Debugging the Machine Learning Pipeline

Jerry Zhu

University of Wisconsin-Madison

joint work with Xuezhou Zhang, Stephen Wright Interpretable ML Symposium, NIPS 2017

Debugging provides an opportunity for machine learning interpretability.

Harry Potter toy example

Hired by the Ministry of Magic?

+ yes
o no

Data contain historical biases

Learned vs. ideal decision boundary

(RBF kernel logistic regression)

Trusted items

- obtained by expensive vetting
- insufficient to learn from

Debugging using trusted items

- propose training label bugs
- flipping them makes re-trained model agree with trusted items

Proposed bugs

given to experts to interpret

The ML pipeline

$$\begin{array}{c} \operatorname{data}\;(X,Y) \\ \to \boxed{\operatorname{learner}\;\ell} \to \boxed{\operatorname{parameters}\;\lambda} \to \boxed{\operatorname{model}\;\hat{\theta}} \\ \\ \hat{\theta} = \operatorname*{argmin}_{\theta \in \Theta} \ell(X,Y,\theta) + \lambda \|\theta\| \end{array}$$

Postconditions

$$\Psi(\hat{\theta})$$

Examples:

• "the learned model must correctly predict an important item (\tilde{x}, \tilde{y}) "

$$\hat{\theta}(\tilde{x}) = \tilde{y}$$

"the learned model must satisfy individual fairness"

$$\forall x, x', |p(y = 1 \mid x, \hat{\theta}) - p(y = 1 \mid x', \hat{\theta})| \le L||x - x'||$$

Bug Assumptions

- $lacktriangleq \Psi$ satisfied if we were to train through "clean pipeline"
- bugs are changes to the clean pipeline
- $lacktriangleq \Psi$ violated on the dirty pipeline

This is not our goal

Just to learn a better model:

$$\min_{\theta \in \Theta} \qquad \ell(X, Y, \theta) + \lambda \|\theta\|$$

s.t.
$$\Psi(\theta) = \text{true}$$

This is our goal

To identify bugs and fix them (and learn a better model):

$$\begin{aligned} & \underset{Y',\hat{\theta}}{\min} & & \|Y-Y'\| \\ & \text{s.t.} & & \Psi(\hat{\theta}) = \text{true} \\ & & \hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmin}} \, \ell(X, \textcolor{red}{Y'}, \theta) + \lambda \|\theta\| \end{aligned}$$

Special case: bugs in training labels

- Ψ satisfied if we were to train on "clean data" (X,Y')
- bugs are changes to clean labels

$$(X,Y) = (X,Y' + \Delta)$$

- not just about outliers
- may contain systematic biases

Input / output to our debugger

Input:

- 1. dirty training set (X, Y)
- 2. trusted items (\tilde{X}, \tilde{Y})
- 3. the learner

Output:

- 1. *Y*′
- 2. confidence

Formulation equivalent to machine teaching

$$\begin{split} \min_{Y'} & \quad \|Y' - Y\| \\ \text{s.t.} & \quad \hat{\theta}(\tilde{X}) = \tilde{Y} \\ & \quad \hat{\theta} = \operatorname*{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \ell(x_i, \textbf{\textit{y}}_i', \theta) + \lambda \|\theta\|^2 \end{split}$$

Difficult!

- combinatorial
- bilevel optimization (Stackelberg game)

[Dec. 9 Workshop on Teaching Machines, Robots, and Humans]

Combinatorial to continuous relaxation

step 1. label to probability simplex

$$y_i' \to \delta_i \in \Delta$$

step 2. counting to probability mass

$$||Y' - Y|| \to \frac{1}{n} \sum_{i=1}^{n} (1 - \delta_{i,y_i})$$

step 3. soften postcondition

$$\hat{\theta}(\tilde{X}) = \tilde{Y} \to \frac{1}{m} \sum_{i=1}^{m} \ell(\tilde{x}_i, \tilde{y}_i, \theta)$$

Continuous now, but still bilevel

$$\underset{\delta \in \Delta^{n}, \hat{\theta}}{\operatorname{argmin}} \quad \frac{1}{m} \sum_{i=1}^{m} \ell(\tilde{x}_{i}, \tilde{y}_{i}, \hat{\theta}) + \gamma \frac{1}{n} \sum_{i=1}^{n} (1 - \delta_{i, y_{i}})$$
s.t.
$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} \delta_{ij} \ell(x_{i}, j, \theta) + \lambda \|\theta\|^{2}$$

Removing the lower level problem

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} \delta_{ij} \ell(x_i, j, \theta) + \lambda \|\theta\|^2$$

step 1. the KKT condition

$$\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} \delta_{ij} \nabla_{\theta} \ell(x_i, j, \theta) + 2\lambda \theta = 0$$

step 2. plug implicit function $\theta(\delta)$ into upper level problem

$$\underset{\delta}{\operatorname{argmin}} \quad \frac{1}{m} \sum_{i=1}^{m} \ell(\tilde{x}_i, \tilde{y}_i, \frac{\theta(\delta)}{\theta(\delta)}) + \gamma \frac{1}{n} \sum_{i=1}^{n} (1 - \delta_{i, y_i})$$

step 3. compute gradient ∇_{δ} with implicit function theorem

Software available.

Harry Potter Toy Example

Another special case: bug in regularization weight

(logistic regression)

Postcondition violated

 $\Psi(\hat{\theta})$: Individual fairness (Lipschitz condition)

$$\forall x, x', |p(y = 1 \mid x, \hat{\theta}) - p(y = 1 \mid x', \hat{\theta})| \le L||x - x'||$$

Bug assumption

Learner's regularization weight $\lambda=0.001~\mathrm{was}$ inappropriate

$$\hat{\theta} = \operatorname*{argmin}_{\theta \in \Theta} \ell(X, Y, \theta) + \lambda \|\theta\|^2$$

Debugging formulation

$$\begin{aligned} & \underset{\lambda',\hat{\theta}}{\min} & & (\lambda' - \lambda)^2 \\ & \text{s.t.} & & \Psi(\hat{\theta}) = \text{true} \\ & & \hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmin}} \, \ell(X,Y,\theta) + \frac{\lambda'}{\|\theta\|^2} \end{aligned}$$

Suggested bug

Call for ML bug repository

- ▶ like software bug repositories in software engineering
- need data provenance
 - which training items (or other things) were wrong
 - what they should be

References

- ► Xuezhou Zhang, Xiaojin Zhu, and Stephen Wright. Training set debugging using trusted items. AAAI 2018
- ▶ Gabriel Cadamuro, Ran Gilad-Bachrach, and Xiaojin Zhu. Debugging machine learning models. ICML Workshop on Reliable Machine Learning in the Wild, 2016.
- ► Shalini Ghosh, Patrick Lincoln, Ashish Tiwari, and Xiaojin Zhu. Trusted machine learning for probabilistic models. —
- http://www.cs.wisc.edu/~jerryzhu/machineteaching/