for several different TDR values in a V-Way cache.
Four benchmarks are chosen to illustrate different program
behavior.

Power-of-two TDR values, such as 2 or 4, cause the num-
ber of sets in the tag-store to be doubled, quadrupled, etc.
while associativity is held constant. For non-power-of-two
TDR values, the number of sets in the tag-store is first in-
creased to the largest possible power-of-two. Additional
tag-store entries are then added as individual ways until the
TDR is satisfied. For example, a TDR of 1.125 is satisfied
by adding a ninth way to an eight way cache.
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Figure 9. Miss rate reduction (higher is better) relative to base-
line vs. TDR.

Because a VV-Way cache with TDR = 1 is equivalent to
the baseline, all four curves originate at 0%. The general
trend for all four benchmarks is that the miss rate decreases
as the TDR increases. For mcf, and vortex, the reduction in
miss rate grows linearly until a “knee” is encountered in the
curve, beyond which the miss rate remains fairly constant.
The curve for facerec resembles a step-function, showing a
sharp improvement in miss rate for a TDR = 2, but other-
wise insensitive to TDR variation. Ammp shows a steady

improvement in miss rate as the TDR increases from one to
four.

The V-Way cache exploits the benefit of global data re-
placement through additional tag-store entries and variable
associativity. One measure of the success of the V-Way
cache is the percentage of data-victims chosen using Reuse
Replacement as opposed to local replacement (see Table 5).
As the TDR increases, the probability of finding an in-
valid tag-store entry on a cache miss also increases, result-
ing in selection of the data-victim via Reuse Replacement.
Saturation occurs when the tag-store is sufficiently large
that adding more entries will not increase the likelihood of
finding an invalid tag-store entry upon a cache miss.

Ammp is strictly limited by the size of the tag-store. Ta-
ble 5 shows that ammp uses local replacement to find a
data-victim for more than 99% of its cache misses. Simply
doubling the size of the cache fails to improve cache perfor-
mance because the demand on the cache sets remains too
high for the cache to support. Furthermore, doubling the
number of tag-store entries fails to improve performance
considerably. In Figure 7, the V-Way cache with TDR =
2 improves the miss rate by exactly the same amount as the
double sized cache (4%). As the number of tag-store entries
increases beyond TDR = 2, however, the secondary upper
bound increases (Section 6.1), providing more potential for
miss rate reduction.

8.3. Impact of Varying Cache Size

We analyze the impact of cache size on the performance
of the V-Way cache by varying the size from 256kB to 1MB.
Figure 10 shows the miss rate averaged across all sixteen
benchmarks for the traditional cache and the V-Way cache.
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Figure 10. Average miss rate (lower is better) for cache size of
256kB, 512kB, and 1MB.

V-Way reduces miss rate compared to the traditional 8-
way cache for both 512kB and 1MB cache sizes. However,
it should be noted that when the cache size is increased,
some benchmarks start to fit in the cache, leaving no room
for miss rate improvement. For the remaining benchmarks,
the global replacement provided by V-Way still helps to re-
duce miss rate.
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8.4. Variable Set Demand

The demand on an individual set in a V-Way cache can be
measured by the number of valid tags present in the set over
time. If accesses are uniformly distributed across all the
sets, we would expect all the sets to have exactly 1/TDR
of their tags valid (i.e. one-half for TDR = 2) at any given
time in the program. To measure this non-uniformity, we
define the following three levels of demand for a V-Way
cache with a maximum 8-way associativity based on the
number of valid tags in each set: low demand (0-2), medium
demand (3-5), and high demand (6-8).

We sample the second level V-Way cache every 100K
accesses and measure the demand on each set. Figure 11
shows the variation in set demand during execution for mcf
and facerec. The horizontal axis is shown in intervals of
100K accesses, and the vertical axis shows the percentage
of all sets in the cache from 0 to 100%.

100-

80
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mcf facerec

50

Figure 11. Distribution of low demand(white), medium de-
mand(gray), and high demand(black) sets.

Mcf consists of distinct program phases where the set
demand varies from almost completely uniform to evenly
distributed. Facerec exhibits two distinct repeating phases.
One phase shows uniform medium demand, and the second
phase is composed almost entirely of high and low demand
sets. The V-Way cache supports this variable demand by
increasing associativity of high demand sets, while reducing
the associativity of low demand sets.

9. Reated Work

High performance cache design has received much at-
tention in both industry and academia. We summarize the
work that most closely resembles the techniques proposed
in this paper, distinguishing our work where appropriate.

Hallnor et al [7] proposed the Indirect Index Cache (11C)
as a mechanism to achieve full-associativity through soft-
ware management. The I1C serializes tag comparison and
data lookup by storing a forward pointer in the tag-store
to identify the corresponding data line. Cache access in
the 11C is performed using a structure similar to a hash ta-
ble with chaining. If a matching tag is not found in the
set-associative tag-store, a pointer associated with the set is
used as a direct mapped index into a collision table. Each
entry in this second table provides a pointer to the next

member of the collision chain. The chain is traversed un-
til either a match is found or the maximum chain length is
reached. We distinguish the V-Way cache from the I1C with
the following points:

1. 11C requires collision chain traversal, resulting in vari-
able hit latency and port contention. V-Way indexes
the tag-store only once and has constant hit latency.

2. 11C requires swapping of tag entries (i.e. promoting
entries to the set-associative table on a collision table
hit) to reduce average hit latency to a reasonable value.
Swapping is undesirable because it requires four ac-
cesses to the tag-store, consumes energy, and increases
port contention. V-Way does not require swapping.

3. 1IC management is very complex due to the variable
number of tag-store accesses, insert/remove operations
in the singly-linked collision table, and insert/remove
operations in the doubly-linked queues used in genera-
tional replacement. 11C requires software management
of the replacement algorithm. V-Way is managed en-
tirely in hardware.
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Figure 12. Comparison of V-Way with IIC. Both swapping-
enabled and swapping-disabled configurations are evaluated.

IIC can trade miss rate reduction for access latency by
varying the number of entries in the collision table. Fig-
ure 12 compares the V-Way cache and Reuse Replacement
with various configurations of 11C and generational replace-
ment, devoting equal area to both V-Way and I1C. Though
the miss rate reduction provided by 11C and V-Way are com-
parable, V-Way avoids the increased access latency, swap-
ping, and complexity associated with 1IC.

In the NURAPID cache [4] the access latency of different
cache lines varies depending on the physical placement of
data within the data-store. NURAPID serializes tag compar-
ison and data lookup to accommodate distance replacement
— the promotion and demotion of data lines to different dis-
tance groups — without affecting the arrangement of the tag-
store entries. This serialization is accomplished through the
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use of forward pointers in the tag-store and reverse point-
ers in the data-store. NURAPID targets access latency as
opposed to VV-Way, which targets miss rate. Moreover, Nu-
RAPID has the same number of entries in the tag and data
stores, has a fixed associativity for all sets, and exclusively
uses local replacement to find data-victims.

The adaptive group-associative cache (AGAC) [13] at-
tempts to improve the performance of first level, direct-
mapped caches. AGAC has variable access latency, needs
multiple banks to aid swapping, and has a structure that
does not lend itself to global replacement. For replacement,
AGAC essentially chooses a victim randomly from the lines
that are not tracked by its history gathering structure. The
benefit provided by AGAC reduces with increasing associa-
tivity. Our studies show that AGAC reduces average miss
rate by 3.16%, compared to 13.2% with V-Way.

Prime modulo hashing [10] and skewed associativity[15]
attempt to distribute memory accesses uniformly across
cache sets by targeting the indexing function. These ap-
proaches suffer from the negative effects of local data re-
placement due to the static mapping of tag-store entries to
data lines in each set.

Puzak [14] proposed the inclusion of extra tags in a
shadow directory to provide feedback to a local replacement
engine in a set-associative cache. These extra tags are used
strictly for maintaining replacement information for evicted
data lines, however, and do not provide information about
data lines resident in the cache.

10. Conclusion

Traditional cache design implicitly assumes that mem-
ory accesses are uniformly distributed across the sets in the
cache. In different phases of program execution, however,
memory accesses deviate from this uniform behavior, cre-
ating an imbalance in the demand on individual sets in the
cache. We propose the V-Way Cache, a design that allows
the associativity to vary on a per-set basis by increasing
the number of tag-store entries relative to the number of
data lines. We also propose Reuse Replacement, a global
replacement policy based on frequency information. The
Reuse Replacement policy is both fast and implementable,
selecting a victim within five cycles for 99.3% of the evic-
tions. A 256kB, 8-way second level V-Way cache using
Reuse Replacement outperforms a traditional cache of the
same size and associativity by 13%. This results in an aver-
age IPC improvement of 8%.

The V-Way cache provides a platform for other optimiza-
tions such as cache compression and power management.
Invalid tag-store entries can be used to maintain inclusion
information without the need for duplicating cache lines
in the data-store. The V-Way cache has a built-in shadow
directory that can provide feedback information to the re-
placement policy. Future work includes evaluating the im-
pact of these optimizations.
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