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Abstract The machine learning model

Two groups: L-subjects and R-subjects. We can explain the human experiment using a Gaussian Mixture

Each subject sees 6 blocks of stimuli. Model (GMM) with 2 components:

Order within each block is randomized. wiN (g1, 01) + waN (2, 03) wi+wa = 1,w; >0

Only block 1 is labeled.
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This work explores the connections between machine learning and
human learning. Under a specific setting, human behavior
conforms well to a generative model (Gaussian Mixture Models)
for semi-supervised learning. We seem to learn semi-supervisedly.
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Particivan nd M rial Observation 2: Reaction time reflects decision boundary shift. , ) , L -
articipants a d Materials e The harder the stimuli, the longer the reaction time Observation 5: GMMs also explain reaction time t=aH(x)+b,

22 University of Wisconsin students. Novel visual stimuli, * Peaks shift to follow new decision boundary

parameterized by ad Single parameter X, shown on screen one at a [ """"""" C n l i n
time. Classification by pressing B or N key. Audio feedback e e oo R onciusions
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where H(x) is the entropy of class prediction for x.

(affirmative sound if correct, warning sound if wrong) serves as JE S R S — | | | |
label. No audio feedback for unlabeled examples o 700 B B G e Humans and machines both perform semi-supervised learning.
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ol e Other forms of semi-supervised machine learning (e.g.,
* * * * * * ¢ 0 0 ¢ o SO0 A M2 i manifold regularization, S3VMs, co-training) in humans should
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a few examples of our st1mu11, Wl’th the parameters X : o : 08 | e Further study may lead to new learning algorithms.
(b) reaction time
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