Microarchitecture of a High-Radix Router

John Kim, William J. Dally, Brian Towles¹, and Amit K. Gupta

Concurrent VLSI Architecture Stanford University ¹D.E. Shaw Research & Development

Interconnection Network

Supercomputer networks: Cray X1

On-chip Networks: MIT RAW

> I/O Interconnects: Myrinet/Infiniband

Router Fabrics: Avici TSR

ISCA'05

High-Radix Routers

Bandwidth Trend

Bandwidth Trend

Current Interconnection Networks

- Earlier works [Dally '90, Agarwal '91] suggested "lower-radix" networks
 - Examples: Torus Routing Chip, Cray T3E, SGI Altix 3000
- Current Routers
 - Myrinet : radix-32
 - Quadrics : radix-8
 - IBM SP2 Switch : radix-8
- Technology trends
 - Increasing Bandwidth
 - Optical signaling

High-Radix Routers can take better advantage of these technology trends.

Outline

- Technology Trends for High Radix Router
- Motivation for High Radix Router
- High Radix Router Architectures
 - Baseline Architecture
 - Fully Buffered Crossbar
 - Hierarchical Crossbar
- Conclusion & Future Work

High-Radix Router

High-Radix Router

Latency in a Network

- Latency = Header Latency + Serialization Latency
 - $= H t_r + L / b$
 - $= 2t_r \log_k N + 2kL / B$
 - where k = radix B = total Bandwidth N = # of nodes L = message size

Latency vs. Radix

Determining Optimal Radix

Latency	=	Header Latency + Serialization Latency

 $= Ht_r + L/b$

$$= 2t_r \log_k N + 2kL / B$$

where k = radix B = total Bandwidth N = # of nodes L = message size

Optimal radix $\Rightarrow k \log_2 k = (B t_r \log N) / L$ = Aspect Ratio

Higher Aspect Ratio, Higher Optimal Radix

Higher Radix, Lower Cost

Outline

- Technology Trend for High Redix Router
- Motivation for High Redix Router
- High Radix Router Architectures
 - Baseline Architecture
 - Fully Buffered Crossbar
 - Hierarchical Crossbar
- Conclusion & Future Work

Virtual Channel Router Architecture

High-Radix Switch Architectures (I)

(a) Baseline design

Simulation Methodology

- Open-loop simulation done with steady-state measurement
- Output switch arbitration required two cycles
- Wire delay included in the pipeline
- Uniform random traffic pattern
- Each packet was assumed to be a single flit
- Radix=64 router evaluated with 4 VCs per input
- Metrics latency & throughput
- Cost area

Baseline Performance Evaluation

Baseline Performance Evaluation

High-Radix Switch Architectures (II)

Fully Buffered Crossbar Provides High Performance but

... Becomes Costly to build

High-Radix Switch Architectures (III)

Hierarchical Crossbar Performance on Uniform Random Traffic

Worst-case Traffic Pattern

Worst Case Performance Comparison

4k Node Network Performance

High-Radix Router Microarchitecture

- In building high radix router, there are scaling issues as the number of ports increase
- Baseline design provides poor performance
- Fully buffered crossbar leads to high performance but a costly design
- Hierarchical crossbar provides a feasible design with minimal loss in performance

Conclusion

- Performance of digital systems is often limited by the interconnection network
- Increasing on thip bandwidth can be more efficiently used by a *high-radix* routers.
- High radix lead to lower cost and lower latency networks
- A high radix router requires a different architecture
- A hierarchical organization makes high radix routers feasible

Future Work

- Optimal topology for high radix network
 - Clos topology suited for high radix routers
- Routing- How to adaptively route in a high radix router?
- Flow control with high-radix router
- Simulating a larger network
- Microarchitecture Alternative to crossbars : multistage switch organizations, network onchip (torus, mesh, etc.)

Thank you

Questions?