
Energy-Effectiveness of Pre-execution
and

Energy-Aware P-Thread Selection

Vlad Petric, Amir Roth

University of Pennsylvania



Pre-Execution
What it is: a performance technique

What it does: hides microarch latencies
• Cache misses (branch mispredictions too)

How: p-threads (pre-execution “helper” threads)
• Statically isolate slices leading to cache misses

• Dynamically spawn copies in parallel with main thread

Performance-redundancy trade-off



Pre-Execution
What it is: a performance technique

What it does: hides microarch latencies
• Cache misses (branch mispredictions too)

How: p-threads (pre-execution “helper” threads)
• Statically isolate slices leading to cache misses

• Dynamically spawn copies in parallel with main thread

Performance-redundancy trade-off

Previously: performance considerations only
• PTHSEL: automated P-THread SELection framework



Pre-Execution
What it is: a performance technique

What it does: hides microarch latencies
• Cache misses (branch mispredictions too)

How: p-threads (pre-execution “helper” threads)
• Statically isolate slices leading to cache misses

• Dynamically spawn copies in parallel with main thread

Performance-redundancy trade-off

Previously: performance considerations only
• PTHSEL: automated P-THread SELection framework

This work: redundancy = energy
• PTHSEL+E : manipulate performance/energy trade-off



Outline
Pre-Execution / DDMT primer

Performance and energy evaluation

PTHSEL: performance-only p-thread selection (review)

PTHSEL+E: energy-aware p-thread selection
• An explicit energy model

• A better latency reduction model

Performance and energy re-evaluation



DDMT
DDMT (Data-Driven Multi-Threading)
• One implementation of pre-execution

1. P-threads derived from actual program

2. Control-less: all p-thread instances identical

3. Chain-less: number of spawns under tight control



DDMT
DDMT (Data-Driven Multi-Threading)
• One implementation of pre-execution

1. P-threads derived from actual program

2. Control-less: all p-thread instances identical

3. Chain-less: number of spawns under tight control

2+3. Aggregate p-thread behavior easy to analyze



DDMT
DDMT (Data-Driven Multi-Threading)
• One implementation of pre-execution

1. P-threads derived from actual program

2. Control-less: all p-thread instances identical

3. Chain-less: number of spawns under tight control

2+3. Aggregate p-thread behavior easy to analyze

1+2+3. PTHSEL: automated p-thread selection framework



Example I: P-Thread Generation
Static code:
for (i = 0; i < 100; i++) {

if (xn[i].cover == PART)

id = xn[i].id; 70 times

else

id = xn[i].g id; 30 times

receipts += rx[id].price; 50 misses

...

}

Problem load: 100 executions, 50 misses

Address-predicting this load is hard



Example I: P-Thread Generation
Static code:
for (i = 0; i < 100; i++) {

if (xn[i].cover == PART)

id = xn[i].id;

else

id = xn[i].g id;

receipts += rx[id].price;

...

}

Execution:
id = xn[i].id;

receipts += rx[id].price;

...

i++;

id = xn[i].id;

receipts += rx[id].price;

...

i++;

id = xn[i].g id;

receipts += rx[id].price;

...

i++;

id = xn[i].id;

receipts += rx[id].price;



Example I: P-Thread Generation
Static code:
for (i = 0; i < 100; i++) {

if (xn[i].cover == PART)

id = xn[i].id;

else

id = xn[i].g id;

receipts += rx[id].price;

...

}

Execution:
id = xn[i].id;

receipts += rx[id].price;

...

i++;

id = xn[i].id;

receipts += rx[id].price;

...

i++;

id = xn[i].g id;

receipts += rx[id].price;

...

i++;

id = xn[i].id;

receipts += rx[id].price;



Example I: P-Thread Generation
Static code:
for (i = 0; i < 100; i++) {

if (xn[i].cover == PART)

id = xn[i].id;

else

id = xn[i].g id;

receipts += rx[id].price;

...

}

Execution:
id = xn[i].id;

receipts += rx[id].price;

...

i++;

id = xn[i].id;

receipts += rx[id].price;

...

i++;

id = xn[i].g id;

receipts += rx[id].price;

...

i++;

id = xn[i].id;

receipts += rx[id].price;



Example I: P-Thread Generation
Static code:
for (i = 0; i < 100; i++) {

if (xn[i].cover == PART)

id = xn[i].id;

else

id = xn[i].g id;

receipts += rx[id].price;

...

}

Execution:
id = xn[i].id;

receipts += rx[id].price;

...

i++;

id = xn[i].id;

receipts += rx[id].price;

...

i++;

id = xn[i].g id;

receipts += rx[id].price;

...

i++;

id = xn[i].id;

receipts += rx[id].price;



Example I: P-Thread Generation
Static code:
for (i = 0; i < 100; i++) {

if (xn[i].cover == PART)

id = xn[i].id;

else

id = xn[i].g id;

receipts += rx[id].price;

...

}

Execution:
id = xn[i].id;

receipts += rx[id].price;

...

i++;

id = xn[i].id;

receipts += rx[id].price;

...

i++;

id = xn[i].g id;

receipts += rx[id].price;

...

i++;

id = xn[i].id;

receipts += rx[id].price;



Example I: P-Thread Generation
Static code:
for (i = 0; i < 100; i++) {

if (xn[i].cover == PART)

id = xn[i].id;

else

id = xn[i].g id;

receipts += rx[id].price;

...

}

Static p-thread:
i++;

i++;

i++;

id = xn[i].id;

prefetch &rx[id].price;

Execution:
id = xn[i].id;

receipts += rx[id].price;

...

i++;

id = xn[i].id;

receipts += rx[id].price;

...

i++;

id = xn[i].g id;

receipts += rx[id].price;

...

i++;

id = xn[i].id;

receipts += rx[id].price;



Example I: P-Thread Generation
Static code:
for (i = 0; i < 100; i++) {

if (xn[i].cover == PART)

id = xn[i].id;

else

id = xn[i].g id;

receipts += rx[id].price;

...

}

Static p-thread:
i++;

i++;

i++;

id = xn[i].id;

prefetch &rx[id].price;

Execution:
id = xn[i].id;

receipts += rx[id].price;

...

i++;

id = xn[i].id;

receipts += rx[id].price;

...

i++;

id = xn[i].g id;

receipts += rx[id].price;

...

i++;

id = xn[i].id;

receipts += rx[id].price;



Example II: Runtime
Main-thread execution:
id = xn[i].id;

receipts += rx[id].price;

...

i++;

P-thread execution:



Example II: Runtime
Main-thread execution:
id = xn[i].id;

receipts += rx[id].price;

...

i++;

P-thread execution:

spawn



Example II: Runtime
Main-thread execution:
id = xn[i].id;

receipts += rx[id].price;

...

i++;

id = xn[i].id;

receipts += rx[id].price;

...

i++;

P-thread execution:

i++;

i++;

id = xn[i].id;

prefetch &rx[id].price;

spawn



Example II: Runtime
Main-thread execution:
id = xn[i].id;

receipts += rx[id].price;

...

i++;

id = xn[i].id;

receipts += rx[id].price;

...

i++;

id = xn[i].g id;

receipts += rx[id].price;

...

i++;

id = xn[i].id;

receipts += rx[id].price;

P-thread execution:

i++;

i++;

id = xn[i].id;

prefetch &rx[id].price;

spawn



Example II: Runtime
Main-thread execution:
id = xn[i].id;

receipts += rx[id].price;

...

i++;

id = xn[i].id;

receipts += rx[id].price;

...

i++;

id = xn[i].g id;

receipts += rx[id].price;

...

i++;

id = xn[i].id;

receipts += rx[id].price;

P-thread execution:

i++;

i++;

id = xn[i].id;

prefetch &rx[id].price;

miss latency

spawn



Example II: Runtime
Main-thread execution:
id = xn[i].id;

receipts += rx[id].price;

...

i++;

id = xn[i].id;

receipts += rx[id].price;

...

i++;

id = xn[i].g id;

receipts += rx[id].price;

...

i++;

id = xn[i].id;

receipts += rx[id].price;

P-thread execution:

i++;

i++;

id = xn[i].id;

prefetch &rx[id].price;

spawn

spawn

spawn



Performance/Energy Evaluation
Performance: SimpleScalar Alpha++
• 6-way superscalar out-of-order, 8-threads

• 32KB I/D$, 512KB L2, 200-cycle memory latency

• Critical path post-mortem based on Fields et al.

Energy: Wattch/CACTI++
• 180nm, 2GHz, 1.5V, aggressive clock-gating

• 5% of max energy saved in “sleep mode”
• e.g. Pentium 4 Mobile

Benchmarks: SPECint2000
• Only subset that has L2 misses



Performance
lower is better

0

20

40

60

80

100

120

fetch

other

mem

bzip2 gap gcc mcf parser twolf vortex vpr.p vpr.r
B B B B B B B B BPE PE PE PE PE PE PE PE PE

Execution latency reduced 14%
+ Memory latency: reduced 20%

– Fetch bandwidth: increased 8% (much more for bzip2, mcf)



Energy
again, lower is better

0

20

40

60

80

100

120

140

main thread

E-idle 

p-threads

bzip2 gap gcc mcf parser twolf vortex vpr.p vpr.r
B B B B B B B B BPE PE PE PE PE PE PE PE PE

Energy increased 12% → Energy-delay reduced 2%
– Dynamic p-thread energy

“Energy-negative”, “ED-neutral” ... we can do better



Energy
again, lower is better

0

20

40

60

80

100

120

140

main thread

E-idle 

p-threads

bzip2 gap gcc mcf parser twolf vortex vpr.p vpr.r
B B B B B B B B BPE PE PE PE PE PE PE PE PE

Energy increased 12% → Energy-delay reduced 2%
– Dynamic p-thread energy

“Energy-negative”, “ED-neutral” ...

we can do better



Energy
again, lower is better

0

20

40

60

80

100

120

140

main thread

E-idle 

p-threads

bzip2 gap gcc mcf parser twolf vortex vpr.p vpr.r
B B B B B B B B BPE PE PE PE PE PE PE PE PE

Energy increased 12% → Energy-delay reduced 2%
– Dynamic p-thread energy

“Energy-negative”, “ED-neutral” ... we can do better



Outline
Pre-Execution / DDMT primer

Performance and energy evaluation

PTHSEL: performance-only p-thread selection (review)

PTHSEL+E: energy-aware p-thread selection
• An explicit energy model

• A better latency reduction model

Performance and energy re-evaluation



PTHSEL Overview

prefetch &rx[id]

id=xn[i].id

i++

i++

i++

• • •

i++

id=xn[i].g_id

i++

i++

i++

• • •

i++

Slice tree
• All possible static p-threads

• Node → spawn-point

• Path to root → p-thread body

i++

i++

i++

id=xn[i].id

prefetch &rx[id]



PTHSEL Overview

prefetch &rx[id]

id=xn[i].id

i++

i++

i++

• • •

i++

id=xn[i].g_id

i++

i++

i++

• • •

i++

Slice tree
• All possible static p-threads

• Node → spawn-point

• Path to root → p-thread body

i++

i++

i++

id=xn[i].id

prefetch &rx[id]



PTHSEL Overview

prefetch &rx[id]

id=xn[i].id

i++

i++

i++

• • •

i++

id=xn[i].g_id

i++

i++

i++

• • •

i++
P-thread generation: easy

P-thread selection: hard

Short p-threads
+ Lower overhead

– Lower latency tolerance

Long p-threads
– Higher overhead

+ Higher latency tolerance

PTHSEL finds the sweetspot... quantitatively



PTHSEL Overview

prefetch &rx[id]

id=xn[i].id

i++

i++

i++

• • •

i++

id=xn[i].g_id

i++

i++

i++

• • •

i++
P-thread generation: easy

P-thread selection: hard

Short p-threads
+ Lower overhead

– Lower latency tolerance

Long p-threads
– Higher overhead

+ Higher latency tolerance

PTHSEL finds the sweetspot... quantitatively



PTHSEL Overview

prefetch &rx[id]

id=xn[i].id

i++

i++

i++

• • •

i++

id=xn[i].g_id

i++

i++

i++

• • •

i++
P-thread generation: easy

P-thread selection: hard

Short p-threads
+ Lower overhead

– Lower latency tolerance

Long p-threads
– Higher overhead

+ Higher latency tolerance

PTHSEL finds the sweetspot... quantitatively



PTHSEL Latency Model

prefetch
&rx[id]

id=xn[i].id

i++

i++

i++

• • •

i++

Benefit: miss latency reduction
• LBENEFIT(p) = MISSES(p) × LRED-MISS(p)

• LRED-MISS(p): dataflow height calculation

Cost: fetch bandwidth contention
• LCOST(p) = SPAWNS(p) × SIZE(p) × DISCOUNT

• SPAWNS(p) ≥ MISSES(p): both from profile
• DISCOUNT: unused bandwidth is “free”

Advantage: benefit – cost
• LADV(p) = LBENEFIT(p) – LCOST(p)

Sweetspot? as p-threads get longer...
• Some things get better, others get worse



PTHSEL Latency Model

prefetch
&rx[id]

id=xn[i].id

i++

i++

i++

• • •

i++

Benefit: miss latency reduction
• LBENEFIT(p) = MISSES(p) × LRED-MISS(p)

• LRED-MISS(p): dataflow height calculation

Cost: fetch bandwidth contention
• LCOST(p) = SPAWNS(p) × SIZE(p) × DISCOUNT

• SPAWNS(p) ≥ MISSES(p): both from profile
• DISCOUNT: unused bandwidth is “free”

Advantage: benefit – cost
• LADV(p) = LBENEFIT(p) – LCOST(p)

Sweetspot? as p-threads get longer...
• Some things get better, others get worse



PTHSEL Latency Model

prefetch
&rx[id]

id=xn[i].id

i++

i++

i++

• • •

i++

Benefit: miss latency reduction
• LBENEFIT(p) = MISSES(p) × LRED-MISS(p)

• LRED-MISS(p): dataflow height calculation

Cost: fetch bandwidth contention
• LCOST(p) = SPAWNS(p) × SIZE(p) × DISCOUNT

• SPAWNS(p) ≥ MISSES(p): both from profile
• DISCOUNT: unused bandwidth is “free”

Advantage: benefit – cost
• LADV(p) = LBENEFIT(p) – LCOST(p)

Sweetspot? as p-threads get longer...
• Some things get better, others get worse



PTHSEL Latency Model

prefetch
&rx[id]

id=xn[i].id

i++

i++

i++

• • •

i++

Benefit: miss latency reduction
• LBENEFIT(p) = MISSES(p) × LRED-MISS(p)

• LRED-MISS(p): dataflow height calculation

Cost: fetch bandwidth contention
• LCOST(p) = SPAWNS(p) × SIZE(p) × DISCOUNT

• SPAWNS(p) ≥ MISSES(p): both from profile
• DISCOUNT: unused bandwidth is “free”

Advantage: benefit – cost
• LADV(p) = LBENEFIT(p) – LCOST(p)

Sweetspot? as p-threads get longer...
• Some things get better, others get worse



From PTHSEL to PTHSEL+E

PTHSEL: p-threads target latency reduction

PTHSEL+E: p-threads target energy reduction
• Or any latency/energy combination (e.g., ED, ED2)

• New benefit/cost functions, e.g., EADV(p)

• Explicit energy model
• Better latency model



From PTHSEL to PTHSEL+E

PTHSEL: p-threads target latency reduction

PTHSEL+E: p-threads target energy reduction
• Or any latency/energy combination (e.g., ED, ED2)

• New benefit/cost functions, e.g., EADV(p)

• Explicit energy model
• Better latency model



PTHSEL+E Energy Model
Energy cost: dynamic p-thread energy consumption
• ECOST(p) = SPAWNS(p) × SIZE(p) × Einsn

• Einsn = EI$ + Erename + ... (see paper)
• No DISCOUNT: energy is never “free”



PTHSEL+E Energy Model
Energy cost: dynamic p-thread energy consumption
• ECOST(p) = SPAWNS(p) × SIZE(p) × Einsn

• Einsn = EI$ + Erename + ... (see paper)
• No DISCOUNT: energy is never “free”

Energy benefit: truly idle → “sleep mode”
• EBENEFIT(p) = LADV(p) × Eidle

• Eidle: per-cycle energy saved by “sleeping”



PTHSEL+E Energy Model
Energy cost: dynamic p-thread energy consumption
• ECOST(p) = SPAWNS(p) × SIZE(p) × Einsn

• Einsn = EI$ + Erename + ... (see paper)
• No DISCOUNT: energy is never “free”

Energy benefit: truly idle → “sleep mode”
• EBENEFIT(p) = LADV(p) × Eidle

• Eidle: per-cycle energy saved by “sleeping”

Energy advantage
• EADV(p) = EBENEFIT(p) – ECOST(p)



PTHSEL+E Energy Model
Energy cost: dynamic p-thread energy consumption
• ECOST(p) = SPAWNS(p) × SIZE(p) × Einsn

• Einsn = EI$ + Erename + ... (see paper)
• No DISCOUNT: energy is never “free”

Energy benefit: truly idle → “sleep mode”
• EBENEFIT(p) = LADV(p) × Eidle

• Eidle: per-cycle energy saved by “sleeping”

Energy advantage
• EADV(p) = EBENEFIT(p) – ECOST(p)

Energy constants: Einsn, Eidle

• Reverse engineered or OEM supplied



A Better Latency Model
EADV(p) builds on LADV(p)

– But LADV(p) not accurate enough to build on

• Proof? slowdown in mcf

Diagnosis: optimistic LRED-MISS(p)

• Miss latency 1-to-1 with execution time

– Doesn’t account for MLP

– P-threads with little/no actual advantage

0

20

40

60

80

100

120

mcf
B PE

Fix: critical-path based LRED-MISS(p)

• Miss latency 1-to-1 with execution time while miss is critical

• See paper for details



A Better Latency Model
EADV(p) builds on LADV(p)

– But LADV(p) not accurate enough to build on

• Proof? slowdown in mcf

Diagnosis: optimistic LRED-MISS(p)

• Miss latency 1-to-1 with execution time

– Doesn’t account for MLP

– P-threads with little/no actual advantage
0

20

40

60

80

100

120

mcf
B PE

Fix: critical-path based LRED-MISS(p)

• Miss latency 1-to-1 with execution time while miss is critical

• See paper for details



A Better Latency Model
EADV(p) builds on LADV(p)

– But LADV(p) not accurate enough to build on

• Proof? slowdown in mcf

Diagnosis: optimistic LRED-MISS(p)

• Miss latency 1-to-1 with execution time

– Doesn’t account for MLP

– P-threads with little/no actual advantage
0

20

40

60

80

100

120

mcf
B PE

Fix: critical-path based LRED-MISS(p)

• Miss latency 1-to-1 with execution time while miss is critical

• See paper for details



PTHSEL+E “Targets”
Latency: LADV(p)

Energy: EADV(p)



PTHSEL+E “Targets”
Latency: LADV(p)

Energy: EADV(p)

ED: EDADV(p) = L0×E0 – (L0–LADV(p)) × (E0–EADV(p))

• L0, E0: profiling (E0/L0 is enough)



PTHSEL+E “Targets”
Latency: LADV(p)

Energy: EADV(p)

ED: EDADV(p) = L0×E0 – (L0–LADV(p)) × (E0–EADV(p))

• L0, E0: profiling (E0/L0 is enough)

ED2: similar

EW D(1−W ): choose your precise metric



Outline
Pre-Execution / DDMT primer

Performance and energy evaluation

PTHSEL: performance-only p-thread selection (review)

PTHSEL+E: energy-aware p-thread selection
• An explicit energy model

• A better latency reduction model

Performance and energy re-evaluation



Performance/Energy Re-evaluation
now, higher is better

-20

-10

0

10

20
IPC energy ED

mcf vpr.place
O O

O: PTHSEL (latency)

L: PTHSEL+E latency
E: PTHSEL+E energy
P: PTHSEL+E ED

+ PTHSEL+E fixes PTHSEL latency model (mcf)

+ PTHSEL+E is “robust”
• Targeting X actually minimizes X (X = latency, energy, ED)



Performance/Energy Re-evaluation
now, higher is better

-20

-10

0

10

20
IPC energy ED

mcf vpr.place
O OL L

O: PTHSEL (latency)
L: PTHSEL+E latency

E: PTHSEL+E energy
P: PTHSEL+E ED

+ PTHSEL+E fixes PTHSEL latency model (mcf)

+ PTHSEL+E is “robust”
• Targeting X actually minimizes X (X = latency, energy, ED)



Performance/Energy Re-evaluation
now, higher is better

-20

-10

0

10

20
IPC energy ED

mcf vpr.place
O OL LE E

O: PTHSEL (latency)
L: PTHSEL+E latency
E: PTHSEL+E energy

P: PTHSEL+E ED

+ PTHSEL+E fixes PTHSEL latency model (mcf)

+ PTHSEL+E is “robust”
• Targeting X actually minimizes X (X = latency, energy, ED)



Performance/Energy Re-evaluation
now, higher is better

-20

-10

0

10

20
IPC energy ED

mcf vpr.place
O OL LE EP P

O: PTHSEL (latency)
L: PTHSEL+E latency
E: PTHSEL+E energy
P: PTHSEL+E ED

+ PTHSEL+E fixes PTHSEL latency model (mcf)

+ PTHSEL+E is “robust”
• Targeting X actually minimizes X (X = latency, energy, ED)



Performance/Energy Re-evaluation
again, higher is better

-20

-10

0

10

20

30

40

bzip2 gap gcc mcf parser twolf vortex vpr.place vpr.route
O O O O O O O O OL L L L L L L L LE E E E E E E E EP P P P P P P P P

PTHSEL: +14% latency, –12% energy, +2% ED

PTHSEL+E: +16% latency, +1% energy, +9% ED
• Not all at once: your choice



Performance/Energy Re-evaluation
again, higher is better

-20

-10

0

10

20

30

40

IPC energy ED

bzip2 gap gcc mcf parser twolf vortex vpr.place vpr.route
O O O O O O O O OL L L L L L L L LE E E E E E E E EP P P P P P P P P

PTHSEL: +14% latency, –12% energy, +2% ED

PTHSEL+E: +16% latency, +1% energy, +9% ED
• Not all at once: your choice



Eidle: The Energy Reduction Lever
higher is still better

-40

-30

-20

-10

0

10

20

30

40

L P

0% 5% 10%

bzip2

Eidle=0: worst-case
– Energy reduction impossible

+ ED neutrality possible

Eidle=5: current
+ ED reduction

+ Energy neutrality

Eidle=10: future
+ ED reduction

+ Energy reduction

As Eidle increases ...
pre-execution’s energy picture improves



Eidle: The Energy Reduction Lever
higher is still better

-40

-30

-20

-10

0

10

20

30

40

L P L EP

0% 5% 10%

bzip2

Eidle=0: worst-case
– Energy reduction impossible

+ ED neutrality possible

Eidle=5: current
+ ED reduction

+ Energy neutrality

Eidle=10: future
+ ED reduction

+ Energy reduction

As Eidle increases ...
pre-execution’s energy picture improves



Eidle: The Energy Reduction Lever
higher is still better

-40

-30

-20

-10

0

10

20

30

40

L P L EP L EP

0% 5% 10%

bzip2

Eidle=0: worst-case
– Energy reduction impossible

+ ED neutrality possible

Eidle=5: current
+ ED reduction

+ Energy neutrality

Eidle=10: future
+ ED reduction

+ Energy reduction

As Eidle increases ...
pre-execution’s energy picture improves



Eidle: The Energy Reduction Lever
higher is still better

-40

-30

-20

-10

0

10

20

30

40

L P L EP L EP

0% 5% 10%

bzip2

Eidle=0: worst-case
– Energy reduction impossible

+ ED neutrality possible

Eidle=5: current
+ ED reduction

+ Energy neutrality

Eidle=10: future
+ ED reduction

+ Energy reduction

As Eidle increases ...

pre-execution’s energy picture improves



Conclusion
Pre-Execution: a performance technique

PTHSEL: quantitative p-thread selection framework
+ Precise control over latency/redundancy tradeoff

To date: only performance considered
• Pre-execution is “energy-negative”, “ED-neutral”

+ Not bad for a performance technique, but...



Conclusion
Pre-Execution: a performance technique

PTHSEL: quantitative p-thread selection framework
+ Precise control over latency/redundancy tradeoff

To date: only performance considered
• Pre-execution is “energy-negative”, “ED-neutral”

+ Not bad for a performance technique, but...

PTHSEL+E

• Choose your metric: latency, energy, ED, ED2, etc.

• Energy reduction lever: Eidle (“sleep mode”)

+ As Eidle grows ... pre-execution’s energy improves


	Pre-Execution
	Pre-Execution
	Pre-Execution

	Outline
	DDMT
	DDMT
	DDMT

	Example I: P-Thread Generation
	Example I: P-Thread Generation
	Example I: P-Thread Generation
	Example I: P-Thread Generation
	Example I: P-Thread Generation
	Example I: P-Thread Generation
	Example I: P-Thread Generation
	Example I: P-Thread Generation

	Example II: Runtime
	Example II: Runtime
	Example II: Runtime
	Example II: Runtime
	Example II: Runtime
	Example II: Runtime

	Performance/Energy Evaluation
	Performance
	Energy
	Energy
	Energy

	Outline
	PTHSEL Overview
	PTHSEL Overview

	PTHSEL Overview
	PTHSEL Overview
	PTHSEL Overview

	PTHSEL Latency Model
	PTHSEL Latency Model
	PTHSEL Latency Model
	PTHSEL Latency Model

	From PTHSEL to PTHSEL�oldmath $_{+E}$
	From PTHSEL to PTHSEL�oldmath $_{+E}$

	PTHSEL�oldmath $_{+E}$ Energy Model
	PTHSEL�oldmath $_{+E}$ Energy Model
	PTHSEL�oldmath $_{+E}$ Energy Model
	PTHSEL�oldmath $_{+E}$ Energy Model

	A Better Latency Model
	A Better Latency Model
	A Better Latency Model

	PTHSEL�oldmath $_{+E}$ ``Targets''
	PTHSEL�oldmath $_{+E}$ ``Targets''
	PTHSEL�oldmath $_{+E}$ ``Targets''

	Outline
	Performance/Energy Re-evaluation
	Performance/Energy Re-evaluation
	Performance/Energy Re-evaluation
	Performance/Energy Re-evaluation

	Performance/Energy Re-evaluation
	Performance/Energy Re-evaluation

	E�oldmath $_{idle}$: The Energy Reduction Lever
	E�oldmath $_{idle}$: The Energy Reduction Lever
	E�oldmath $_{idle}$: The Energy Reduction Lever
	E�oldmath $_{idle}$: The Energy Reduction Lever

	Conclusion
	Conclusion


