

Reward Poisoning Attacks on Offline Multi-Agent Reinforcement Learning Young Wu, Jeremy McMahan, Xiaojin Zhu, Qiaomin Xie

***University of Wisconsin-Madison**

How to Manipulate Competitive Agents Young Wu, Jeremy McMahan, Xiaojin Zhu, Qiaomin Xie

***University of Wisconsin-Madison**

Learning Goals

• Agents learn a joint policy $\pi: \mathcal{S} \to \Delta(\mathscr{A})$.

- Agents learn a joint policy $\pi: \mathcal{S} \to \Delta(\mathscr{A})$.
- π is an "optimal" strategy.

• Offline dataset records the episodes of the interaction.

• Offline dataset records the episodes of the interaction.

• Offline dataset records the episodes of the interaction.

- Offline dataset records the episodes of the interaction.
- Agents use the shared data to compute a joint policy π .

• Offline dataset records the episodes of the interaction.

• Offline dataset records the episodes of the interaction.

• Offline dataset records the episodes of the interaction.

• Extension of MDPs to the multi-agent setting.

- Extension of MDPs to the multi-agent setting.
- Think of: MDP with a game-reward matrix at each state.

- Extension of MDPs to the multi-agent setting.
- Think of: MDP with a game-reward matrix at each state.

- Extension of MDPs to the multi-agent setting.
- Think of: MDP with a game-reward matrix at each state.

- Extension of MDPs to the multi-agent setting.
- Think of: MDP with a game-reward matrix at each state.

Solution Concepts

Solution Concepts

• Solution to a game takes form of an Equilibrium.

Solution Concepts

- Solution to a game takes form of an Equilibrium.
- Examples: NE, DSE, CCE

• Simplest assumption on rationality: <u>no agent takes a strictly dominated action</u>, $Q_i(s, (a_i, a_{-i})) < Q_i(s, (a'_i, a_{-i})).$

- $Q_i(s, (a_i, a_{-i})) < Q_i(s, (a'_i, a_{-i})).$
- Strict Markov Perfect Dominant Strategy Equilibrium (MPDSE) is the corresponding equilibrium concept.

Simplest assumption on rationality: <u>no agent takes a strictly dominated action</u>,

- $Q_i(s, (a_i, a_{-i})) < Q_i(s, (a'_i, a_{-i})).$
- Strict Markov Perfect Dominant Strategy Equilibrium (MPDSE) is the corresponding equilibrium concept.

Key Fact: Rational agents always play the MPDSE if it exists.

Simplest assumption on rationality: <u>no agent takes a strictly dominated action</u>,

Robust Learners

• To deal with dataset uncertainty, robust learners create a set of plausible games, PG.

• To deal with dataset uncertainty, robust learners create a set of plausible games, PG.

- To deal with dataset uncertainty, robust learners create a set of plausible games, PG.
- Agents believe the true Markov Game lies within PG w.h.p.

- To deal with dataset uncertainty, robust learners create a set of plausible games, PG.
- Agents believe the true Markov Game lies within PG w.h.p.
- Example: Confidence Bounded Learners (CBL) assume that $CI_i^R(s,a) = \left\{ R_i(s,a) \in [-b,b] \mid |R_i(s,a) \hat{R}_i(s,a)| \le \rho^R(s,a) \right\}.$

Robust Policies

Assumption: the policy π the agents learn is a solution to one of the games in PG.

Robust Policies

Assumption: the policy π the agents learn is a solution to one of the games in PG.

Robust Policies

Assumption: the policy π the agents learn is a solution to one of the games in PG.

Robust Policies

Assumption: the policy π the agents learn is a solution to one of the games in PG.

Poisoning

What the agent sees.

The Data is Corrupted!

Attacker wants $\pi = \pi^{\dagger}$.

• Attacker can change the *rewards* appearing in the dataset at some cost.

- Attacker can change the rewards appearing in the dataset at some cost.
- Attacker wants to minimize its cost, usually the L1 norm: $||r^0 r^{\dagger}||_1$.

Attacker wants $\pi = \pi^{\dagger}$.

- Attacker can change the *rewards* appearing in the dataset at some cost.
- Attacker wants to minimize its cost, usually the L1 norm: $||r^0 r^{\dagger}||_1$.

wants
$$\pi = \pi^{\dagger}$$
.

The Attack Problem:

$$|r^{0} - r^{\dagger}||_{1}$$
earned from r^{\dagger}

• Rewards must lie in the natural range [-b, b].

- Rewards must lie in the natural range [-b, b].
- Data may be scarce (Low Data Coverage).

- Rewards must lie in the natural range [-b, b].
- Data may be scarce (Low Data Coverage).

- Rewards must lie in the natural range [-b, b].
- Data may be scarce (Low Data Coverage).

$$\pi^{\dagger} = (2,2)$$

Can *never* be learned for certain learners!

- Rewards must lie in the natural range [-b, b].
- Data may be scarce (Low Data Coverage).

$$\pi^{\dagger} = (2,2)$$

Can *never* be learned for certain learners!

Algorithms

A bandit game is a single normal form game (S = H = 1).

A bandit game is a single normal form game (S = H = 1).

A bandit game is a single normal form game (S = H = 1).

A bandit game is a single normal form game (S = H = 1).

A bandit game is a single normal form game (S = H = 1).

A bandit game is a single normal form game (S = H = 1).

Strict DSE

Strict DSE

$R_1(1,1) > R_1(2,1)$

<u> </u> , I	Ι,Ο
<u>O,</u> I	0, 0

Strict DSE

$R_1(1,1) > R_1(2,1)$

<u> </u> , I	Ι,Ο
<u>O,</u> I	0, 0

$R_1(1,2) > R_1(2,2)$

,	<u> </u> , O
0, I	<u>0</u> , 0

$R_1(1,1) > R_1(2,1)$

$R_2(1,1) > R_2(1,2)$

Strict DSE

$R_1(1,2) > R_1(2,2)$

,	<u> </u> , O
0, I	<u>0</u> , 0

$R_1(1,1) > R_1(2,1)$

$R_2(1,1) > R_2(1,2)$

Strict DSE

$R_1(1,2) > R_1(2,2)$

,	<u> </u> , O
0, I	<u>0</u> , 0

$R_2(2,1) > R_2(2,2)$

,	Ι,Ο
0, 🔟	0, <u>0</u>

Optimal Poisoning

Optimal Poisoning

Can formulate an LP to compute optimal cost attacks:
Can formulate an LP to compute optimal cost attacks:

 $R_i(\pi_i^{\dagger}, a_{-i}) \ge R_i(a_i, a_{-i}) + \epsilon \qquad \forall i, a_i \neq \pi_i^{\dagger}, a_{-i}$

Optimal Poisoning

Can formulate an LP to compute optimal cost attacks:

 $R_i(\pi_i^{\dagger}, a_{-i}) \ge R_i(a_i, a_{-i})$

Optimal Poisoning

$$(a_{-i}) + \epsilon \qquad \forall i, a_i \neq \pi_i^{\dagger}, a_{-i}$$

	, <i>-</i> E
I	<i>-</i> E, <i>-</i> E

 $Q_i^{\pi^{\dagger}}(s, (\pi_i^{\dagger}(s), a_{-i})) > Q_i^{\pi^{\dagger}}(s, (a_i', a_{-i})) \quad \forall s, i, a_{-i}, a_i'$

Dominance

The dominance equation ensures π is a strict MPDSE for any game with Q-function Q:

Dominance

 $Q_i^{\pi^{\dagger}}(s, (\pi_i^{\dagger}(s), a_{-i})) >$

• MPDSE is equivalent to forcing a DSE in each stage game.

The dominance equation ensures π is a strict MPDSE for any game with Q-function Q:

$$Q_i^{\pi^{\dagger}}(s, (a'_i, a_{-i})) \quad \forall s, i, a_{-i}, a'_i$$

Dominance

 $Q_i^{\pi^{\dagger}}(s, (\pi_i^{\dagger}(s), a_{-i})) >$

MPDSE is equivalent to forcing a DSE in each stage game.

• Boils down to *Optimal Game Design*.

The dominance equation ensures π is a strict MPDSE for any game with Q-function Q:

$$Q_i^{\pi^{\dagger}}(s, (a'_i, a_{-i})) \quad \forall s, i, a_{-i}, a'_i$$

• Force π^{\dagger} to be a MPDSE in every plausible game.

• Force π^{\dagger} to be a MPDSE in every plausible game.

• Ensures robust rational agents learn π^{\dagger} by assumption.

• Force π^{\dagger} to be a MPDSE in every plausible game.

- Ensures robust rational agents learn π^{\dagger} by assumption.
- Let $PQ = \{Q \mid Q = Q_G^{\pi^{\dagger}}, G \in PG\}$ be the set of plausible Qs.

- Force π^{\dagger} to be a MPDSE in every plausible game.
 - Ensures robust rational agents learn π^{\dagger} by assumption.
- Let $PQ = \{Q \mid Q = Q_G^{\pi^{\dagger}}, G \in PG\}$ be the set of plausible Qs.
 - Attacker needs dominance to hold for all $Q \in PQ$.

PQ alone could be difficult to characterize or compute!

PQ alone could be difficult to characterize or compute!

PQ alone could be difficult to characterize or compute!

Sufficient condition: ensure domination between the extreme Q-functions,

Extreme Dominance

Extreme Dominance

Sufficient condition: ensure domination between the extreme Q-functions,

 $\underline{Q}_{i}^{\pi^{\dagger}}(s,(\pi_{i}^{\dagger}(s),a_{-i})) > \overline{Q}_{i}^{\pi^{\dagger}}(s,(a_{i}',a_{-i})) \quad \forall s,i,a_{-i},a_{i}'$

Sufficient condition: ensure domination between the extreme Q-functions,

 $\underline{Q}_{i}^{\pi^{\dagger}}(s,(\pi_{i}^{\dagger}(s),a_{-i}))$

Where, the Q's are the point-wise extremes:

 $\underline{Q}_{i}^{\pi^{\dagger}}(s, c)$

Extreme Dominance

$$> \overline{Q}_i^{\pi^\dagger}(s, (a'_i, a_{-i})) \quad \forall s, i, a_{-i}, a'_i$$

$$a) = \min_{G \in PG} Q_{G,i}^{\pi^{\dagger}}(s,a)$$

$$a) = \max_{G \in PG} Q_{G,i}^{\pi^{\dagger}}(s,a)$$

• The Extreme Dominance Constraint is linear.

- The Extreme Dominance Constraint is linear.

• For CBL, the extreme Q-functions are defined by linear inequalities.

- The Extreme Dominance Constraint is linear.

• For CBL, the extreme Q-functions are defined by linear inequalities.

• This extends the previous ideas about games to datasets.

- The Extreme Dominance Constraint is linear.

The attacker can efficiently compute minimum cost attacks using a Linear Program

For CBL, the extreme Q-functions are defined by linear inequalities.

• This extends the previous ideas about games to datasets.

Solutions

Feasibility

Can the attacker make any π^{\dagger} a MPDSE?

Feasibility

Can the attacker make any π^{\dagger} a MPDSE?

Theorem: Poisoning CBL is feasible if the following condition holds:

Feasibility

$i \le 2b - (H+1)\rho_h^R(s,a), \ \forall h \in [H], s \in S, a \in A$

Can the attacker make any π^{\dagger} a MPDSE?

Theorem: Poisoning CBL is feasible if the following condition holds:

$$\iota \le 2b - (H+1)\rho_h^R(s)$$

What does this mean?

Feasibility

$(s, a), \forall h \in [H], s \in S, a \in A$

Coverage Requirements

Feasibility through data coverage.

Feasibility through data coverage.

Corollary: Poisoning CBL is feasible if the following condition holds:

 $4b^2(H+1)^2\log^2(H+1)^2)$

 $\frac{\forall v}{N_h(s,a)} \ge \frac{\sqrt{2}}{2!}$

Coverage Requirements

$$\frac{g\left(\left(H\left|S\right|\left|A\right|\right)/\delta\right)}{2b-\iota\right)^{2}} = \tilde{\Omega}(H^{2}).$$

 $4b^2(H+1)^2\log^2(H+1)^2(H+1)^2\log^2(H+1)^2)$

Coverage Requirements

Feasibility through data coverage.

Corollary: Poisoning CBL is feasible if the following condition holds:

$$\frac{g\left(\left(H\left|S\right|\left|A\right|\right)/\delta\right)}{2b-\iota\right)^{2}} = \tilde{\Omega}(H^{2}).$$

 $4b^2(H+1)^2\log^2(H+1)^2)$

Coverage Requirements

Feasibility through data coverage.

Corollary: Poisoning CBL is feasible if the following condition holds:

$$\frac{g\left(\left(H\left|S\right|\left|A\right|\right)/\delta\right)}{2b-\iota\right)^{2}} = \tilde{\Omega}(H^{2}).$$

Cost Analysis

VS

VS

+ Poison
$$\begin{pmatrix} -3, 5 & -2, 6 \\ 2, -2 & 2, -2 \end{pmatrix}$$
 + Poison $\begin{pmatrix} 1, -1 & 0, 8 \\ 8, 0 & 2, -2 \end{pmatrix}$

Poison
$$\left(\begin{bmatrix} -5, 5 & -2, 2 \\ 3, -3 & 1, -1 \end{bmatrix} \right)$$
 + Poison $\left(\begin{bmatrix} 2, -3 & -5, 9 \\ 8, 6 & 7, 7 \end{bmatrix} \right)$

*Poisoning is not separable over stage games.

VS

+ Poison
$$\left(\begin{bmatrix} -3, 5 & -2, 6 \\ 2, -2 & 2, -2 \end{bmatrix} \right)$$
 + Poison $\left(\begin{bmatrix} 1, -1 & 0, 8 \\ 8, 0 & 2, -2 \end{bmatrix} \right)$

$$\operatorname{Poison}\left(\left[\begin{smallmatrix} -5,5 & -2,2 \\ 3,-3 & 1,-1 \end{smallmatrix}\right) + \operatorname{Poison}\left(\left[\begin{smallmatrix} 2,-3 & -5,9 \\ 8,6 & 7,7 \end{smallmatrix}\right) + \operatorname{Poison}\left(\left[\begin{smallmatrix} -3,5 & -2,6 \\ 2,-2 & 2,-2 \end{smallmatrix}\right) + \operatorname{Poison}\left(\left[\begin{smallmatrix} 1,-1 & 0,8 \\ 8,0 & 2,-2 \end{smallmatrix}\right)\right)$$

$$\operatorname{Can exactly characte}$$

*Poisoning is not separable over stage games.

VS

Cost Bounds on Optimal Data Poisoning are derived through Bandit Data Poisoning.

Bound Reduction

Cost Bounds on Optimal Data Poisoning are derived through Bandit Data Poisoning.

Bound Reduction

-5, 5	-2, 2
3, -3	1, -1
2, -3	-5, 9
8, 6	7, 7
-3, 5	-2, 6
2, -2	2, -2

2, 2 1, -1 -5, 9 7, 7 -2, 6 2, -2 0, 8 2, -2	8, 0	,-	2, -2	-3, 5	8, 6	2, -3	3, -3	-5, 5
	2, -2	0, 8	2, -2	-2, 6	7,7	-5, 9	,-	-2, 2

Cost Bounds on Optimal Data Poisoning are derived through Bandit Data Poisoning.

Bound Reduction

$\mathcal{A}_1/\mathcal{A}_2$	1	2	 $ \mathcal{A}_2 $
1	-b, -b	-b,b	 -b,b
2	b, -b	b, b	 b, b
$ \mathcal{A}_1 $	b, -b	b, b	 b, b

Before Attack

$\mathcal{A}_1/\mathcal{A}_2$	1	2	 $ \mathcal{A}_2 $
1	-b, -b	-b, b	 -b,b
2	b, -b	b, b	 b, b
$ \mathcal{A}_1 $	b, -b	b, b	 b, b

Before Attack

$\mathcal{A}_1/\mathcal{A}_2$	1	2	 $ \mathcal{A}_2 $
1	-b, -b	-b, b	 -b,b
2	b, -b	b, b	 b, b
$ \mathcal{A}_1 $	b, -b	b, b	 b, b

Before Attack

$\mathcal{A}_1/\mathcal{A}_2$	1	2
1	b, b	$b, b-2 ho-\iota$
2	$b-2 ho-\iota,b$	$b-2 ho-\iota,b-2 ho-\iota$
$ \mathcal{A}_1 $	$b-2 ho-\iota,b$	$b-2 ho-\iota,b-2 ho-\iota$

After Attack

$ \mathcal{A}_1/\mathcal{A}_2 $	1	2	 $ \mathcal{A}_2 $
1	-b, -b	-b, b	 -b,b
2	b, -b	b, b	 b, b
$ \mathcal{A}_1 $	b, -b	b, b	 b, b

Before Attack

 $H|S|\min_{h,s,a}N_h(s,a)$

After Attack

Optimal Attack Cost:

$$|A|^{n-1}(2b + 2\rho + \iota)$$

$ \mathcal{A}_1/\mathcal{A}_2 $	1	2	 $ \mathcal{A}_2 $
1	-b, -b	-b, b	 -b, b
2	b, -b	b, b	 b, b
$ \mathcal{A}_1 $	b, -b	b, b	 b, b

Before Attack

 $H|S|\min N_h(s,a)|A|^{n-1}(2b+2\rho+\iota)$ h,s,a

After Attack

Optimal Attack Cost:

The Roles of ρ

ρ^P

The Roles of ρ

If the uncertainty in transition is high,

The Roles of ρ

If the uncertainty in transition is high,

The optimal cost could potentially be greater than optimally poisoning each subdataset!

The Roles of ρ

If the uncertainty in transition is high,

$$\geq \sum_{i=1}^{H} C(D_h)$$

If the uncertainty in reward is low,

$$\leq \sum_{i=1}^{H} C(D_h)$$

Conclusion

Summary

- In large datasets, poisoning is always feasible, though costly.

• Thus, we illustrate the need for provable defenses against offline reward poisoning.