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This work explores the connections between machine learning and 
human learning.  Under a specific setting, human behavior 
conforms well to a generative model (Gaussian Mixture Models) 
for semi-supervised learning.  We seem to learn semi-supervisedly.

Procedure The machine learning model

We can explain the human experiment using a Gaussian Mixture 
Model (GMM) with 2 components:

The semi-supervised learning task

Two-class classification.  Two labeled examples.  Decision 
boundary in the middle.

With labeled and unlabeled examples, and under the assumption 
that each class form a coherent group (e.g., follow a Gaussian 
distribution), decision boundary shifts.

Well-known in machine learning.  We want to show such decision 
boundary shift exists in humans.

Participants and Materials

22 University of Wisconsin students.  Novel visual stimuli, 
parameterized by a single parameter x, shown on screen one at a 
time.   Classification by pressing B or N key.  Audio feedback 
(affirmative sound if correct, warning sound if wrong) serves as 
label.  No audio feedback for unlabeled examples.

a few examples of our stimuli, with the parameters x

Two groups: L-subjects and R-subjects.
Each subject sees 6 blocks of stimuli.
Order within each block is randomized. 
Only block 1 is labeled.
1. [labeled] 10 (x=1,y=1), 10 (x=-1,y=-1)
2. [test-1] x=-1, -0.9, …, 0.9, 1
3. [unlabeled-1] 230 sampled from two 

Gaussian (left or right shifted).  21 
“range stimuli” evenly in [-2.5, 2.5].

4. [unlabeled-2] same as block 3
5. [unlabeled-3] same as block 3
6. [test-2] x=-1, -0.9, …, 0.9, 1
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Observation 1: Unlabeled data changes the decision boundary.
[test-1] (0.11);  L-subjects [test-2] (-0.1); R-subjects [test-2] (0.48)
The shift represents the effect of unlabeled data on subjects, and 

fits the expectation of semi-supervised classification.

Observation 2: Reaction time reflects decision boundary shift.
• The harder the stimuli, the longer the reaction time
• Peaks shift to follow new decision boundary

We fit the GMM with EM on blocks 1,2 vs. blocks 1—6.  The EM 
algorithm maximizes the following objective, where  is a 
weight on unlabeled examples:

Observation 3: GMMs predict the decision boundary shift.

Observation 4: Unlabeled example weight  controls the amount 
of decision boundary shift.   Unlabeled data seems to worth less 
than labeled data.  Best fit: =0.06.

Observation 5: GMMs also explain reaction time t=aH(x)+b, 
where H(x) is the entropy of class prediction for x.

Conclusions

• Humans and machines both perform semi-supervised learning.
• Flatness of classification curves on [test-2] not well explained.
• Other forms of semi-supervised machine learning (e.g., 
manifold regularization, S3VMs, co-training) in humans should 
be explored.  
• Further study may lead to new learning algorithms.


