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• One implementation of pre-execution

1. P-threads derived from actual program

2. Control-less: all p-thread instances identical

3. Chain-less: number of spawns under tight control

2+3. Aggregate p-thread behavior easy to analyze

1+2+3. PTHSEL: automated p-thread selection framework



Example I: P-Thread Generation
Static code:
for (i = 0; i < 100; i++) {

if (xn[i].cover == PART)

id = xn[i].id; 70 times

else

id = xn[i].g id; 30 times

receipts += rx[id].price; 50 misses

...

}

Problem load: 100 executions, 50 misses

Address-predicting this load is hard
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Performance/Energy Evaluation
Performance: SimpleScalar Alpha++
• 6-way superscalar out-of-order, 8-threads

• 32KB I/D$, 512KB L2, 200-cycle memory latency

• Critical path post-mortem based on Fields et al.

Energy: Wattch/CACTI++
• 180nm, 2GHz, 1.5V, aggressive clock-gating

• 5% of max energy saved in “sleep mode”
• e.g. Pentium 4 Mobile

Benchmarks: SPECint2000
• Only subset that has L2 misses



Performance
lower is better
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PTHSEL Latency Model
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Benefit: miss latency reduction
• LBENEFIT(p) = MISSES(p) × LRED-MISS(p)

• LRED-MISS(p): dataflow height calculation

Cost: fetch bandwidth contention
• LCOST(p) = SPAWNS(p) × SIZE(p) × DISCOUNT

• SPAWNS(p) ≥ MISSES(p): both from profile
• DISCOUNT: unused bandwidth is “free”

Advantage: benefit – cost
• LADV(p) = LBENEFIT(p) – LCOST(p)

Sweetspot? as p-threads get longer...
• Some things get better, others get worse
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Energy cost: dynamic p-thread energy consumption
• ECOST(p) = SPAWNS(p) × SIZE(p) × Einsn

• Einsn = EI$ + Erename + ... (see paper)
• No DISCOUNT: energy is never “free”

Energy benefit: truly idle → “sleep mode”
• EBENEFIT(p) = LADV(p) × Eidle

• Eidle: per-cycle energy saved by “sleeping”

Energy advantage
• EADV(p) = EBENEFIT(p) – ECOST(p)

Energy constants: Einsn, Eidle

• Reverse engineered or OEM supplied



A Better Latency Model
EADV(p) builds on LADV(p)

– But LADV(p) not accurate enough to build on

• Proof? slowdown in mcf

Diagnosis: optimistic LRED-MISS(p)

• Miss latency 1-to-1 with execution time

– Doesn’t account for MLP

– P-threads with little/no actual advantage
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PTHSEL+E “Targets”
Latency: LADV(p)

Energy: EADV(p)

ED: EDADV(p) = L0×E0 – (L0–LADV(p)) × (E0–EADV(p))

• L0, E0: profiling (E0/L0 is enough)

ED2: similar

EW D(1−W ): choose your precise metric
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+ Energy neutrality

Eidle=10: future
+ ED reduction

+ Energy reduction

As Eidle increases ...

pre-execution’s energy picture improves
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Pre-Execution: a performance technique

PTHSEL: quantitative p-thread selection framework
+ Precise control over latency/redundancy tradeoff

To date: only performance considered
• Pre-execution is “energy-negative”, “ED-neutral”

+ Not bad for a performance technique, but...
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+ Precise control over latency/redundancy tradeoff
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+ Not bad for a performance technique, but...

PTHSEL+E

• Choose your metric: latency, energy, ED, ED2, etc.

• Energy reduction lever: Eidle (“sleep mode”)

+ As Eidle grows ... pre-execution’s energy improves
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