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| ntroduction

@ Need for efficient management of secondary caches.
@ |deal cache: fully associative with OPT replacement.
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Fully Associative Caches. Cost v/s Benefit

@ Benefits

@ Conflict miss elimination
a Globa Replacement (finds the best victim)

Q@ Cost

@ Significant increase in the number of tag comparisons
@ |ncreased access latency
@ Increased power consumption
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Fully Associative Caches. Cost v/s Benefit

@ Benefits

@ Conflict miss elimination
a Globa Replacement (finds the best victim)

Q@ Cost

@ Significant increase in the number of tag comparisons
@ |ncreased access latency
@ Increased power consumption

Can we get the benefits of afully associative cache without paying
the cost?
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Example of L ocal Replacement

ADDRESS TAG-STORE DATA-STORE
WORKING SET
dx0
dx1
SET A | xO| x1| x2| x3 -
dx2
X = {>I<O, xll, xl2, xCI%} dx3
Y ={y0, y1,y2,y3} dy0
I l l I
\ dyl
SETB |y0|yl|y2|y3 -
dy?2
dy3
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Example of L ocal Replacement

ADDRESS TAG-STORE DATA-STORE
WORKING SET
dx0
dx1
SET A | xO| x1| x2| x3 -
dx2
X = {0, X1, X2, X3, X4} dx3
Y ={y0, y1, y2} dyO
L1 |
\ dyl
SETB |y0|yl|y2|y3 -
dy?2
dy3
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Example of L ocal Replacement

ADDRESS TAG-STORE DATA-STORE
WORKING SET
dx4
dx1
SET A | x4| x1| x2| x3 >
dx2
X = {x0, X1, X2, X3, x4} dx3
Y ={y0, y1, y2} dyO
L1 |
\ dyl
SETB |y0|yl|y2|y3 -
dy?2
dy3
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Example of L ocal Replacement

ADDRESS TAG-STORE DATA-STORE
WORKING SET
THRASH dx4
dx1
SET Al | x4| x1| x2| x3 >
dx2
X = {x0, X1, X2, X3, x4} dx3
Y ={y0, y1, y2} dyO
L1 |
\ dyl
SETB |y0|yl|y2|y3 -
/ dy2
DORMANT WAY =1 dy3
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Example of L ocal Replacement

ADDRESS TAG-STORE DATA-STORE
WORKING SET
THRASH dx4
dx1
SET Al | x4 | x1| x2| x3 >
dx2
X = {x0, X1, X2, X3, x4} dx3
Y ={y0, y1, y2} dyO
L1 |
\ dyl
SETB |y0|yl|y2|y3 -
/ dy2
DORMANT WAY =1 dy3

Static partitioning of resources.
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Example of Global Replacement

REDISTRIBUTED
ADDRESS TAG-STORE DATA-STORE

WORKING SET

SET AO X0 | x2

X ={x0, x1,x2,x3} SETBO y0|y2

Y ={y0,y1,y2,y3} SETALl |xl|x3

~ SET Bl
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Example of Global Replacement

REDISTRIBUTED
ADDRESS TAG-STORE DATA-STORE

WORKING SET
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Example of Global Replacement

REDISTRIBUTED
ADDRESS TAG-STORE DATA-STORE

WORKING SET

SET AO X0 | x2| x4

X = {x0, x1, X2, X3, X4} SETBO | y0|y2

Y = {y0, y1, y2} SETAL |x1|x3

\ SET B1

Dynamic sharing of resources!!

yl
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TheV-Way Cache

STATUS | TAG | FPTR TAG-STORE DATA-STORE
DATA
ARRAY
V| RPTR
TAG | INDEX| OFF
\

TAG FPTR
COMPARE SELECTJ

HIT

DATA

REPLACEMEN
SCHEME

GLOBAL }
.
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TheV-Way Cache
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TheV-Way Cache

STATUS | TAG | FPTR TAG-STORE DATA-STORE
DATA
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TheV-Way Cache
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TheV-Way Cache
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TheV-Way Cache

[sTATUS | TAG |FPTR | TAG-STORE i DATA-STORE

DATA
ARRAY

V| RPTR

TAG | INDEX| OFF |
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00 [ X 1] i
|

TAG FPTR | 1 |
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Configuration Tag Access | Data Replacement

&

Set-Associative Fast & Local #

Fully-Associative
V-Way
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TheV-Way Cache
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TheV-Way Cache
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A Practical Global Replacement Algorithm

@ LRU isimpractical because there are thousands of lines

@ Second level cache access stream i1s afiltered version of the
program access stream

@ Reuse frequency is skewed towards the low end
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Reuse Replacement
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Reuse Replacement

REUSE COUNTER
TABLE
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Reuse Replacement
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Victim Distance for Reuse Replacement

@ Problem of variable replacement latency
@ Average victim distance: 3.9
a Worst case victim distance: 1888
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Victim Distance for Reuse Replacement

@ Problem of variable replacement latency
@ Average victim distance: 3.9
a Worst case victim distance: 1888

@ Solution
a Test eight counters each cycle
@ Limit search to five cycles

Latency (in cycles) 1 2 3 4 5
Probability (victim) | 91.3% | 96.9% | 98.3% | 98.9% | 99.2%
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Outline

@ Introduction

@ Example of Local and Global Replacement
@ The V-Way Cache

@ Evaluation
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Evaluation Outline

@ Experimental Methodology

@ Reduction in Misses with the V-Way Cache
@ Comparing Reuse Replacement and LRU
@ Storage, Latency, and Energy Cost

@ Impact on IPC
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Experimental Methodology

@ First level 1-cache, D-cache: 16kB, 2-way, 64B linesize, LRU
@ Basdline L2: Unified, 256kB, 8-way, 128B linesize, LRU

@ Benchmarks: SPEC CPU2000
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Reduction in Misseswith the V-Way Cache

@ Primary upper bound: Fully associative cache
@ Secondary upper bound: Double sized cache
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Reduction in Misseswith the V-Way Cache

@ Primary upper bound: Fully associative cache
@ Secondary upper bound: Double sized cache
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Comparing Reuse Replacement and LRU

Comparison of miss-rate for LRU and Reuse replacement

Bmk | bzip2 | crafty | gcc | gzip | mcf | parser | perl. | twolf | vortex

LRU 34.6 1.1 | 38| 24 | 295 | 327 | 01 | 365 8.5

Reuse | 35.0 1.0 | 38| 24 [ 299 | 329 | 01 | 354 7.1
Bmk vpr | ammp | apsi | facerec | galgel | mesa | swim | amean
LRU | 11.0 | 50.0 | 34.8 | 50.7 8.3 34 | 653 | 233
Reuse | 10.5 | 50.0 | 34.8 | 50.6 8.5 35 | 653 | 232
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Storage, Latency, and Energy Cost

@ Storage needed for extratags, FPTR, RPTR, and Reuse bits

Line-size | Miss-rate reduction | Increase in area

128 B 13.2% 5.8%
256 B 14.9% 2.9%
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Storage, Latency, and Energy Cost

@ Storage needed for extratags, FPTR, RPTR, and Reuse bits

Line-size | Miss-rate reduction | Increase in area

128 B 13.2% 5.8%
256 B 14.9% 2.9%

@ Delay dueto moretags and FPTR selection: 0.13 ns

@ Energy in accessing bigger tag-store

Parallel lookup | Baseline | V-Way

1.02nJ 0.35nJ | 0.40nJ
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|mpact on | PC

@ Pipeline: 12 stage, 8 wide with 128 entry reservation station
@ L1 hitlatency of 2 cyclesand L2 hit latency of 10 cycles
@ L3/Man memory: access-latency of 80 cycles
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|mpact on | PC

@ Pipeline: 12 stage, 8 wide with 128 entry reservation station
@ L1 hitlatency of 2 cyclesand L2 hit latency of 10 cycles
@ L3/Man memory: access-latency of 80 cycles

N
(6

D
o
|

= \/-Way (same hit latency as base)
== \/-Way (additional one cycle hit latency)

oW
o1

wW
o

N
o1

N
o

=
(6

=
o

Per centage | PC improvement over base

The International Symposium on Computer Architecture - 2005 18/23



Outline

@ Introduction

@ Example of Local and Global Replacement
@ The V-Way Cache

@ Evauation

@ Rdated Work and Conclusion

The International Symposium on Computer Architecture - 2005 19/23



Related Wor k

@ Extrastorage for conflict misses: Victim cache [Jouppi 1SCA 90]

@ Multi-probe techniques
@ Predictive sequential associative cache [Calder+ HPCA 96]
@ Adaptive group associative cache [Peir+ ASPLOS 98]

@ Cacheindexing function
@ Skewed associativity [Seznec ISCA 93]

@ Prime-modulo indexing [Kharbutli+ HPCA' 04]

@ Software managed fully associative cache: |1 C [Halinor+ 1SCA 00]
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Other Possible Applications of the V-Way Cache

@ Platform for global replacement with inbuilt shadow directory
@ Tag inclusion data exclusion [piranhalSCA 00]
@ Cache compression [Hallnor+ HPCA 05]

@_ Interaction with NURAPID [chishti+ MICRO 03]
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Conclusion

Traditional cache assumes uniform accesses across sets

Global replacement allows the V-Way cache to vary the
number of valid ways depending on the set demand

Reuse replacement is fast and performs comparable to LRU
V-Way cache can lower miss-rate and improve performance

V-Way cache can serve as an infrastructure for other
optimizations
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Questions
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