
1

Rescue: A Microarchitecture
for Testability and Defect

Tolerance
Ethan Schuchman and T. N. Vijaykumar

School of Electrical and Computer Engineering

Purdue University

2

Defects Under Scaling
Hard defects not transient faults
Why defects increasing problem?
Scaling inherently increases defect susceptibility
Constant chip area
=> defects/chip (λ) increases => yield decreases as e-λ

Solved by reducing impurity particles/wafer in fab
But scaling impurities may not be viable beyond 65nm [ITRS]

sc
al

in
g

€

wiresdefects

Defects only get worse
Worth exploring architectural solutions

3

Defect Tolerance for Yield: Today

Defective components turned off at test time
Computation redirected to “like components” at run time
Prevalent in memory system:

– spare row, columns, subarrays
Beginning to appear at Core level in CMPs

– Called CPU sparing
– Disable defective core, use the rest

 But increasing defect rate => lose many cores
We show finer granularity is feasible, results in better throughput

4

Fine-grain Defect Tolerance

At microarchitecture level
• Rescues cores deemed defective by CPU sparing

Needs defect isolation to microarchitecture granularity
• Currently difficult and needs prohibitively more testing time
Once defective components known, disabling easy
• Architecture already accounts for busy resources

Defect avoidance easy
Defect isolation hard using realistic testing (time and hardware)

5

 Realistic Fine-grain Defect
Isolation

Rules of the game:
• Should be based on standard testing methodology

– Else hard to integrate into current testing process
• Isolation to microarchitectural blocks

– Else can’t support fine-grained defect tolerance
• Isolation time close to (conventional) detection time

– Else not economical
• Extra logic kept minimal

– Else degrades yield

6

Contributions
First paper to integrate testing and architecture
Change architecture, not testing, for fast isolation
Identify Intra-Cycle Logic Independence (ICI)
• Sufficient condition for fast isolation
Propose ICI-compliant microarchitecture called Rescue

Show Rescue suffers only small IPC reduction
– compared to non defect-tolerant CPU

Evaluate average throughput adjusting for yield
Show Rescue improves over CPU sparing alone

7

Overview

Introduction
Background: Scan chains
Intra-Cycle Logic Independence
Rescue
Methodology and Results
Conclusions

8

Detecting Defects with Scan
Most prevalent testing technique today
Latches replaced with scan equivalents
Connected into shift register
State shifted in and out through scan chain
Requires only 3 pins: SI, SO, SE
Automated Test Pattern Generation (ATPG)
• Creates test input and output vectors
• Each vector tests many defects in parallel

Efficient in time and extra hardware

9

Scan ExampleScan in

Scan out

Logic

Latches

Scan in: 100101 Expected: 010001Scan out: 011001

10

Defect Isolation with Scan
Isolate defects to path between input and output scan cells
• Each scan cell maps to a set of these paths

– Each path can pass through one or more components
– Defect must be along these paths

La
tc

h
1

A

B
C

In a pipeline scan isolates defects to paths WITHIN 1 CYCLE

D

Defect may be in block A, B, or C but not D
Not good enough to isolate to only A or only B

La
tc

h
2

Detecting
cell

Input cells

11

Overview

Introduction
Background: Scan chains
Intra-Cycle Logic Independence
Rescue
Methodology and Results
Conclusions

12

La
tc

h

Intra-Cycle Logic Independence (ICI)
To isolate defect to components:
Each scan bit maps to one path with only one component
=> Each component independent of others for one cycle
We call this condition ICI
ICI is sufficient condition for fast isolation to one component

La
tc

h

La
tc

h

A

B
C

X

Y

No ICI ICI

La
tc

h

All superscalar stages do not have ICI
We propose transformations to enforce ICI

La
tc

h

La
tc

h

13

ICI Transformations

No dependence
within 1 cycle

- Pipeline deeper
+ Little area

overhead

A
La

tc
h

La
tc

h

B

C

La
tc

hA

La
tc

h

B

C

La
tc

h
A

La
tc

h

B

C

La
tc

h

A

No ICI 1) Cycle Splitting 2) Logic Privatization

super component ICI
No dependence

within 1 cycle
- Increased area
+ No performance

penalty

B & C depend on A
within 1 cycle

14

ICI Transformations (cntd.)

3) Dependence Rotation
For pipeline stages with loops (i.e. issue)
Allows logic privatization
Does not increase loop size

La
tc

h

La
tc

h A

B C C
'

La
tc

h

A

B

La
tc

h

C
'

La
tc

h

A

B

La
tc

h

C
'

Dependent
 within 1cycle

Dependent
 within 1cycle

Independent
 within 1cycle

Choose transformation based on structure & penalty

15

Overview

Introduction
Background: Scan chains
Intra-Cycle Logic Independence
Rescue
Methodology and Results
Conclusions

16

Rescue Microarchitecture
Paper describes necessary ICI modifications to each stage
Also details of how defective components avoided at run time

Now describe enforcing ICI only in Issue due to time limitations
Warning: intricate issue implementation details coming

17

Baseline Issue Stage

• Selection
– chooses ready instructions for each ALU

• Broadcast
– Notifies waiting instruction when others issue
– Issued instructions wakeup dependents

• Compaction
– Moves instructions toward head to maintain priority
– Fills empty/issued entries

18

Baseline Issue Stage (cntd.)
Entry affects others through selection and compaction
Defective behavior spreads within one cycle

X

Y

Issue Queue Select Tree

defect

defect

compaction

selection
A

B

Defect X corrupts entry B through compaction
Defect Y corrupts entry A through selection
Hard to attribute corruption to a specific (possibly distant) defect

19

 Baseline Issue Stage (cntd)
Too much dependence to create ICI for every entry
Instead enforce ICI between two segments
So need to worry only about inter-segment ICI violations
• Compaction of instructions from tail to head
• Compaction counts from head to tail
• Selection from both segments

compaction

Wake-up
broadcastta

il

La
tc

h

he
ad se
l

se
l

ro
ot

Select tree

Issue queue

Enforce ICI at architecturally convenient granularity

20

ta
il

La
tc

h

he
ad se
l

se
l

ro
ot

Enforcing ICI in Rescue’s Compaction
Use cycle splitting
Compacted instructions & signals saved in temporary latch
Segments read only from latch => no dependence in 1 cycle
Free entry unavailable to insert instruction for 1 more cycle

ta
il

he
ad

Latch
instructions

signals

Cycle splitting has small performance penalty here

Latch

21

ro
ot

'

Enforcing ICI in Rescue’s Selection

Root violates ICI by communicating with both segments
Ensures instructions selected from both segments < width
Use dependence rotation and logic privatization to enforce ICI
Function of root now done at the beginning of cycle

ta
il

he
ad

se
l

se
l

ro
ot

'

Segments are independent within 1 cycle

La
tc

h

ta
il

La
tc

h

he
ad se
l

se
l

ro
ot

22

 Enforcing ICI in Rescue’s Selection
(cntd.)

Two segments are independent within the cycle
Each segment doesn’t know how many selected in the other
Each segment obeys width constraint in selecting
But the sum between the two segments may exceed width

May select too many instructions

ro
ot

'

ta
il

he
ad

se
l

se
l

ro
ot

'

La
tc

h

23

Fixing Excess Select in Rescue

At beginning of cycle, roots check all broadcasts
If too many instructions issued:
• replay instructions from one segment,
• block broadcast from that segment
Non-replayed instructions guaranteed to obey width

No penalty in common case of no excess

ro
ot

'

ta
il

he
ad

se
l

se
l

ro
ot

'

La
tc

h

24

Defect Isolated but How to Map it Out

If one renamer in 2-way pipe defective:
• no point in trying to use 2 ways of decode
So we map out the entire frontend way (same for backend)
For issue and load/store queue map out the defective segment

Extremely fine-grain map out not needed => avoid
overhead in map out

F D R

F D R

R E M W C

R E M W C

I

2-Way Pipeline

25

Overview

Introduction
Background: Scan chains
Intra-Cycle Logic Independence
Rescue
Methodology and Results
Conclusions

26

Methodology
• Evaluate Testability of Rescue

– Create Verilog model and map to gate level
– Simulate stuck-at faults

• Determine Yield Adjusted Throughput
– Performance Simulations
– Yield Calculations

64k, 2ML1s, L2

Performance

2, 2FP ALU, mult/div

4, 2Int ALU, mult/div

36, 36IQs, LSQ
4Issue width

Area

40%Chipkill
4%LSQ
21%FP backend
15%Int backend
4%FP IQ
4%Int IQ
12%Front end
107 mm2Total Rescue
96 mm2Total Base

27

Results
Isolate faults only 13% longer than detection in conventional
• Vs. orders of magnitude for diagnosis in conventional
Rescue 4% lower average IPC compared to no defect tolerance
Up to 40% YAT improvement at 18nm node

Technology Node (nm)

28

Overview

Introduction
Background: Scan chains
Intra-Cycle Logic Independence
Rescue
Methodology and Results
Conclusions

29

Conclusions
First paper to integrate testing and architecture
Showed fast isolation through architecture, not testing
Identified Intra-Cycle Logic Independence (ICI)

Sufficient condition for fast isolation
Created ICI compliant microarchitecture called Rescue
Showed ICI modifications cause only small IPC reduction
Evaluated average throughput adjusting for yield
Showed Rescue improves over CPU sparing alone

Rescue important for future technologies

