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Abstract
Mixed-initiative classifier training, where the hu-
man teacher can choose which items to label
or to label items chosen by the computer, has
enjoyed empirical success but without a rigor-
ous statistical learning theoretical justification.
We analyze the label complexity of a simple
mixed-initiative training mechanism using teach-
ing dimension and active learning. We show that
mixed-initiative training is advantageous com-
pared to either computer-initiated (represented
by active learning) or human-initiated classifier
training. The advantage exists across all human
teaching abilities, from optimal to completely
unhelpful teachers. We further improve classifier
training by educating the human teachers. This is
done by showing, or explaining, optimal teaching
sets to the human teachers. We conduct Mechani-
cal Turk human experiments on two stylistic clas-
sifier training tasks to illustrate our approach.

1. Introduction
We study a topic at the intersection of human-computer in-
teraction and statistical learning theory. We contrast three
ways to train a classifier with interactive machine learn-
ing: computer-initiated where an active learning algo-
rithm picks a query x and the human answers its label
y, human-initiated where the human picks x and y, and
mixed-initiative where both parties can pick x. Mixed-
initiative machine learning has enjoyed success in prac-
tice (Wolfman et al., 2001; Fails & Olsen Jr, 2003; Fogarty
et al., 2008), but a theoretical account for its effectiveness
is lacking.

Our first contribution is a theoretical analysis on the label
complexity of mixed-initiative classifier training, expressed
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by the following intervals: mixed-initiative [TD,TD +
AL], computer-initiated AL, human-initiated [TD,∞).
Here TD is the teaching dimension of the hypothesis space
which lower-bounds AL, the corresponding active learning
label complexity. These quantities will be defined precisely
below. Given that often TD � AL, mixed-initiative train-
ing is attractive among the three.

In more detail, we place a human teacher in one of
three ability states and provide a guarantee for each state:
(Optimal teacher) The teacher provides the optimal teach-
ing set. The mixed-initiative label complexity is TD. (Seed
teacher) When the teacher is not optimal but can provide at
least one item per positive region, mixed-initiative training
can significantly reduce the active learning label complex-
ity for certain hypothesis spaces. (Naive teacher) For all
other human teachers, even the completely unhelpful ones,
the mixed-initiative label complexity has a fallback guar-
antee of TD+AL ≤ 2AL, namely no worse than twice the
active learning label complexity.

Our second contribution is a framework for teacher educa-
tion. The computer can try to move the human to a better
“teacher ability state.” It does so by showing or explain-
ing example optimal teaching sets to the teacher. Although
the computer does not know the target concept, it can auto-
matically compute an example teaching set on hypothetical
target concepts for the purpose of teacher education.

2. Problem Setting and Notations
We consider the standard learning-theoretic setting for clas-
sification. Let X be the input space and Y = {−1, 1} be
the label space. It is straightforward to extend our results
to multiple classes. We restrict the interactions between the
human and the computer: they can interact through items
x ∈ X and labels y ∈ Y but not other means (e.g. the
human cannot label features; quantifying such richer inter-
actions is left as future work).

There is a fixed test distributionPXY onX×Y . A classifier
or a hypothesis is a measurable function h : X 7→ Y . For
any h, x ∈ X , y ∈ Y , let 1h(x) 6=y be the 0-1 loss function
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which takes the value 1 if h(x) 6= y and 0 otherwise. De-
fine the risk of h as R(h) = E(x,y)∼PXY

1h(x)6=y . LetH be
the hypothesis space, namely the set of hypotheses consid-
ered by the computer. Let VC be the VC-dimension of H.
Let f∗ be the risk minimizer inH: f∗ = argminh∈HR(h).
We say the problem is realizable if R(f∗) = 0; otherwise
we denote the minimum risk by ν = R(f∗). We may now
phrase the classifier training task as follows.
Definition 1 (The Classifier Training Task). The human’s
task is to make the computer learn, with success probability
of at least 1 − δ, a hypothesis ĥ ∈ H such that the excess
risk R(ĥ)−R(f∗) ≤ ε for any given ε ≥ 0, δ ≥ 0.

We will use label complexity as a proxy for teaching ef-
ficiency. Label complexity is mathematically convenient,
but ignores potentially different human effort in coming up
with training items. We discuss this issue in Section 7.
Definition 2 (Label complexity). Training achieves label
complexity n if for every ε, δ ≥ 0, every distribution PXY ,
and every integerm ≥ n, the hypothesis ĥ learned usingm
labeled items satisfies R(ĥ) − R(f∗) ≤ ε with probability
of at least 1− δ.

We contrast three interactive machine learning methods:

Computer-initiated: The computer runs active learning
until it achieves the (ε, δ) guarantee. In iteration i, it adap-
tively chooses item xi to query the human based on previ-
ous items and labels (x1, y1) . . . (xi−1, yi−1). The human
acts as a labeling oracle by providing the stochastic label
yi ∼ PY |X=xi

.

Human-initiated: In iteration i the human can choose any
item xi ∈ X and the label yi to show the computer. The
human decides how many iterations to teach.

Mixed-initiative: There is an extra mechanism to de-
termine whether each iteration is computer-initiated or
human-initiated. In this paper we focus on Algorithm 1,
narrated from the computer’s perspective. The human can
provide up to TD labeled items (xi, yi) in the beginning.
Then the computer takes over and runs active learning start-
ing from whatever dataD the human already provided, and
ends when it can achieve the (ε, δ) guarantee. During active
learning, the human reduces to a labeling oracle.

We define the teacher ability states as follows. An opti-
mal teacher manually chooses exactly TD training items
and labels to form an optimal teaching set, and does not
provide more than necessary items. A seed teacher is not
optimal, but chooses at least one positive item for each pos-
itive region in the input space. The rest are naive teachers.

To help build intuition, we will use two tasks as running
examples throughout the paper, including for human exper-
iments. These tasks have been extensively studied in active
learning (Hanneke, 2014). Our results generalize beyond

Algorithm 1 The Mixed-Initiative Mechanism
1: Data D = ∅
2: for i = 1 to TD do
3: if human no longer wants to lead then
4: break;
5: else
6: human chooses (xi, yi)
7: append (xi, yi) to D
8: end if
9: end for

10: run active learning starting from D
until completion

the two tasks.

Example 1 (1D Threshold Task). X = [0, 1]. PX =
uniform[0, 1]. There is a target threshold θ∗ ∈ [0, 1]
such that PY=1|X=x = 1 if x ≥ θ∗ and 0 otherwise.
H consists of all threshold classifiers with threshold θ:
H = {hθ | hθ(x) = 1 if x ≥ θ and -1 otherwise,∀θ ∈
[0, 1]}. This task is realizable with f∗ = hθ∗ . Further-
more, R(hθ) = |θ − θ∗| for all hθ ∈ H. To succeed at the
task is to make the learned threshold fall in [θ∗− ε, θ∗+ ε].
V C(H) = 1 since H always puts the positive class on the
right and cannot shatter two points.

Example 2 (1D Interval Task). X = [0, 1]. PX =
uniform[0, 1]. There is a target interval [a∗, b∗] ⊆ [0, 1]
such that PY=1|X=x = 1 if x ∈ [a∗, b∗] and 0 otherwise.
H consists of all interval classifiers: H = {h[a,b] | h[a,b] =
1 if x ∈ [a, b] and -1 otherwise,∀[a, b] ⊆ [0, 1]}. This task
is also realizable with f∗ = h[a∗,b∗]. For all hypotheses,
R(h[a,b]) = |[a, b]∆[a∗, b∗]|, which is the size of the sym-
metric difference between the two intervals. V C(H) = 2.

3. Label Complexity Analysis
We now analyze the label complexity to justify mixed-
initiative training. The main results are listed in Table 1.
These are worst-case analyses, including worst human
teacher behaviors under the respective teacher states.

Table 1. Worst-Case Label Complexity
init \state optimal seed naive

mixed TD TD+ (AL−ALB) TD + AL
computer AL AL AL

human TD ∞ ∞

3.1. Computer-Initiated Training

We first review existing results on active learning label
complexity, which characterize computer-initiated training.
In standard active learning analysis, the human teacher is
assumed to be noiseless, always providing correct y for any
queryx. Because the teacher does not choose x, the three
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teacher states (optimal, seed, naive teacher) do not apply to
computer-initiated training.

There are two observations worth pointing out. The first
observation is that AL has a log 1

ε (or worse in the un-
realizable case) dependency on the required precision ε.
Concretely, the following minimax lower bounds on ac-
tive learning label complexity holds: In the realizable case,
(Kulkarni et al., 1993) showed that AL ≥ log(1 − δ) +
max

(
VC, log 1

ε

)
. In the unrealizable case with minimum

risk ν, (Beygelzimer et al., 2009; Hanneke, 2014) showed
that AL ≥ c

(
ν2

ε2

) (
VC + log 1

δ

)
. The logarithmic ε de-

pendency has been a major theoretical achievement for ac-
tive learning compared to passive learning’s slower 1/ε de-
pendency. It is the theoretical justification for using active
learning in computer-initiated classifier training.

Hanneke presented an analysis for the two example
tasks (Hanneke, 2014). On the 1D threshold task, deter-
ministic binary search is optimal for active learning, with
a label complexity log 1

ε . This can be understood by not-
ing that every query reduces the version space length by
half. The 1D interval task is more nuanced. One determin-
istic active algorithm proceeds in two phases. In the first
“blind search” phase, it queries points on an increasingly
dense grid 1/2, 1/4, 3/4, 1/8, 3/8, . . . until it encounters a
positive point or reaches grid spacing ≤ ε. This phase suc-
ceeds with at most ALB = 2

max(b∗−a∗,ε) queries, where we
use the subscript B to denote blind search label complex-
ity. In the second phase it performs two binary searches
from the positive point in opposite directions to identify
the interval boundaries. This phase succeeds with at most
2 log 2

ε queries. The overall active learning label complex-
ity is therefore AL = ALB+2 log 2

ε . Note the blind search
phase depends on the width of the target interval: when
b∗ − a∗ ≈ ε the label complexity AL ∼ O

(
1
ε

)
, and active

learning’s advantage over passive learning disappears.

Hence our second observation: Such a blind search phase
is common in active learning and unavoidable for some hy-
pothesis spaces. Another example is active learning over
axis-aligned hypercubes in Rd (Hanneke, 2014). The blind
search phase has ALB = 2

max(w∗,ε)d
where w∗ is the nar-

rowest side length among the d dimensions of the target
hypercube. Yet another example of blind search is active
learning on graphs (Dasarathy et al., 2015). Let the sam-
pling probability of the smallest positive connected compo-
nent in a graph be β. The blind search phase has ALB =
log(1/(εβ))
log(1/(1−β)) . When β ≈ ε the denominator is around ε

due to log(1 − z) ≈ −z, again making ALB ∼ O(1/ε).
The intuition is that, for these hypothesis spaces, the posi-
tive items form small isolated “islands” in the input space.
Active learning really has no choice but to do blind (essen-
tially random) search to find such islands. If an island is too
small, the label complexity to find it can be as slow as the

passive rate of 1
ε . However, once a single point in the island

is found, active learning can very aggressively trace the is-
land boundary at a rate of log 1

ε . Note that the blind search
phase is not always present for all hypothesis spaces: for
example, it is not in the 1D threshold task.

3.2. Human-Initiated Training

When a human is in the driver’s seat, teaching can become
really good or bad depending on the ability of the teacher.

Optimal teacher. There is a fundamental difference be-
tween active learning and human-initiated training. In
active learning, the computer does not know the target
concept f∗ (the risk minimizer) and must perform explo-
ration. As we have seen, even the best active learning takes
O
(
log 1

ε

)
queries. This is illustrated in our 1D threshold

task: the computer does not know f∗ to begin with, and
binary search has label complexity log 1

ε . In sharp con-
trast, a good human teacher can have the knowledge of
f∗. She just needs to communicate f∗ to the computer via
the smallest training set. The size of the smallest train-
ing set to exactly teach f∗ is known as the teaching di-
mension TD (Goldman & Kearns, 1995; Balbach & Zeug-
mann, 2009; Doliwa et al., 2014; Shinohara & Miyano,
1991). We need to relax the definition of classic TD to
match the ε precision requirement in Definition 1. Let
D = (x1, y1), . . . , (xn, yn) be a data set. Let V S(D) =
{h ∈ H : h(xi) = yi, i = 1 . . . n} be the version space,
i.e. the set of hypotheses consistent1 with D.

Definition 3 (ε-Teaching Dimension TD(ε)). A data set D
is called an ε-teaching set of f∗ if ∀h ∈ V S(D), R(h) −
R(f∗) ≤ ε. The ε-teaching dimension of f∗ is the size of
the smallest ε-teaching set.

Our ε-teaching dimension is a probabilistic generalization
of (Kobayashi & Shinohara, 2009). The classic teaching
dimension is TD(0). For any ε1 ≤ ε2, TD(ε1) ≥ TD(ε2).
On our two example tasks, the classic TD from (Goldman
& Kearns, 1995) would be TD(0) = ∞, since no finite
data set can reduce the version space to precisely the tar-
get concept. Nonetheless, we can adapt their teaching set
construction for TD(ε). For our 1D threshold task, an
ε-teaching set D is (x1 = max(θ∗ − ε, 0), y1 = −1),
(x2 = min(θ∗ + ε, 1), y2 = 1), and TD(ε) = 2. The
implication for human-initiated classifier training is pro-
found: an optimal human teacher can choose the above
data set D of only two items to train the classifier. More-
over, TD(ε) = 2 for any small precision ε > 0. This is in
stark contrast to active learning, where we have a growing
AL = log(1/ε) as ε decreases. In other words, an optimal
human teacher can train the 1D threshold classifier with far

1For unrealizable tasks V S is generalized to the set of low
error hypotheses the learner retains.
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fewer examples than active learning.

The same is true for our 1D interval task. An ε-teaching set
D is (x1 = max(a∗ − ε

2 , 0), y1 = −1), (x2 = min(a∗ +
ε
2 ,

a∗+b∗

2 ), y2 = 1), (x3 = max(b∗ − ε
2 ,

a∗+b∗

2 ), y3 = 1),
(x4 = min(b∗ + ε

2 , 1), y4 = −1), and TD(ε) = 4. Note
that the teaching dimension does not depend on the width
of the target concept b∗ − a∗ or ε. Again an optimal hu-
man teacher can use fewer examples than active learning.
Henceforth we will omit the ε parameter from TD when
it is clear from context. In fact, on any classification task
an optimal human teacher can always use no more train-
ing examples than active learning. This has been observed
in prior work (Cakmak & Thomaz, 2011; Angluin, 2004;
Goldman & Kearns, 1995). We highlight it as follows.

Proposition 1 (The Fundamental Law of Interactive Clas-
sifier Training). On all classification tasks and for all ε,
TD ≤ AL.

The proof is by definition. When active learning satisfies ε
precision, its queries and oracle labels form an ε-teaching
set. TD is the size of the smallest ε-teaching set. To get the
benefit of TD, the optimal teacher must choose the teach-
ing items and cannot rely on active learning.

Seed teacher and Naive teacher. Unfortunately, human-
initiated training can have unbounded label complexity for
non-optimal teachers. The best scenario is for a teacher
to choose TD +1 items that form a (non-minimal) teach-
ing set. For instance, for the 1D threshold task, the teacher
may have unnecessarily added (x3 = 1, y3 = 1) to the
optimal teaching set. Far worse are teachers who never
form a teaching set. To see why such teachers can lead
to unbounded label complexity, consider a hypothetical
teacher for the 1D threshold task who chooses to teach with
(xi = 1 − 1−θ∗

2i−1 , yi = 1) for i = 1, 2, . . .. This training
set can never reduce the version space sufficiently. Such
inefficiency can happen on both seed teachers and naive
teachers. For this reason, the entries are marked as ∞ in
Table 1. They also cover the case where the teacher mis-
takenly thought that he has taught the concept and stopped
providing training items too early.

3.3. Mixed-Initiative Training

The key to mixed-initiative training is to reap the benefits of
optimal teaching in human-initiated training, while control-
ling for the unbounded label complexity. There are many
possible mechanisms to do this. We focus on Algorithm 1
for its simplicity.

Optimal teacher. Algorithm 1 allows for TD rounds of
human teaching in the beginning. This is designed to allow
an optimal teacher to teach with an optimal teaching set.
The algorithm will exhaust these TD human-chosen rounds
and exit the loop with the data set D containing an optimal

teaching set. Since D is already sufficient to teach to ε
precision, active learning on line 10 detects this and issues
no additional queries. The label complexity is TD.

Seed teacher. A non-optimal teacher may choose TD
items that do not form a teaching set, or he may decide to
stop choosing items altogether before there are TD items.
In either case, Algorithm 1 exits the loop and forces the
human to continue with active learning. In general, the
data in D at this point will be beneficial to active learn-
ing. A seed teacher is able to choose at least one positive
item for each positive region. For hypothesis spaces with
an active learning blind search phase, we can quantify the
benefit as removing ALB from active learning label com-
plexity (Table 1). For those hypothesis spaces where ALB
dominates, a seed teacher will substantially speed up active
learning. The benefit of seed teachers are informally known
in practice. For real-world tasks the positive class can of-
ten be rare. Various practical active learning systems offer
ways for the human oracle to explicitly search and discover
positive items, before active learning starts (Attenberg &
Provost, 2010; Cakmak et al., 2010).

Naive teacher. For all other teachers, the worst case is that
they choose TD items x that are non-informative. Note we
still assume that the teacher gives labels according to the
marginal PY |X=x. In particular, for realizable tasks, the
teacher always gives the correct label y for any x. Their
non-informativeness stems solely from their choice of x.
Because active learning takes over, the worst case label
complexity is TD + AL. Obviously, this is upper bounded
by 2AL. In other words, we have the fallback guarantee by
preventing the teacher from teaching aimlessly; sometimes
active learning is smarter than a human.

4. Teacher Education
So far we have taken a static view of the human teacher:
they come and teach at their fixed teaching ability state.
A natural question is: can we first teach the humans to be
better teachers, before they train the classifier?

We view the teacher as a finite state machine, and that the
computer can perform an action to cause a state transition.
In this paper we consider the specific action of computer
displaying a hint text to the human teacher. Designing
richer actions is an interesting problem for future work. We
want the hint text to be generated automatically by the com-
puter for any hypothesis space. One good hint would have
been showing an actual optimal teaching set D for the tar-
get concept f∗. Of course, the computer does not know
f∗ upfront. Nonetheless, the computer can arbitrarily pick
a concept f ′ ∈ H, and compute the optimal teaching set
D′ for f ′. It can then use the pair f ′, D′ to construct the
following hint text for the human teacher: “To teach f ′ to
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the computer, you could have used D′.” Such teacher ed-
ucation is thus education by analogues. For our example
tasks, we can go one step further by manually taking this
optimal teaching set and explaining the effect of the teach-
ing examples on the hypothesis space visualized in a num-
ber line. By providing simple quizzes and explanations, we
encourage deeper understanding of the learning algorithm
and higher rate of state transition. This is education by ex-
planation. After a human teacher teaches, we will be able
to determine her teacher state from the items she manually
chooses. Our primary interest is to find out whether teacher
education turns more teachers into optimal teachers.

5. Human Experiments
We conducted human experiments using Amazon Me-
chanical Turk (MTurk) on the two 1D classifier training
tasks (threshold, interval). We designed a 2x3, between-
subjects study where each experiment compared the three
training paradigms (computer-initiated, human-initiated,
mixed-initiative) and teacher education (no education, ed-
ucation by analogues). After running the initial pilot test,
we saw evidence of shallow understanding from the partic-
ipants’ teaching strategies especially for the interval classi-
fier where we saw less optimal teachers than the threshold
classifier. To influence the teacher’s understanding of the
system, for the interval task, we further divided teacher ed-
ucation into three conditions (no education, education by
analogues, education by explanation). Teacher education
does not apply to the computer-initiated condition, which
gave us a total of 5 conditions for threshold task and 7 con-
ditions for interval task for the final run.

5.1. Participants, Tasks, and Procedure

We selected MTurk workers with Human Intelligence Task
(HIT) approval rate ≥ 98%. We made sure each worker
only participated in one condition. We recruited a total of
481 participants (282 male, 187 female). 49% of the par-
ticipants were in the age range of 26 to 35.

The tasks are the integer variant of the 1D threshold and
interval classifier training tasks, see Figure 1. That is, X is
some finite integer range c, . . . , d. H is also finite and con-
tains hypotheses whose threshold or interval is on integers.
The goal is to uniquely identify the integer target threshold
or target interval. We use this integer variant because it is
easier for the participants. The integer variant is similar to
the continuous tasks with an ε < 1

2(d−c) . All the theoretical
results still hold. We choose a cover story for the partici-
pant to teach a robot assistant a threshold or a range of ac-
ceptable prices when purchasing a car. In our consideration
for the cover story, we wanted it to be relatable without any
predefined notion of the positive class and reusable to many
ranges within the hypothesis space where small differences

in numbers mattered. Note the participants were informed
that the robot’s hypothesis space consisted of threshold or
interval classifiers, respectively.

For the 1D threshold task, TD = 2 with the optimal teach-
ing set {(x1 = 19000, y1 = 1), (x2 = 19001, y2 = −1)},
while active learning using binary search would require 14
queries. For the 1D interval task, TD = 4 with the optimal
teaching set {(x1 = 1259, y1 = −1), (x2 = 1260, y2 =
1), (x3 = 1360, y3 = 1), (x4 = 1361, y4 = −1)}, while
active learning requires 26 queries.

For the teacher education conditions with analogues, an
additional piece of text is displayed to the participant as
shown in Figure 2. The analogues are precomputed and
consist of the optimal teaching set for two hypothetical tar-
get concepts. For the teacher education conditions with ex-
planation, we provide a step-by-step tutorial illustrating the
effects of teaching examples using the number line as well
as three simple quizzes to test the understanding of the par-
ticipants. The details are in supplementary materials.

The computer-initiated condition selects a dollar amount x,
queries the teacher for the label y (acceptable or not), and
terminates when the computer can identify a unique hy-
pothesis. The human-initiated condition allows the teacher
to enter x and y, and the teacher decides when to terminate.
The mixed-initiative condition follows Algorithm 1.

Each participant was randomly assigned to one of the five
or seven conditions. There were no time limits to the task.
We analyzed the participant data first by filtering out all
participants who incorrectly labeled any items. Among the
481 participants, 13 in the threshold task and 46 in the in-
terval task were filtered out. This is in order to match the
noiseless marginal PY |X=x human labeling assumption we
made on the tasks.

5.2. Empirical Label Complexity

In this section we look at the no-teacher-education condi-
tions. The human experiment results are summarized as
histograms in Figure 3. Our empirical results verify the la-
bel complexity in Table 1 and clearly demonstrate the ben-
efits of mixed-initiative training.

In the mixed-initiative condition, the most important ob-
servation is that all human teachers taught with from TD to
TD+AL items as the theory predicts. For the threshold and
interval tasks this interval is [2, 16] and [4, 30], respectively.
The average label complexity is 6.6 (n = 38, sd = 6.2) for
the threshold task and 13.1 (n = 31, sd = 8.8) for the
interval task.

A closer look reveals that many mixed-initiative partici-
pants are optimal teachers (dark blue bars) who taught with
TD items. 50.0% (19/38) of the threshold participants and
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Imagine you are looking to buy a car. Car prices go from $10000
to $30000, but you will only accept a car priced at $19000 or be-
low. You have a robot assistant who knows that your acceptable
price falls at or below a threshold, but it does not know what
your acceptable threshold is. Your task is to teach your robot
what your acceptable threshold is:
· You can only give examples like “$ is acceptable” or “$ is
unacceptable.”
· You cannot afford any car over $19000 by even $1 because you
only have $19000 in your bank account.
Provide the fewest number of examples possible while still mak-
ing sure your robot has clearly understood your price threshold.

Imagine you are looking to buy a car. Car prices go from $500
to $1500, but you will only accept a car in the range of $1260
to $1360. You have a robot assistant who knows that your ac-
ceptable price falls into a range, but it does not know what your
acceptable range is. Your task is to teach your robot what your
acceptable price range is:
· You can only give examples like “$ is acceptable” or “$ is
unacceptable.”
· You believe any car under $1260 by even $1 will break down.
· You cannot afford any car over $1360 by even $1 because you
only have $1360 in your bank account.
Provide the fewest number of examples possible while still mak-
ing sure your robot has clearly understood your price range.

Figure 1. The integer variant of the 1D threshold (left) and interval (right) classifier training tasks for human experiments

If your price threshold was $20000 or below, you could show
your robot these 2 examples: $20000 is acceptable, $20001 is
unacceptable.
If your price threshold was $24000 or below, you could show
your robot these 2 examples: $24000 is acceptable, $24001 is
unacceptable.

If your price range were $900 to $1000, you could show your
robot these 4 examples: $899 is unacceptable, $900 is accept-
able, $1000 is acceptable, $1001 is unacceptable.
If your price range were $600 to $700, you could show your
robot these 4 examples: $599 is unacceptable, $600 is accept-
able, $700 is acceptable, $701 is unacceptable.

Figure 2. Education by analogues for the 1D threshold (left) and interval (right) tasks, respectively

Figure 3. Number of human teachers (y-axis) who used a certain
number of labeled items (x-axis) to teach. Rows from top down:
human-initiated, computer-initiated, mixed-initiative conditions.
All conditions without teacher education. NC: teaching not com-
pleted when the teacher stopped providing items. Blue color in-
tensity represents observed teacher ability state: dark=optimal,
medium=seed, light=naive. Human-initiated condition has a large
number of NC participants, and mixed-initiative condition has the
label count bounded by AL + TD.

38.7% (12/31) of the interval participants did so. This is
the result of two separate benefits of mixed-initiative train-
ing: (1) mixed-initiative training enables optimal teaching,
where as teachers in computer-initiated training are lim-
ited by active learning and cannot teach with TD items;
(2) our mixed-initiative mechanism in Algorithm 1 can ac-
tually force some potentially suboptimal teachers into op-
timal ones. We observed from our human-initiated con-

ditions that out of all participants that initially provided
TD items forming an optimal teaching set, 20% (3/15) in
the interval task and 40% (8/20) in the threshold task pro-
vided at least one additional item. If these participants were
given our mixed-initiative mechanism, Algorithm 1 would
cut them off at the initial TD items and stop with success.
This can be seen by comparing to the shorter dark blue bars
in the human-initiated condition in Figure 3 – in that con-
dition there is nothing stopping such teachers from over-
teaching. Indeed only 31.6% (12/38) of the threshold par-
ticipants and 32.4% (12/37) of the interval participants are
optimal in the human-initiated condition.

In the computer-initiated condition, as expected the par-
ticipants used exactly AL items: 14 (n = 37, sd = 0)
for threshold and 26 (n = 20, sd = 0) for interval. For
our tasks, AL � TD. In fact one participant in our pi-
lot run expressed the desire to do optimal teaching rather
than active learning: “if I had my way I would only answer
4 questions: (low − 1)=bad, (low)=good, (high)=good,
(high+ 1)=good [sic].2”

In the human-initiated condition, the most important ob-
servation is the large number of not-completed (NC) par-
ticipants: 39.5% (15/38) for the threshold task and 59.5%
(22/37) for the interval task. These NC participants did not
provide enough items to exactly specify the target concept
before they decided to stop. Thus, this observation high-

2This participant correctly labeled x = (high+1) as negative
during active learning, so we believe this is a typo.
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lights human inefficiency and corresponds to the ∞ cells
in Table 1. Some of the remaining participants did man-
age to teach with TD items, though the fraction is smaller
than in mixed-initiative training since some provided more
labels than necessary.

We also observe the removal of “blind search complexity
ALB”. All of the seed teachers in mixed-initiative, interval
conditions used less than AL items to complete the task,
while the computer-initiated conditions required 14 labels
to even find the first positive item.

5.3. Effect of Teacher Education

Figure 4 shows the percentage of teachers in different
states, without and with teacher education. Recall educa-
tion is done by displaying the analogues in Figure 2 or pro-
viding step-by-step explanations. Our primary interest is
the percentage of optimal teachers. In all conditions, there
are more optimal teachers with teacher education interven-
tion. We also observe higher percentage of optimal teach-
ers when the education is given in the form of detailed ex-
planations than in teaching set analogues.

Figure 4. Effect of teacher education. Blue color intensity repre-
sents teacher state: dark=optimal, medium=seed, light=naive.

6. Related Work
Interactive machine learning has been hindered in practice
by skewed class distributions and small hard to find “is-
land” concepts (Attenberg & Provost, 2011). Recent work
has compared human-initiated, computer-initiated and var-
ious mixed-initiative training strategies (e.g., turn tak-
ing) (Cakmak et al., 2010; Attenberg & Provost, 2010; Fog-
arty et al., 2008). The most directly related work is (Cak-
mak & Thomaz, 2011), which is the first to link optimal
teaching and mixed-initiative training. Our paper general-
izes and formalizes their work. Many alternatives to design
mixed-initiative training remain (Horvitz, 1999). Human-

computer interaction researchers have begun to improve the
teaching ability of humans in interactive settings (Amer-
shi et al., 2014; Cakmak & Thomaz, 2014; 2010; Fails &
Olsen Jr, 2003). Finally, there is a growing literature on the
teaching dimension and the corresponding optimal teach-
ing sets for different hypothesis spaces and learners, includ-
ing hypercubes, monomials, linear learners, and Bayesian
models (Goldman et al., 1993; Goldman & Kearns, 1995;
Liu et al., 2016; Zhu, 2013; 2015).

7. Discussions
Examination of participant labeling strategies in the
human-initiated conditions show that, without the help of
mixed-initiative mechanism the human teacher can be in-
efficient. 29.0% (threshold) and 8.1% (interval) of par-
ticipants provided more than the necessary TD training
items. For example, one participant in the human-initiated
condition on the interval task (pilot) provided the robot
with the TD training items, but additionally provided ev-
ery positive item within the acceptable interval in order to
teach the robot “all acceptable price ranges.” These results
have practical implications for machine learning based
applications–namely that support for mixed-initiative train-
ing may prevent humans from wasted effort while also in-
creasing machine learning efficiency.

We used analogues to educate the teachers. We observed
that more people did provide the optimal teaching set when
shown explanations or analogues than without these hints.
Many of these participants, however, also provided addi-
tional and unnecessary training items either within their
first TD opportunities or elsewhere during training. This
suggests an opportunity to further educate people in priori-
tizing teaching set items over other possible training items.
Furthermore, the teacher education action we consider in
this paper focused on transitioning humans into the optimal
teaching state. An alternative, or additional, action could
include hints emphasizing that positive training items (for
domains with rare positives) are more helpful to machine
learning than negative ones. This may have the effect of
transitioning humans out of the naive state into a more ef-
ficient one. Further research is necessary to examine the
effectiveness of this as a viable teacher education strategy.

Participants’ teaching strategies also reveal violations to
some of the assumptions often made in theoretical analyses
of machine learning, including our own presented in this
paper. For example, we assumed a noiseless oracle for our
two tasks. However, our empirical analyses show human
teachers provided wrong labels (wrong y for some x) in
3.5% of cases, even though the task description was clear
and unambiguous. The error rate of labeling was higher
when the label was requested by the algorithm (4%) than
when the human entered the examples (2.2%). We hypoth-
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esize that the participants pay less attention to examples
presented to them by the active learning algorithm than an
example that they manual enter. If we treat labeling speed
as a proxy to attention, our data shows that participants’ la-
beling speed is faster in the computer-initiated condition
compared to human-initiated condition by six-fold (dis-
cussed later), but further examination of these hypotheses
is necessary. As another example, we assumed that partic-
ipants understood the robot’s hypothesis space. However,
some participants in the threshold task, for example, in-
dicated that they believed the hypothesis space consisted
of intervals: “Entered lowest price acceptable, as well as,
highest price acceptable.”

Related to this, several participants indicated that they be-
lieved the robot required additional, prototypical training
items to learn the target concept. For example, one par-
ticipant in the human-initiated condition (1D interval, no
education) provided the four teaching set items along with
an additional prototypical training item from the middle of
the positive interval. This participant explained their strat-
egy as: “I set the lower bounds and upper bounds of the
range. By doing that I set what the two out of bound items
were acceptable. I then encapsulated a mid-range as be-
ing acceptable by selecting the midpoint of the acceptable
amounts.” This belief also manifested in the 1D interval
with-education condition (e.g., “I showed the middle and
extremes of the acceptable range”) and the 1D threshold
condition (e.g., “All the robot really needed to know was
the maximum and one number over the maximum, to show
what the maximum I would go is. 19000 being acceptable
and 19001 being unacceptable, then a number below 19000
to show you can go down”). These statements reveal errors
in our participants’ mental models of how to communicate
their concept to the learner. Mental models are internal rep-
resentations that people formulate about systems they inter-
act with (Johnson-Laird, 1983). As observed in these ex-
amples, incorrect mental models can result in inefficient or
erroneous behaviors, emphasizing the need for further re-
search in educating humans about how to most effectively
interact with machine learning algorithms.

We observed that many participants are not able to behave
in an optimal teaching state due to this mismatch between
what the participants believe of the system behavior and
how the system actually behaves. Even amongst partici-
pants who were in the optimal state, we see a varying level
of certainty in their understanding of the robot. One partic-
ipant in the human, interval condition said “Well, I really
hope the robot understands ranges. I didn’t want to cover
every single number, so randomly pulling up numbers to
say that they are acceptable or not didn’t seem worth it. So I
just marked the upper and lower limits and hoped it figured
it out.” In the human-initiated, interval condition with edu-
cation, some participant comments suggest that analogues

alone provide only a shallow understanding of the robot
because they could simply mimic the behavior described in
the instructions (“I followed the examples given based on
other prices.”). On the other hand, we see evidence of step-
by-step explanations helping the participants gain deeper
understanding of the robot and its hypothesis space. One
participant in the human, interval condition with explana-
tions said, “The robot knows there is a range. I provide the
high and low end of the range as acceptable. Then I provide
$1 under the low and $1 over the high as unacceptable. The
robot knows the range is between the first two numbers.”
These examples as well as the empirical results illustrate
that our approach to provide explanations can help bridge
this gap.

Identifying actual human fallibilities also presents opportu-
nities to guide users through better interface design. Some
participants, for example, indicated that they were aware of
the incorrect labels they provided by accident. This, along
with the higher rate of error in computer-initiated labeling,
suggests an interface for surfacing the history of items and
labels provided along with mechanisms for correction.

One major assumption we made is to approximate human
teacher effort with label complexity. This assumes that
each item x and corresponding label y obtained for training
requires equivalent effort on the part of the human. In prac-
tice, however, manually selecting x may take more cogni-
tive effort than providing a label y on an x queried by the
computer. This is well-known in cost-sensitive active learn-
ing (Settles, 2012). Our interval tasks provide some evi-
dence for this, given that participants appeared faster at la-
beling in the computer-initiated condition (17.3 labels/min)
than in the human-initiated condition (2.8 labels/min) while
their overall task duration was similar (63 sec vs. 56.5 sec,
respectively). The greater effort required in selecting xmay
be amplified in higher dimensional spaces where the user
may not know x or know of all possible positive islands a
priori. This presents additional opportunities to design rich
interfaces equipped with efficient mechanisms to search for
or generate training items (e.g., feature based interactions).

Finally, our analyses only included one possible mixed-
initiative mechanism, where users have the opportunity to
provide items only at the beginning, but other strategies
may include interleaving human and computer-initiated
phases. One could argue that, in a realistic application,
it may be difficult for humans to come up with the exact
teaching set at the beginning. What would happen if the
humans provided subsets of the teaching set in batches in-
terleaved with active learning queries? Such a method may
provide different theoretical guarantees and empirical re-
sults and is one of many research opportunities to consider.
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