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Abstract

We present a theoretical study of machine teaching
in the setting where the teacher must use the same
training set to teach multiple learners. This prob-
lem is a theoretical abstraction of the real-world
classroom setting in which the teacher delivers the
same lecture to academically diverse students. We
define a minimax teaching criterion to guarantee
the performance of the worst learner in the class.
We prove that the teaching dimension increases
with class diversity. For the classes of conju-
gate Bayesian learners and linear regression learn-
ers, respectively, we exhibit corresponding mini-
max teaching set. We then propose a method to
enhance teaching by partitioning the class into sec-
tions. We present cases where the optimal parti-
tion minimizes aggregate teaching dimension while
maintaining the guarantee of performance on all
learners. Interestingly, we show personalized ed-
ucation (one learner per section) is not necessarily
the optimal partition. Our results generalize ma-
chine teaching to multiple learners and offer insight
on how to teach large classes. 1

Machine learning from independent and identically-
distributed (i.i.d.) training data is well-understood [Valiant,
1984; Vapnik, 1995]. In contrast, machine teaching stud-
ies the minimum training set to teach a target concept to
a learner when a teacher chooses (possibly non-i.i.d.) train-
ing items. The minimum training set size is known as
the teaching dimension (TD) [Goldman and Kearns, 1995;
Shinohara and Miyano, 1991]. Machine teaching is of great
theoretical interest as an inverse problem to machine learn-
ing [Liu et al., 2016; Zhu, 2015; Doliwa et al., 2014; Zilles et
al., 2011; Balbach and Zeugmann, 2009; Angluin, 2004; An-
gluin and Krikis, 1997; Goldman and Mathias, 1996; Math-
ias, 1997; Balbach and Zeugmann, 2006; Balbach, 2008;
Kobayashi and Shinohara, 2009; Angluin and Krikis, 2003;
Rivest and Yin, 1995; Ben-David and Eiron, 1998]. It also has
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application in education [Patil et al., 2014; Singla et al., 2014;
Lindsey et al., 2013; Cakmak and Thomaz, 2011], secu-
rity [Alfeld et al., 2017; 2016; Mei and Zhu, 2015], and in
interactive machine learning [Suh et al., 2016].

However, prior work in machine teaching is limited to
teaching a single learner. Motivated by the most prevalent
teaching paradigm in reality where a teacher gives a class-
room lecture to academically-diverse students, we take ma-
chine teaching one step further: what is the teaching dimen-
sion (and the corresponding optimal training set) if the same
training set must be applied to a class of different learners,
such that all learners succeed?

We propose a new definition of class teaching dimension
to answer this question. Our theoretical results support some
well-known anecdotes: a teacher must spend more effort in
order to teach a more diverse class; and teaching to the av-
erage student as a representative of the whole class [Clement
et al., 2016; Lee and Brunskill, 2012] can be justified under
certain assumptions.

To enhance teaching, we further propose optimal class par-
titioning, where each partition of learners may have its own
optimal training set. We show that the optimal partition can
lead to a reduction in aggregate teaching dimension while still
ensuring learner success. Interestingly, the optimal partition
is not necessarily fully personalized education (each learner
in its own partition) but rather encourages appropriate shar-
ing.

1 Limitation of Classic Machine Teaching
In this section we review machine teaching and point out its
limitations. We consider the problem of teaching a super-
vised learner, where the input space is X (e.g. Rd) and the
output space is Y (e.g. {0, 1} for classification or R for re-
gression). Consider the set of (not necessarily i.i.d.) training
sets of all sizes D = ∪∞n=0(X × Y)n. Let Θ be the model
space. A learning algorithm A is a function D 7→ 2Θ, i.e. A
takes a training set D ∈ D and maps it to a set of models.
For example, the classic version-space learner Avs maps a D
to Avs(D) = {θ ∈ Θ : θ consistent with D}. As another
example, a soft-margin SVM learner maps D to the singleton
set Asvm(D) = {θ̂D}, where θ̂D is the regularized empirical
risk minimizer under the hinge loss.
Definition 1 (Teaching Dimension) The TD of a target
model θ∗ ∈ Θ for learnerA is the size of the smallest training



set such that A learns θ∗:
TDA(θ∗) = min

D∈D
|D|, s.t. A(D) = {θ∗}.

Here |D| is the cardinality of D. Note this is exact teaching
since A must exclude all other models in Θ. If A = Avs we
recover the classic TD [Goldman and Kearns, 1995]; If A =
linear learners we recover the TD in [Liu et al., 2016]. TD
is known for monomials, hypercubes, monotone disjunctive
normal forms, linear regression, logistic regression, SVMs,
etc. TD has also been extended to cooperative teacher/learner
pairs [Zilles et al., 2011; Balbach, 2008].

To illustrate,2 consider a student Aλ who runs ridge re-
gression with regularization parameter λ > 0 on training data
D = (X,Y ) with X ∈ Rn×d, Y ∈ Rn:

Aλ(D) = argminθ
1

2
‖Xθ − Y ‖2 +

λ

2
‖θ‖2

= (X>X + λI)−1X>Y. (1)
For any target model θ∗ ∈ Rd, θ∗ 6= 0, the teacher can con-
struct a single training item with X = θ∗>, Y = λ + ‖θ∗‖2
so that Aλ(D) = {θ∗}. Therefore, TDAλ(θ∗) = 1,∀θ∗ 6=
0 [Liu et al., 2016].

Now consider a class of two students Aλ and Aλ′ , both
running ridge regression but with λ 6= λ′. Critically, we as-
sume that the teacher has to deliver the same lecture D to all
students in the class. It is easy to see that there is no finite
D that can make both students learn exactly θ∗. Teaching
dimension is not well-defined for a classroom setting.

2 Approximately Teaching a Single Student
Our plan to extend teaching dimension to a classroom setting
has two steps. In this section we allow teaching to be ap-
proximate on a single student. In the next section we handle
multiple students.

As the previous example shows, with multiple students but
the same lecture it is generally impossible to achieve exact
teaching for everyone. The teacher has to allow a certain de-
gree of failure in some students’ learned model.
Definition 2 (Student failure) Given a target model θ∗, the
student failure is a function ρ : 2Θ 7→ R+ with the property
ρ({θ∗}) = minS⊆Θ ρ(S).
Example 1 For a ridge regression learner (1), one may de-
fine ρ(A(D)) = ‖A(D)− θ∗‖2. We slightly abused the nota-
tion to use A(D) for the element in the singleton set.
Example 2 Exact teaching can be recovered by defining
ρ(A(D)) = 1[A(D)6={θ∗}].

We say that a student A ε-approximately learns from lec-
ture D if ρ(A(D)) ≤ ρ({θ∗}) + ε. This allows us to extend
teaching dimension to approximate teaching:
Definition 3 (Approximate Teaching Dimension) The ap-
proximate teaching dimension is the smallest training set size
for the learner to ε-approximately learn θ∗. Formally,
TDA,ε(θ

∗) = min
D∈D
|D|, s.t. ρ(A(D)) ≤ ρ({θ∗}) + ε.

2We will use anthropomorphic terms in the paper by calling A a
student,D a lecture, and so on; we use “diversity” to mean academic
diversity, i.e. differences in the learning algorithm A.

Proposition 1 The more the teacher tolerates student failure,
the easier (i.e. requiring less training items) it is to teach:

1. ∀ε1 ≥ ε2, TDA,ε1(·) ≤ TDA,ε2(·).
2. ∀ε > 0, TDA,ε(·) ≤ TDA(·).

Our definition of approximate TD bears a resemblance
to the k-optimal teaching set in [Kobayashi and Shinohara,
2009], and can be viewed as its generalization to arbitrary
learners and student failure functions. As is the case with
classic TD [Goldman and Kearns, 1995], approximate TD is
well-defined for all learners A : D 7→ 2Θ but may not ad-
mit a closed-form expression. For concreteness, throughout
the paper we will present two case studies: teaching conju-
gate Bayesian learners and ridge regression learners. We do
not suggest that real-world students can be reduced to such
simple learners. Nonetheless, the case studies will serve to
illuminate the nuances of classroom teaching.

2.1 Case Study 1: Conjugate Bayesian Learner
The teacher wants to teach the mean µ∗ ∈ R of a Gaussian
distribution N(µ∗, σ2) to a student by constructing a training
set D = {x1, . . . , xn}. The teacher knows the following: the
student Aµ0 is a Bayesian learner with a conjugate prior µ ∼
N(µ0, σ

2
0) on the mean; Aµ0

knows the variance σ2; Given
D, Aµ0

performs standard Bayesian update on the mean:

Aµ0
(D) = N

(
σ2

0

∑
xi + σ2µ0

σ2
0n+ σ2

,
1

n
σ2 + 1

σ2
0

)
. (2)

The teacher measures student failure by the squared distance
between the posterior mean and µ∗, disregarding posterior
variance:

ρ(Aµ0
(D)) =

(
σ2

0

∑
xi + σ2µ0

σ2
0n+ σ2

− µ∗
)2

. (3)

Proposition 2 TDAµ0 ,ε
(µ∗) =

{
0, ‖µ0 − µ∗‖2 ≤ ε
1, otherwise.

Proof: If ‖µ0 − µ∗‖2 ≤ ε then there is no need to teach.
Otherwise, the teacher can use a single training item:

x1 = µ∗ +
σ2

σ2
0

(µ∗ − µ0) (4)

to make ρ(Aµ0({x1})) = 0 by plugging it to (3). Note one
teaching item is enough regardless of how far µ0 is from
µ∗. This case study can be generalized to exponential fam-
ily learners [Zhu, 2013].

2.2 Case Study 2: Ridge Regression Learner
For simplicity we discuss the 1D case. The teacher wants
to teach the slope θ∗ ∈ R of a linear function y =
θ∗x to a student by constructing a training set D =
{(x1, y1), . . . , (xn, yn)}. We further assume all training
items are bounded: |x| ≤ 1. The teacher knows the follow-
ing: the student performs ridge regression as in (1) with reg-
ularization parameter λ. Given D, the student estimates the
parameter as

Aλ(D) =

∑n
i=1 xiyi

λ+
∑n
i=1 x

2
i

. (5)



The teacher measures student failure by

ρ(Aλ(D), θ∗) =

( ∑n
i=1 xiyi

λ+
∑n
i=1 x

2
i

− θ∗
)2

. (6)

Proposition 3 TDAλ,ε(θ
∗) =

{
0, ‖θ∗‖2 ≤ ε
1, otherwise

Proof: If ‖θ∗‖2 ≤ ε there is no need to teach, since without
teaching Aλ(∅) = {0} and this already satisfies approximate
teaching. Otherwise, define

s ≡
n∑
i=1

x2
i , p ≡

n∑
i=1

xiyi. (7)

We have a constraint 0 ≤ s ≤ n due to the norm constraint
on x. The teaching problem is

min
n,s,p

n s.t.
(

p

λ+ s
− θ∗

)2

≤ ε, and 0 ≤ s ≤ n. (8)

By inspection, one solution is n = 1, x = 1, y = θ∗(1 + λ).
With this training set, Aλ({x, y}) = θ∗ and student failure
ρ(Aλ({x, y})) = 0.

Both case studies will continue.

3 Teaching an Academically Diverse Class
We are now ready for the main problem of the paper. There
are multiple (possibly infinite) students in a class, each with a
different learning algorithm A. We denote the set of students
by A. The teacher knows all students A, and must use the
same lecture D to teach them. As shown earlier, exact teach-
ing is impossible in general. The teacher’s goal is then to use
as few training items as possible to make sure that no student
failure is too severe – i.e. to leave no learner behind.

Formally we propose a minimax formulation: The teacher
seeks the minimum lecture D for all students, such that the
worst student’s failure is less than ε:

min
D∈D

|D| (9)

s.t. sup
A∈A

ρ(A(D)) ≤ ρ({θ∗}) + ε. (10)

Definition 4 (Class Teaching Dimension) The class teach-
ing dimension TDA,ε(θ

∗) for all students A in class A to
ε-approximately learn a target model θ∗ ∈ Θ w.r.t. student
failure function ρ is the minimum objective of (9).

It follows that teaching a more academically diverse class-
room requires no less effort.
Proposition 4 ∀A ⊆ A′, ∀ε ≥ 0, TDA,ε(·) ≤ TDA′,ε(·).
Also the more class failure the teacher tolerates, the easier it
is to teach:
Proposition 5 ∀A, ∀ε1 ≥ ε2, TDA,ε1(·) ≤ TDA,ε2(·).

For general learners the class TD can be difficult to com-
pute, since minD is over a combinatorial space of training
sets and supA involves highly nonlinear functions. We turn
our attention to the two case studies, where we are able to de-
rive a closed-form expression for TDA,ε. They serve to quan-
titatively illustrate Proposition 4, namely teaching becomes
harder if the class is more inhomogeneous.

3.1 Teaching a Class in Case Study 1
We continue the story in case study 1. Now instead of a sin-
gle student Aµ0 , there is a class of (possibly infinite) stu-
dents A. All students know that the target distribution has
the form N(·, σ2). They know σ2 and must infer the mean
from the teacher’s training data D = {x1, . . . , xn}. All stu-
dents are conjugate Bayesian learners. Each student Aµi0
has a different prior on the mean µ ∼ N(µi0, σ

2
0), where

the prior mean µi0 varies across the students but all students
have the same prior variance σ2

0 . We can identify the class
A = {µi0 : Aµi0 is a student} by the set of prior means. De-
fine the lower and upper value of prior means as

µL0 = inf A, µU0 = supA. (11)

The teacher knows all the above information, and must design
a good lectureD to ε-approximately teach all students the true
mean µ∗. The teacher uses the same student failure function
as in (3). We now show that the class TD is a monotonic
function of µU0 − µL0 , namely the spread of students.

Lemma 1 Let a > 0 and b1 ≤ b2. We have

1

4
(b2−b1)2 = min

x∈R

{
f(x) := max{(ax− b1)2, (ax− b2)2}

}
and the optimal x∗ satisfies x∗ = b1+b2

2a .

We omit proof for lemmas due to space, while sketching out
proof outlines for theorems.

Theorem 1 The class TD of conjugate Bayesian learners is

TDA,ε(µ
∗) =

{
0, if supµ0∈A ‖µ0 − µ∗‖2 ≤ ε⌈
max

{(
µU0 −µ

L
0

2
√
ε
− 1
)
σ2

σ2
0
, 1
}⌉

, o.w.
(12)

Proof: If supµ0∈A ‖µ0−µ∗‖2 ≤ ε then there is no need to
teach, and TDA,ε(µ

∗) = 0. Otherwise, TDA,ε(µ
∗) ≥ 1. The

training set D can be reduced to its sufficient statistics
∑
xi

and n. We may write the class TD problem (9) as

min
n,

∑
xi
n s.t. sup

µ0∈A
ρ(Aµ0

(D)) ≤ ε. (13)

Plugging in the posterior mean for Aµ0(D) in (2), the con-
straint involves a quadratic form in µ0:

sup
µ0∈A

(
σ2

σ2
0n+ σ2

µ0 +
σ2

0

∑
xi

σ2
0n+ σ2

− µ∗
)2

≤ ε. (14)

Since the quadratic form is convex, the supremum occurs at
the boundary of A. This allows us to replace the supremum
over possibly infinite students with a maximum between the
two extreme students AµL0 , AµU0 :

max
µ0∈{µL0 ,µU0 }

(
σ2

σ2
0n+ σ2

µ0 +
σ2

0

∑
xi

σ2
0n+ σ2

− µ∗
)2

≤ ε. (15)

In other words, one of these two extreme students will have
the worst student failure in the class.

We now fix n and treat
∑
xi as a free variable in R. To

satisfy the constraint as much as possible, the optimal
∑
xi



should minimize the LHS of (15). From Lemma 1, we have
σ2
0

∑
xi

σ2
0n+σ2 − µ∗ = σ2

σ2
0n+σ2

−µL0−µ
U
0

2 . This leads to the solution

∑
xi =

σ2
0n+ σ2

σ2
0

µ∗ − σ2

σ2
0

µL0 + µU0
2

. (16)

Plugging it back in (15), we have the following optimization
problem:

min
n
n s.t.

(
µU0 − µL0

2
· σ2

σ2
0n+ σ2

)2

≤ ε. (17)

The constraint is

n ≥
(
µU0 − µL0

2
√
ε
− 1

)
σ2

σ2
0

. (18)

Recall that we must have n ≥ 1 to teach, and n must be
an integer. Taken together, the minimum n is the class TD
in (12). An actual lecture D can be easily constructed from n
and

∑
xi.

Theorem 1 can be interpreted as follows. The class TD
of those conjugate Bayesian learners depends on class spread
µU0 −µL0 , but not on how many students there are in the class.
When the spread is sufficiently small, it is possible to teach
the whole class successfully with a single training item. The
threshold for this spread is

µU0 − µL0 = 2
√
ε

(
σ2

0

σ2
+ 1

)
. (19)

It is easy to see that teaching is easier as the failure tolerance
ε increases. Teaching is also easy if the students’ prior vari-
ance σ2

0 is large: in that case the students are less “stubborn”
around their prior means and can be easily convinced by new
evidence in data D. But when the class spread is sufficiently
large, TDA,ε is a linear function of the spread (up to round-
ing). The teacher has to use more training items to teach as
the class spread increases.

3.2 Teaching a Class in Case Study 2
To extend case study 2 to multiple students, let the (pos-
sibly infinite) students all be ridge regression learners as
in (1) but with different regularization weights λ. Let Λ be
the set of regularization weights, which is equivalent to the
class A. The teacher knows Λ and must design a lecture
D = {(x1, y1) . . . (xn, yn)} to ε-approximately teach all stu-
dents in the class. Again, the teacher uses the student failure
function (6).

Recall the definition of s, p in (7). The class teaching di-
mension problem (9) for this class can be stated as an exten-
sion of problem (8) to multiple learners:

min
n,s,p

n s.t. sup
λ∈Λ

(
p

λ+ s
− θ∗

)2

≤ ε, 0 ≤ s ≤ n. (20)

Define
λL = inf Λ, λU = sup Λ. (21)

The class TD of ridge regression learners depends on these
two quantities, but in a more complex manner:

Lemma 2 The student failure function ρ(Aλ(D), θ∗) =(
p
λ+s − θ

∗
)2

is quasiconvex in λ.

Theorem 2 The class TD of ridge regression learners is

TDΛ,ε(θ
∗) =

{
0, if ‖θ∗‖2 ≤ ε⌈
max

{
λU−λL

2
√
ε
|θ∗| − λL+λU

2 , 1
}⌉

, o.w.
(22)

Proof: If ‖θ∗‖2 ≤ ε the teacher can let D = ∅. The argmin
in ridge regression (1) is then determined by the regularizer.
This leads to Aλ(∅) = 0,∀λ ∈ Λ, and 0 is within ε of the
target θ∗ by definition. Therefore, in this case the class TD is
zero.

Otherwise, we must have TDΛ,ε ≥ 1. By Lemma 2 the
supremum in constraint (20) happens at one of λL, λU due
to quasi-convexity. We may replace the supremum over the
whole Λ by a maximum over those two values:

max

{(
p

λL + s
− θ∗

)2

,

(
p

λU + s
− θ∗

)2
}
≤ ε. (23)

Fixing n, s and applying Lemma 1 again, the optimal p de-
noted by p∗(s) must happen at p∗(s)

λL+s
− θ∗ = − p∗(s)

λU+s
+ θ∗.

This leads to p∗(s) = 2θ∗
(

1
λL+s

+ 1
λU+s

)−1

. Plugging
back this optimal value of p the teaching problem becomes

min
n,s

n s.t.
(

λU − λL

λL + λU + 2s
θ∗
)2

≤ ε, and 0 ≤ s ≤ n. (24)

By inspection the (real-valued) solution is

n = s =
λU − λL

2
√
ε
|θ∗| − λL + λU

2
. (25)

The class TD is obtained by n ≥ 1 and rounding. An optimal
training set can be constructed from n, s, p.
Again, the class TD depends on the class spread λU−λL, not
the number of students. As the class spread becomes wider,
the class TD increases at a rate of (λU − λL)/(2

√
ε).

4 Optimal Class Partitioning
The previous section highlights Proposition 4, namely it is
hard to teach an academically diverse class. The root of the
problem is the classroom setting, where the teacher must use
the same lectureD on all students. We now consider a setting
where the teacher is allowed to partition the class into sec-
tions, and different sections may use different lectures. This is
a familiar tradeoff in reality: Parents want smaller class sizes,
but schools need to control expenses. One extreme partition
is to have each student in their own section, i.e., personalized
education. But this may not be optimal in the teacher’s effort
to deliver lectures: presumable very similar students should
share the same lecture. We now show that there is a sweet
spot, such that the aggregate training set size is minimized
while guaranteeing no learner left behind.

We formulate the optimal class partition problem as fol-
lows. For a class A we use π = π(A) to denote a partition,



i.e. a set of sections: ∅ /∈ π; ∪S∈πS = A; ∀S,S′ ∈ π,S 6=
S′ ⇒ S ∩ S′ = ∅. Each section S ∈ π is now a smaller class.
To ε-approximately teach all students in S, by definition the
teacher needs TDS,ε(θ

∗) training items. Define the aggregate
training set size under π as n(π) ≡

∑
S∈π TDS,ε(θ

∗). This
implies that the teaching effort is the accumulative teaching
time over all sections, where each training item takes unit
time. Note n(π) is not the number of unique training items
across all sections.

Definition 5 The partition teaching dimension is defined as

TDπ∗,ε(θ
∗) = min

π
n(π) (26)

where the optimal class partition π∗ is the one that achieves
the minimum.

Our two case studies, continued below, demonstrates that
there are nontrivial class partition sweet spots.

4.1 The Optimal Class Partition in Case Study 1
Recall the class A consists of students with different prior
distributions N(µ0, σ

2
0), where µ0 is bounded between µL0

and µU0 . We first note that, unlike the class TD which only
depends on the spread µU0 − µL0 , the optimal partition also
depends on the topology of A. For example, when all stu-
dents form two degenerate (elements overlapping) clusters at
the two extrema µL0 and µU0 , the teacher can partition the class
into two sections by the clusters. Each section would require
at most one training item per Theorem 1, leading to a parti-
tion TD of at most two. In contrast, the partition TD is very
different when the class is dense in the interval A = [µL0 , µ

U
0 ],

which is our focus below.
Let cl(·) be the closure of a set (for example, cl([0, 1)) =

[0, 1]), and conv(·) be the convex hull of a set.

Lemma 3 Given any A ⊂ R, we have the class TD

TDA,ε(·) = TDconv(A),ε(·) = TDcl(conv(A)),ε(·).

Lemma 4 For a bounded A ⊂ R, one optimal partition π∗

where A = ∪TDπ∗,ε(·))i=1 Ai as in (26) must satisfy

1. All conv(Ai)’s are disjoint;

2. Any Ai can be taught by 1 item, that is, the class
TDAi,ε(·) = 1.

Theorem 3 For A = [µL0 , µ
U
0 ] satisfying supµ∈A ‖µ −

µ∗‖2 > ε, an optimal partitioning π∗ is to break A into in-
tervals each of length defined by the RHS of (19), where each
section can be taught with a single teaching item. The corre-
sponding partition teaching dimension is

TDπ∗,ε(µ
∗) =

 µU0 − µL0
2
√
ε
(
σ2
0

σ2 + 1
)
 . (27)

Proof: From Lemma 4, we know that one optimal parti-
tion should be in the form of A = ∪TDπ∗,εi=1 Ai with Ai =
[µi−1, µi] where µ0 = µL0 and µTDπ∗,ε = µU0 . Given
such partition structure, we can apply the greedy procedure
to find one optimal partition: start from µ0 and maximize µ1

for A1 given TDA1,ε = 1, then maximize µ2 for A2 given
TDA2,ε = 1, and so on until that µi exceeds µU0 . From Theo-
rem 1, the largest range of students µi−µi−1 that one training
item can teach satisfies:⌈

max

{(
µi − µi−1

2
√
ε
− 1

)
σ2

σ2
0

, 1

}⌉
= 1.

(Note that the “0” teaching case is excluded automatically
because supµ∈A ‖µ − µ∗‖2 > ε). It implies that the largest

range is µi − µi−1 ≤ 2
√
ε
(
σ2
0

σ2 + 1
)

, precisely (19). Thus
the minimal number of sections is given by (27).

Comparing the partition TD in (27) to the whole class TD
in (12), we see that class partition is especially helpful when
σ2

0 → 0, i.e. when the students are stubborn. Stubborn stu-
dents blow up the whole class TD, but having them in differ-
ent sections prevents the blow up due to the added 1 in the
denominator.

4.2 The Optimal Class Partition in Case Study 2
For simplicity, we consider a class consisting of students
dense in the interval A ≡ Λ = [λL, λU ]. If |θ∗| ≤

√
ε then

trivially TDπ,ε(θ
∗) = 0. We only consider the nontrivial case

|θ∗| >
√
ε below.

Theorem 4 For a class A = [λL, λU ] and |θ∗| >
√
ε, let

a = 2
(
|θ∗|√
ε
− 1
)−1

. The partition teaching dimension is

TDπ∗,ε(θ
∗) =

⌈
log(1+a)

(
λU + 1

λL + 1

)⌉
. (28)

Proof: (sketch) It can be shown that each section should be
an interval of students; Moreover, if one interval of students
can be taught by n training items, then it can be partitioned
into two intervals such that one can be taught by n− 1 items,
and the other can be taught by 1 item. These imply that an
optimal class partition divides Λ at λL = λ0, λ1, . . . , λn−1 <
λU , λn ≥ λU , such that each section (except the last one) is
maximal while still can be ε-approximately taught with one
training item. Then π∗ = {[λi−1, λi] : i = 1 . . . n} and
TDπ∗,ε(θ

∗) = n.
To find out the values of λi and n, we identify those max-

imal sections. Starting from λL = λ0 and applying (22), the
maximum λ1 must satisfy λ1−λ0

2
√
ε
|θ∗|− λ0+λ1

2 = 1. This leads
to λ1 = a + (1 + a)λ0 and more generally λt = a + (1 +
a)λt−1. Note the intervals increase with t, which is differ-
ent from the equal partitions in case study 1. Let zt = λt + 1
then the above series becomes zt = (1+a)zt−1 = (1+a)tz0,
hence λt = (1 +a)t(λL + 1)− 1. The value n is the smallest
t such that λt ≥ λU , namely t ≥ log(1+a)

(
λU+1
λL+1

)
. Round-

ing completes the proof. Compared to the class TD which is
O(λU − λL), the partition TD is always better.

4.3 A Simulation for Illustration
We illustrate in Figure 1 the benefit of teaching an optimally
partitioned class with a simulation for case study 2. There are
1000 ridge regression students (1) with λL = 10−1, λU =
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Figure 1: Demonstration of partition TD much smaller than class TD. (Left) model Aλ(D) learned by student λ; (Center) Optimal training
sets D; and (Right) Non-optimal class partitions. See text for details.

101 and the students are evenly spaced in log(λ). The stu-
dents form the class A (or Λ), and they are the x-axis in Fig-
ure 1. The teacher wants to ε-approximately teach the target
model θ∗ = 1, with ε = 0.01.

The left panel shows what model each student learned. The
green curve simply marks the target model θ∗. The red curve
shows the effect of teaching the whole class A with the opti-
mal “whole-class lecture” D as defined in Theorem 2 proof.
The class TDA,0.01(1) = 45. The teacher needs 45 training
items inD to guarantee ε-learning for everyone. Since we de-
fined student failure as the squared difference (6), the students
succeed if they learn a model Aλ(D) within ±

√
ε = ±0.1 of

θ∗. This is precisely what the red curve shows. In contrast,
the blue curves show the optimal partition as in Theorem 4
proof. Each blue segment represents a section that can be
ε-taught with one training item. Indeed each section of the
learned models are within θ∗ ± 0.1. There are 12 sections in
the optimal partition: TDπ∗,0.01(1) = 12.

The center panel shows the lectures D. In all D, we have
the construction x = 1 always, while y and multiplicity differ.
The curves should be read as follows: the value y at a student
λ means that the student is sharing a lecture which contains
the training point (x = 1, y). The red curve gives y = 1.101
for the “whole class lecture,” which means that D consists of
45 identical instances of the point (1, 1.101). The blue curve
segments are for the 12 sections of the class, each section’s
D has a single instance. For example, the right-most section
has D = {(1, 10.496)}. Note how the teacher increases y for
sections with larger λ’s to account for regularization.

The right panel shows the aggregate training set size n(π)
needed to teach various non-optimal class partitions π. We
simply divide the 1000 students into equal-sized sections,
where the number of sections is on the x-axis. The red curve
shows the case where students with adjacent λ values are par-
titioned together. When the number of sections is 1, the ag-
gregate training set size is 45 as we mentioned earlier (it is
bad to teach a large class). When the number of sections is
1000 (not shown), that size is trivially 1000 (it is inefficient
to perform fully personalized education). Note the minimum
happens at around 20 – not 12 – sections. And the minimum
aggregate size is 21, larger than the partition TD of 12 indi-
cated by the blue line (simply dividing the class evenly into
sections does not quite work). This highlights the importance

of intelligent uneven partitions computed by machine teach-
ing (center panel) to achieve optimality. Finally, the black
curve shows the case where the students are randomly as-
signed to each section. This is a bad idea as each section now
takes about the same training set size to teach as the whole
original class! Under our setting it is important to keep the
sections homogeneous.

5 Discussions
Readers familiar with Probably Approximately Correct
(PAC) learning and VC theory may wonder how our work
relates to those framework. The class TD in Definition 4 pro-
vides a good contrast. We are controlling the error to be uni-
formly below ε. But a major difference is that we do not rely
on concentration of measure over i.i.d. samples in the training
set. Instead, we start with the target concept θ∗ and then opti-
mize the training set D. Therefore, we do not have the “P” in
PAC learning. In terms of VC dimension, it is known that VC
and TD are distinct measures [Goldman and Kearns, 1995],
and the distinction carries over to our classroom teaching set-
ting.

In order to make analysis tractable, we made several sim-
plifying assumptions that should be relaxed in future work. A
strong assumption is that the teacher knows everything about
the students A (i.e., their learning algorithms). Future work
may allow the teacher to probe the students if this is not the
case, and jointly optimize the effort of teaching and probing.

A variant that is ethically questionable but unfortunately
occurs in practice is for a teacher to give up on at most δ frac-
tion of the students, to allow them to have arbitrarily large stu-
dent failures. The remaining students must ε-approximately
learn. This type of (ε, δ) class TD can be much smaller.

Interestingly, in the education literature it was suggested
that some cultures prefer large classes, with the argument
that students can observe and learn from each other’s mis-
takes [Stigler and Hiebert, 1998]. It is possible to build this
into machine teaching theory by formulating the class A as a
multi-agent system. More research is needed to understand
how academic diversity benefits teaching.

In summary, this paper advances machine teaching theory
and provides a potential theoretical framework for optimizing
real-world education resource allocation in the future.
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