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Abstract

We study offline reinforcement learning (RL) with heavy-
tailed reward distribution and data corruption: (i) Moving
beyond subGaussian reward distribution, we require only a
bounded (1+γ)-th moment for γ ∈ (0, 1]; (ii) We allow cor-
ruptions where an attacker can arbitrarily modify ε-fraction
of the rewards and transitions in the dataset. We first derive
a sufficient optimality condition for generalized Pessimistic
Value Iteration (PEVI), which allows various estimators with
proper confidence bounds and can be applied to multiple
learning settings. In order to handle the data corruption and
heavy-tailed reward setting, we prove that the trimmed-mean
estimation achieves a minimax optimal error rate O

(
σε

γ
1+γ

)
for robust mean estimation under heavy-tailed distributions.
In the PEVI algorithm, we plug in the trimmed mean esti-
mation and the confidence bound to solve the robust offline
RL problem. Standard analysis reveals that data corruption
induces a bias term O

(
Hσε

γ
1+γ + εH

)
in the suboptimality

gap, which gives the false impression that any data corrup-
tion prevents optimal policy learning. By using the optimality
condition for the generalized PEVI, we show that as long as
the bias term is less than the “action gap”, the policy returned
by PEVI achieves the optimal value given sufficient data.

1 Introduction
Reinforcement learning (RL) studies sequential decision-
making in a potentially unknown environment (Sutton and
Barto 2018). The success of RL requires sufficient interac-
tions with the environment. Unlike RL with online inter-
actions, offline RLs (Fujimoto, Meger, and Precup 2019;
Laroche, Trichelair, and Des Combes 2019) utilize batch
datasets without further interactions with the environment,
which is preferred when there are abundant data generated
by high-performing policies. However, offline RL becomes
more challenging under data corruption (Eykholt et al. 2018;
Neff 2016; Ma et al. 2019; Zhang et al. 2020) and heavy-
tailed reward distributions (Bubeck, Cesa-Bianchi, and Lu-
gosi 2013; Dubey et al. 2020), which is the topic of this pa-
per.

Previous studies have primarily focused on problems un-
der certain concentration assumptions, typically requiring
that the rewards are bounded or follow distributions with
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subGaussian tails (Lattimore and Szepesvári 2020). How-
ever, there is growing evidence indicating that the subGaus-
sianity assumption may not hold for many real-world sce-
narios (Arnold 2014; Liebeherr, Burchard, and Ciucu 2012;
Borak, Härdle, and Weron 2005), challenging the applicabil-
ity of algorithms designed solely for sub-Gaussian settings.

In terms of data corruption in RL, prior work (Zhang et al.
2022; Chen et al. 2022) showed that one can apply pes-
simistic value iteration (PEVI) with robust mean estimation
to partially handle data corruption in offline RL, resulting in
a policy π̂ with suboptimality upper bound SubOpt(π̂) ≤
Õ
(

poly(H,σ)√
N

)
+ O(Hσε). Such an upper bound involves a

term diminishing with sample sizeN and an irreducible bias
term involves the corruption level ε. This implies that PEVI
returns a suboptimal policy even with infinite data.

In this paper, we address the challenge of policy recovery
in the presence of both heavy-tailed reward distributions and
data corruption. We establish that Trimmed-mean estimation
achieves the optimal error rate of O

(
σε

γ
1+γ + σN−

γ
1+γ

)
for the robust mean estimation problem when confronted
data corruption and heavy-tailed distribution. When using
Trimmed-mean estimation as a subroutine, PEVI generates
a nearly optimal policy. In particular, by utilizing the prop-
erty of action gap, we show that O(Hσε

γ
1+γ + εH) < ∆Amin

is sufficient for the policy to achieve the optimal value even
under corruption. We summarize our contributions as fol-
lows:

1. We show that a modified version of Trimmed-Mean es-
timation achieves minimax-optimal error guarantee for
robust mean estimation problems with heavy-tailed dis-
tribution and data corruption. Importantly, we only re-
quire the distribution to have bounded (1 + γ)-th cen-
tered moment and allow the variance of the distribution
to be infinite. Unlike the truncated empirical mean esti-
mation in (Bubeck, Cesa-Bianchi, and Lugosi 2013), the
trimmed mean estimator considered in our paper is both
translation-invariant and robust to data corruption. As a
result, we show that reward distribution with bounded
(1 + γ)-th moment is sufficient to ensure the success of
policy learning, which is a much weaker concentration
assumption than the subGaussian or bounded variance
assumption typically used in the literature.



2. We present a generalized PEVI and derive an optimality
condition based on the action gap. In the offline learn-
ing setting with heavy-tailed reward and data corrup-
tion, we plug in the trimmed mean estimation for re-
ward estimation. We show that given sufficient samples,
O(Hσε

γ
1+γ + εH) < ∆Amin ensures that the learner takes

an optimal action in each state visited by some optimal
policy and thus achieves the optimal value.

2 Related Work
RL and adversarial attack against RL: Reinforcement
learning aims to find the optimal strategy in a Markov De-
cision Process (MDP) (Sutton and Barto 2018). In online
RL, (Azar, Osband, and Munos 2017; Dann, Lattimore, and
Brunskill 2017) show that the UCB-style algorithm achieves
minimax regret bound. In offline RL, (Jin, Yang, and Wang
2021; Rashidinejad et al. 2021; Xie et al. 2021) use the
pessimistic principle to design algorithms for offline policy
learning. There are lines of work studying gap-dependent
online (Simchowitz and Jamieson 2019; Xu, Ma, and Du
2021; Dann et al. 2021; Jonsson et al. 2020; Wagenmaker,
Simchowitz, and Jamieson 2022) and offline (Wang, Cui,
and Du 2022; Hu, Kallus, and Uehara 2021) RL. Our pa-
per is closely related to the work on offline gap-dependent
RL. However, our main objective is to characterize sufficient
conditions for optimality under data corruption instead of
optimal sample complexity.

Heavy-tailed bandits: There is a significant body of re-
search dedicated to studying bandit problems under weak
moment assumptions. For instance, (Bubeck, Cesa-Bianchi,
and Lugosi 2013) focused on the mean multi-armed ban-
dit (MAB) problem with heavy-tailed rewards and utilized
robust mean estimation to develop a UCB algorithm that
achieves logarithmic regret. The pure-exploration problem
for MAB with heavy-tailed distributions was investigated
by (Yu et al. 2018). Furthermore, (Medina and Yang 2016;
Shao et al. 2018) explored the linear bandit problem with
heavy-tailed noise distributions and proposed algorithms
with nearly-optimal regret guarantees. (Dubey et al. 2020)
examined this problem in the context of cooperative multi-
agent settings.

Robust statistics: Robust statistics studies estimation
with corrupted data (Huber 1992; Tukey 1960). Recent ad-
vances (Diakonikolas et al. 2019a; Lai, Rao, and Vempala
2016) design efficient algorithms for high-dimensional ro-
bust statistics. These techniques are applied to more gen-
eral machine learning tasks, including linear regression (Di-
akonikolas, Kong, and Stewart 2019), supervised learning
(Diakonikolas et al. 2019b; Prasad et al. 2018) and RL
(Zhang et al. 2022, 2021). Our work utilizes robust mean
estimation to defend data corruption in offline RLs.

Adversarial RL and robust RL: RL is vulnerable to ad-
versarial attacks (Ma et al. 2019; Zhang et al. 2020; Huang
et al. 2017; Sun et al. 2020; Behzadan and Munir 2017). Cor-
ruption robust RL performs policy learning under data cor-
ruption (Lykouris et al. 2021; Wei, Dann, and Zimmert 2022;
Zhang et al. 2021, 2022; Chen et al. 2022), which usually re-
sults in a bias term in the performance guarantee due to the

data corruption. (Niss and Tewari 2020; Kapoor, Patel, and
Kar 2019) study multi-armed bandits under data corruption
using robust statistics. They show that if the corruption level
is not high enough to make the robust reward estimation of a
suboptimal to be larger than that of an optimal arm, then the
learner suffers only sublinear regret, which captures an opti-
mal arm. We use this intuition to study offline RL under data
corruption. There is a separate line of works studying distri-
butionally robust RL problem (Shi and Chi 2022; Panaganti
et al. 2022) where the state transition is specified by some
uncertainty sets. Our setting is significantly different from
this line of works.

3 Preliminary
MDP formulation: We consider a finite horizon
episodic tabular Markov Decision Process (MDP)
M = (S,A,P,R, H, p0) with finite state space
|S| = S, finite action space |A| = A, transition ma-
trices P = {Ph}Hh=1, reward distributions R = {Rh}Hh=1,
and initial state distribution p0. We assume the rewards
are scholastic and the expectations of reward distributions
are bounded in [0, 1], i.e. for all (s, a, h) ∈ S × A × [H],
rh(s, a) := ERh(s,a)∼Rh(s,a)[Rh(s, a)] ∈ [0, 1]. Later
on, we will study MDPs with different concentration
assumptions on the reward distributions.

Policy and value function: A policy π = {πh}Hh=1
from a deterministic policy class Π is a sequence of de-
terministic functions that map from state to action: πh :
S 7→ A,∀h. The state value function of π is defined
as V πh (s) := E

[∑H
t=hRt(st, πt(st))

∣∣∣ st = s
]
. We simi-

larly define the state-action value function: Qπh(s, a) :=
E[Rh(s, a)] + Esh+1∼Ph(·|s,a)

[
V πh+1(sh+1)

]
. The value of

a policy is the expectation of V π1 (s) over the initial state
distribution: V πp0 := Es1∼p0 [V π1 (s1)]. An optimal policy is
one that simultaneously maximizes V πh (s) for all h and s.
We use Π∗ ⊆ Π to denote the set of all deterministic opti-
mal policies. And we use V ∗h (·), Q∗h(·, ·), V ∗p0 to denote the
state value function, state-action value function, and value
of the optimal policies. We use dπh(s) := Eπ[I{sh = s}],
dπh(s, a) := Eπ[I{(sh, ah) = (s, a)}] to denote the state oc-
cupancy distribution and state-action occupancy distribution
under policy π.

Performance measure: In this paper, we mainly focus
on the offline setting and use the suboptimality gap as the
performance measure for a policy: SubOpt(π) := V ∗p0 −
V πp0 . Our goal is to find a policy with a small suboptimality
gap.

Policy gap and action gap: Among policies that
fail to achieve the optimal value, the best one has
the smallest suboptimality gap. We call this gap the
policy gap: ∆Π

min := minπ∈Π:V πp0
<V ∗p0

SubOpt(π).

In contrast, we define a more fine-grained action
gap by ∆Amin := min(h,s,a):∆h(s,a)>0,s∈Sh ∆h (s, a),
where ∆h (s, a) := V ∗h (s) − Q∗h(s, a) and Sh :={
s ∈ S : ∃π∗ ∈ Π∗, s.t. dπ

∗

h (s) > 0
}
. For notation conve-

nience we assume there is at least one (s, a, h) tuple s.t.
s ∈ Sh and ∆h (s, a) > 0 to exclude trivial MDPs. A simi-



lar notion of ∆Amin has been introduced in (Simchowitz and
Jamieson 2019; Wang, Cui, and Du 2022), Our notation of
∆Amin is a refinement over theirs where the minimum is over
only the (s, h) pairs covered by at least an optimal policy.
We can show that our action gap is always no less than pol-
icy gap, and the difference can be large:
Proposition 1. For any MDPM, there exists (π∗, s′, h′) ∈
Π∗×S×[H], s.t. dπ

∗

h′ (s
′) > 0, and ∆Π

min ≤ dπ
∗

h′ (s
′)∆Amin ≤

∆Amin.

Intuitively, by definition of ∆Amin, there exists a (s′, a′, h′)
tuples and an optimal policy π∗ s.t. ∆h′ (s

′, a′) = ∆Amin

and dπ
∗

h′ (s
′) > 0. We can design a suboptimal policy π̃

by choosing the suboptimal action a′ at state s′ and step
h′ and follow π∗ in all other states or steps. The subopti-
mality of π̃, dπ

∗

h′ (s
′)∆Amin, depends on the state occupancy

measure dπ
∗

h′ (s
′). Because ∆Π

min is a lower bound on the
suboptimality of all suboptimal policies, we conclude that
∆Π

min ≤ dπ
∗

h′ (s
′)∆Amin. dπ

∗

h′ (s
′) can be very close to 0 in

some MDPs, thus ∆Π
min can be much smaller than ∆Amin.

4 Sufficient Condition for Exact Optimal
Policy Recovery in Offline RL

In this section, we provide a sufficient condition for ex-
act optimal policy recovery in offline RL. Our character-
ization is based on the well-known PEVI algorithm (Jin,
Yang, and Wang 2021), we slightly generalize it in Algo-
rithm 1 to decouple RL from the estimators on mean rewards
and transitions. This enables us to plug in different estima-
tors later based on specific data assumptions, such as when
the data is drawn from heavy-tailed distributions or adver-
sarially corrupted. We then achieve different exact optimal
policy recovery guarantees accordingly. Concretely, Algo-
rithm 1 calls a REWARDESTIMATOR f to obtain a confi-
dence interval r̂h(s, a)±b1h(s, a) for the reward rh(s, a), and
a TRANSITIONESTIMATOR g to obtain a confidence interval
P̂Vh,s,a ± b2h(s, a) for the expectation of a vector V h under
the transition multinomial Ph,s,a. These estimators will be
instantiated differently in Section 5 based on different data
assumptions. The notation Dr|hsa stands for the set of re-
ward values observed at stage h in state s under action a in
the offline dataset; similarly for the set of next statesDs′|hsa.

If the sum of confidence bound b1h(s, a) + b2h(s, a) is uni-
formly bounded on (s, a, h) tuples that are covered by the
optimal policies, we can get a clean suboptimality guarantee
for Algorithm 1:
Theorem 1 (Bound on suboptimality). Suppose for all
(s, a, h) ∈ S×A×[H], with probability at least 1 − δ

SAH ,
we have:

|r̂h(s, a)− rh(s, a)| ≤ b1h(s, a)∣∣∣P̂Vh,s,a − P>h,s,aV h+1

∣∣∣ ≤ b2h(s, a).

If ∀(s, a, h) ∈
{

(s, a, h) : ∃π∗ ∈ Π∗, s.t. dπ
∗

h (s, a) > 0
}

,
we have b1h(s, a) + b2h(s, a) ≤ b, then with probability at
least 1− δ, π̂ returned by Algorithm 1 satisfies

SubOpt(π̂) ≤ 2Hb. (1)

Algorithm 1: Generalized PEVI

Input: dataset D =
⋃H
h=1

{(
sh,i, ah,i, rh,i, s

′
h,i

)}N
i=1

.
confidence level δ.
Set Q

H+1
(s, a) = 0, V H+1(s) = 0 for all (s, a)

for h = H, . . . , 1 do
for s ∈ S, a ∈ A do(

r̂h(s, a), b1h(s, a)
)
← f(Dr|hsa, δ

2SAH )(
P̂Vh,s,a, b

2
h(s, a)

)
← g(Ds′|hsa, V h+1,

δ
2SAH )

Q
h
(s, a) = max(0, r̂h(s, a)− b1h(s, a) + P̂Vh,s,a −

b2h(s, a))
end for
for s ∈ S do
V h(s) = maxa∈AQh(s, a)

π̂h(s) = argmaxa∈AQh(s, a)
end for

end for
Return: π̂.

When the confidence bounds are small enough, the esti-
mation for value function in Algorithm 1 will be accurate
and π̂ will choose the optimal action in each state with pos-
itive occupancy measure. With this intuition, we get a suffi-
cient condition for optimality:

Theorem 2 (Optimality condition). Under the conditions in
Theorem 1, if 2Hb < ∆Amin, then SubOpt(π̂) = 0 with
probability at least 1− δ.

Theorem 2 provides a general condition for optimal pol-
icy identification, which results in different guarantees given
different estimators and corresponding confidence bounds.
One can also derive an optimality condition using policy gap
∆Π

min: because the set of deterministic optimal policies Π∗

is discrete, when (1) is less than ∆Π
min, SubOpt(π̂) = 0.

However, this argument usually results in an overly conser-
vative optimality condition. We defer the detailed discussion
to Section 6.

In the case of learning with i.i.d. offline dataset, Theorem
4.1 of (Wang, Cui, and Du 2022) provides a dedicated sam-
ple complexity guarantee for offline optimal policy identifi-
cation when the rewards are deterministic and known. Un-
der a similar i.i.d. learning setting but with subGaussian re-
wards, we show, in Section 5.1, that when the reward and
transition estimators f and g are specified to be empiri-
cal mean estimators with Hoeffding-style confidence bound,
Theorem 2 provides a similar sample complexity bound.
However, our main focus is to use Algorithm 1 to study the
robust offline learning setting in Section 5.2, which is much
more challenging.

5 Case Studies
The meta-algorithm Algorithm 1 and its theoretical guar-
antee in Section 4 can be applied to various data genera-
tive models and reward distributions given estimators with
proper confidence bounds. In this section, we present two



case studies. We start with a standard learning setting in Sec-
tion 5.1 as a warm-up where the dataset consists of i.i.d.
samples and the reward distributions are subGaussian; we
then present our main result in Section 5.2 with a harder
learning setting where the dataset can be corrupted and re-
ward distributions are heavy-tailed. In both case studies, we
provide sufficient conditions for optimality derived using
Theorem 2.

5.1 Warm-up: i.i.d. dataset with subGaussian
rewards

We first consider the standard offline learning setting with
an i.i.d. dataset and a subGaussian rewards distribution. The
exact policy recovery condition is known (Wang, Cui, and
Du 2022), but our purpose here is to illustrate how one can
instantiate Theorem 2 with f, g, in anticipation of our main
result in the next section. We assume the reward distributions
are subGausian:
Assumption 1 (SubGaussian rewards). For all (s, a, h) ∈
S×A×[H],Rh(s, a) is subGaussian with mean rh(s, a) :=
EX∼Rh(s,a)[X] ∈ [0, 1] and parameter σ2, σ > 0, i.e.
EX∼Rh(s,a)[exp(s(X − rh(s, a)))] ≤ exp

(
σ2s2/2

)
, for all

s ∈ R.
In our offline learning setting, we consider the data gen-

erative model similar to (Wang, Foster, and Kakade 2020),
where the learning agent has access to an offline dataset
drawn from some data distribution but cannot have further
interaction with the MDP. The i.i.d. dataset is generated as a
set of transition tuples instead of trajectories. Specifically,
Definition 1 (Offline dataset). An offline datasetD of sizeN
collected with data distributions µ = {µh}h∈[H] is a mul-
tiset consisting of N transition tuples sampled at each time
step:

D =

H⋃
h=1

{(
sh,i, ah,i, rh,i, s

′
h,i

)}N
i=1

where (sh,i, ah,i) ∼ µh, rh,i ∼ Rh(sh,i, ah,i) and s′h,i ∼
Ph(· | sih, aih).

We assume the data distribution µ has uniform coverage
on all optimal policies:
Assumption 2 (Uniform optimal policy coverage). There
exists P > 0, s.t. µh(s, a) ≥ P , for all (s, a, h) ∈{

(s, a, h) : ∃π∗ ∈ Π∗, s.t. dπ
∗

h (s, a) > 0
}

.
As shown in Section D of (Wang, Cui, and Du 2022), this

assumption is necessary for optimal policy recovery.
Under this standard offline learning setting, it is sufficient

to use empirical mean estimator in both the reward estimator
and transition estimator:

r̂emp
h,s,a =

1

Nh(s, a)

∑
r∈Dr|hsa

r (2)

P̂V
emp

h,s,a =
1

Nh(s, a)

∑
s′∈Ds′|hsa

V h+1(s′), (3)

where Nh(s, a) =
∣∣Dr|hsa∣∣ =

∣∣Ds′|hsa∣∣. We use the con-
vention that 0/0 = 0. The confidence bounds are given by
the following lemma:

Proposition 2 (Confidence bound). If Assumption 1 holds,
then for all (s, a, h) ∈ S×A×[H], with probability at least
1− δ

2SAH : ∣∣∣r̂emp
h,s,a − rh(s, a)

∣∣∣ ≤b1,emp
h,s,a ,∣∣∣P̂V

emp

h,s,a − P>h,s,aV h+1

∣∣∣ ≤b2,emp
h,s,a .

where

b1,emp
h,s,a = σ

√
2 log 8SAH

δ

Nh(s, a)
, b2,emp
h,s,a = H

√
log 8SAH

δ

2Nh(s, a)

In this case study, the reward and transition estimators are
defined to be:

femp

(
Dr|hsa,

δ

2SAH

)
:=
(
r̂emp
h,s,a, b

1,emp
h,s,a

)
gemp

(
Ds′|hsa, V h+1,

δ

2SAH

)
:=
(

P̂V
emp

h,s,a, b
2,emp
h,s,a

)
Given the reward estimator and transition estimator, we can
get the following optimality condition by applying Theo-
rem 2:

Proposition 3 (Optimality condition). Suppose Assump-
tion 1, 2 holds. We specify the reward and transition estima-
tors in Algorithm 1 to be femp and gemp. Let π̂ be the policy
returned by Algorithm 1 given an offline datasetD generated
according to Definition 1. If 4H(2σ+H)

log 8SAH
δ√

NP
< ∆Amin,

then SubOpt(π̂) = 0 with probability at least 1− δ.

Proposition 3 translates Theorem 2 to a sample com-
plexity bound by using empirical mean estimation with
Hoeffding-style confidence bound. This result is similar to
Theorem 4.1 of (Wang, Cui, and Du 2022) but with a slightly
worse dependence on H . We are now ready to present our
main results in the robust offline learning setting.

5.2 Main results: corrupted dataset and
heavy-tailed reward distributions

When (i) the reward distributions have weaker concentra-
tions, and (ii) the dataset is corrupted, the learning problem
becomes more challenging. Nonetheless, Algorithm 1 can be
adapted to this setting by using powerful robust estimators.
We first provide a novel analysis that allows an existing ro-
bust estimator to handle unbounded variance and data cor-
ruption, then instantiate the exact policy recovery condition
under this estimator.

Formally, we first relax the SubGaussian reward assump-
tion in Assumption 1 by only assuming the reward distribu-
tions to have bounded (1 + γ)-th centered moment:

Assumption 3 (Heavy-tailed reward distributions). There
exsits γ ∈ (0, 1] and σ > 0, s.t. for all (s, a, h) ∈
S×A×[H], EX∼Rh(s,a)

[
(X − rh(s, a))

1+γ
]
≤ σ1+γ ,

where rh(s, a) = EX∼Rh(s,a)[X] ∈ [0, 1].

(Bubeck, Cesa-Bianchi, and Lugosi 2013) first studies
this reward distribution in multi-armed bandits. The reward



distributions may not have finite variance, making the re-
ward estimation itself a hard problem, even given clean data
without data corruption. (Bubeck, Cesa-Bianchi, and Lu-
gosi 2013) shows that empirical mean estimator results in
a significantly wider confidence interval, which is not sat-
isfactory. In this section, we study offline RL with a cor-
rupted dataset, on top of this heavy-tailed reward model.
Specifically, we consider an ε-corruption model on the of-
fline dataset where both rewards and transitions can be
corrupted, which is much more challenging than the learn-
ing problem in Definition 1:
Definition 2 (ε-corruption model). Let ε ≥ 0. An ε-
corrupted offline dataset D is a multiset generated by
the following procedure: a clean offline dataset D̃ =⋃H
h=1

{(
sh,i, ah,i, r̃h,i, s̃

′
h,i

)}N
i=1

is generated according
to Definition 1; an adversary is allowed to inspect the
whole dataset D̃ and replace up to ε fraction of the re-
ward entries and transition entries with something arbi-
trary for each (s, a, h) tuple. We denote the corrupted

dataset as D =
⋃H
h=1

{(
sh,i, ah,i, rh,i, s

′
h,i

)}N
i=1

. In other

words, we require
∑N
i=1 I{(sh,i,ah,i)=(s,a),rh,i 6=r̃h,i}

Nh(s,a) ≤ ε and∑N
i=1 I{(sh,i,ah,i)=(s,a),s′h,i 6=s̃

′
h,i}

Nh(s,a) ≤ ε for all (s, a, h).

In the robust learning setting defined in Definition 2, the
corrupted rewards can be unbounded. And importantly, the
learning agent has no access to the clean dataset D̃ and can
only learn from the corrupted dataset D.

Similar to Section 5.1, our first step is to design RE-
WARDESTIMATOR f and TRANSITIONESTIMATOR g with
proper confidence bound for Algorithm 1. We first formally
define the robust mean estimation problem, which captures
the hardness of the reward estimation problem:
Definition 3 (Robust mean estimation with heavy-tailed dis-
tribution). Let γ ∈ (0, 1], σ ≥ 0, ε ∈ (0, 1). Let P
be a heavy-tailed distribution in R with bounded (1 + γ)-

th centered moment: EX∼P
[
|X − µ|1+γ

]
≤ σ1+γ , where

µ := EX∼P [X]. Given an i.i.d. dataset X̃1, . . . , X̃N drawn
from P , an adversary can inspect the dataset and replace
an ε-faction of the data points with arbitrary values. The
corrupted dataset X1, . . . , XN is revealed to the learning
algorithm, which attempts to estimate µ, the mean of P .

Trimmed Mean estimation is a well-studied estimator in
robust statistics (Lugosi and Mendelson 2021, 2019). How-
ever, most prior work are limited to distributions with sub-
Gaussian distribution or at most distribution with bounded
variance. Surprisingly, we show that the Trimmed Mean es-
timator in (Lugosi and Mendelson 2021) can be directly
applied to robust mean estimation in Definition 3 and re-
solves both difficulties simultaneously. For completeness,
we present the Trimmed Mean estimator: TRIMMED-MEAN
in Algorithm 2 in Appendix A.
Theorem 3 (Trimmed-Mean for heavy-tailed distribution).
Suppose γ ∈ (0, 1], ε < 1

32 , δ ∈ (0, 1) and N > 96 log 4
δ .

Given N samples generated by the ε-corruption model in

Definition 3, Algorithm 2 outputs a µ̂, s.t. with probability
at least 1− δ, |µ̂− µ| ≤ C1,γσε

γ
1+γ +C2,γσ

(
1
N log 8

δ

) γ
1+γ ,

whereC1,γ = 128Aγ ,C2,γ = 768Aγ andAγ is the smallest

value s.t. Aγ((1 + x) log(1 + x)− x) ≥ x
γ+1
γ /
(

1 + x
1
γ

)
for all x > 0.

The error bound in Theorem 3 involves a bias term
O
(
σε

γ
1+γ

)
and a statistical error term Õ

(
σN−

γ
1+γ

)
. The

bias is caused by data corruption why the statistical error
term is due to finite sample. Importantly, both bias and statis-
tical error term meets the information-theoretic lower bound
(up to constants). Our new analysis is based on a variant
of Bernstein inequality under weak moment assumption. We
defer the details and more discussion about Theorem 3 to the
end of this section.

We use the TRIMMED-MEAN estimator in Algorithm 2
and its confidence bound for reward estimation to handle the
corrupted reward. The estimated reward is set to be: for all
(s, a, h) ∈ S×A×[H],

r̂TM
h,s,a = TRIMMED-MEAN

(
Dr|hsa, ε,

δ

4SAH

)
, (4)

recall that Dr|hsa is the set of all rewards received in (s, a)
visitations at step h. We use the same empirical mean esti-
mator in (3) but with modified confidence bound to account
for the effect of data corruption on the state transition. For-
mally, we have:

Proposition 4 (Confidence bound). If Assumption 3 holds,
then for all (s, a, h) ∈ S×A×[H], with probability at least
1− δ

2SAH : ∣∣r̂TM
h,s,a − rh(s, a)

∣∣ ≤b1,TM
h,s,a∣∣∣P̂V

emp

h,s,a − P>h,s,aV h+1

∣∣∣ ≤b2,robust
h,s,a .

where P̂V
emp

h,s,a is defined in (3) and

b1,TM
h,s,a =

∞ if Nh(s, a) ≤ 96 log 8SAH
δ

C1,γσε
γ

1+γ + C2,γσ
(

log 32SAH
δ

Nh(s,a)

) γ
1+γ

o.w.

(5)

b2,robust
h,s,a =εH +H

√
log 8SAH

δ

2Nh(s, a)
, (6)

where C1,γ and C2,γ are specified in Theorem 3.

b1,TM
h,s,a is the confidence bound for the TRIMMED-MEAN

estimator when applied to reward estimation. The success of
the TRIMMED-MEAN estimation requires a minimum num-
ber of samples. So we simply set b1,TM

h,s,a to∞ whenNh(s, a)

is less than the threshold. Setting b1,TM
h,s,a to ∞ looks exces-

sive at the first glance. However, by Theorem 1, we can see
that the suboptimality of π̂ only depends on the bonus for
(s, a, h) tuples covered by some optimal policy. By Assump-
tion 2, the sample size requirement of TRIMMED-MEAN is
met with high probability for any (s, a, h) tuples covered



by some optimal policy when N , the number of samples, is
large enough.

In this case study, the reward and transition estimators are
defined to be:

frobust

(
Dr|hsa,

δ

2SAH

)
:=
(
r̂TM
h,s,a, b

1,TM
h,s,a

)
grobust

(
Ds′|hsa, V h+1,

δ

2SAH

)
:=
(

P̂V
emp

h,s,a, b
2,robust
h,s,a

)
By applying Theorem 2, we get the following optimality
condition:
Theorem 4 (Optimality condition). Suppose Assump-
tion 3, 2 holds and ε < 1

32 , N > 768
P

(
log 8SA

δ

)2
. We specify

the reward and transition estimators in Algorithm 1 to be
frobust and grobust. Let π̂ be the policy returned by Algo-
rithm 1 given an offline dataset D, where D is generated
according to Definition 2. If 2H

(
C1,γσε

γ
1+γ + εH

)
+

4H

( √
2C2,γσ

(NP )
γ

1+γ
+ H√

NP

)
log 32SAH

δ < ∆Amin, then

SubOpt(π̂) = 0 with probability at least 1− δ.
There are two terms on the LHS of the optimality con-

dition in Theorem 4: the first term 2H
(
C1,γσε

γ
1+γ + εH

)
involves the corruption level ε, which characterizes
the bias caused by data corruption; the second term

4H

( √
2C2,γσ

(NP )
γ

1+γ
+ H√

NP

)
log 32SAH

δ involves N , the size of

the dataset, which characterizes the statistical error. If

2H
(
C1,γσε

γ
1+γ + εH

)
< ∆Amin (7)

then forN large enough, the optimality condition holds with
high probability. This implies a key difference between ro-
bust RL and robust mean estimation: in robust mean esti-
mation, it is never possible to learn the true mean even re-
gardless of sample size due to the data corruption (Lai, Rao,
and Vempala 2016); however, in robust RL, ∆Amin creates
a quantization effect, enabling the exact identification of a
policy with the optimal value despite minor corruption. This
is reassuring because we can still aim to find a policy with
the optimal value as long as (7) holds.

More discussion on Theorem 3 and the minimax op-
timality (Bubeck, Cesa-Bianchi, and Lugosi 2013) pro-
vides a Median-of-Means estimator and a truncated empir-
ical mean estimator for the mean estimation problem under
heavy-tailed distribution, both are designed without the con-
sideration of data corruption. The Median-of-Means estima-
tor achieves the same rate as Theorem 3 for ε = 0. Their
truncated empirical mean estimator requires the uncentered
moment EX∼P

[
|X|1+γ

]
to be bounded by some constant

u, which increases as µ moves away from 0. However, this
assumption leads to their error bound blowing up as u in-
creases. In contrast, our algorithm handles data corruption
and the error bound in Theorem 3 is translation invariant
w.r.t. µ, which makes it significantly stronger.

Importantly, Algorithm 2 is minimax optimal up-to some
constant:

Theorem 5 (Error lower bound of the learning problem in
Theorem 3). Given any learning algorithm A , σ > 0, ε > 0
and sufficiently large N ∈ Z+, there exists a distribution P
with bounded (1 + γ)-th centered moment and an adversary
satisfying the constraints in Definition 3, s.t. any learning al-
gorithm, given N data points from P with ε-fraction of cor-
ruption, will suffer an error at least Ω

(
σε

γ
1+γ + σN−

γ
1+γ

)
with at least constant probability.

When ε = 0, Theorem 5 implies the following error lower
bound for mean estimation problem with i.i.d. data from a
distribution with bounded (1 + γ)-th centered moment:

Corollary 1. Given any σ and sufficiently large N , there
exists a distribution D with bounded (1 + γ)-th centered
moment, s.t. given N i.i.d. samples from the distribu-
tion, any learning algorithm will suffer an error at least
Ω
(
σN−

γ
1+γ

)
with at least constant probability.

(Lugosi and Mendelson 2021) guarantees an error
Õ(σ
√
ε + σ/

√
N) for the case when γ = 1, which is cap-

tured by Theorem 3. When γ < 1, our Theorem 3 provides a
larger bias term ofO

(
σε

γ
1+γ

)
and a slower convergence rate

of O(σN−
γ

1+γ ). As shown in Theorem 5, these discrepan-
cies are consequences of the inherent difficulty of the learn-
ing problem. The weaker moment assumption makes the es-
timation more challenging, leading to a larger error.

Proof sketch of Theorem 3 Algorithm 2 chooses ε̃ =
Õ(ε+ 1/N) as the trimming portion. It first splits the sam-
ple into two batches: D1 and D2. The trimming threshold
α, β are set to be the ε̃ and (1 − ε̃)-quantile of D1. The al-
gorithm use α, β to define a clipping function φα,β(·), s.t.
φα,β(x) = β if x > β; φα,β(x) = x if α ≤ x ≤ β;
φα,β(x) = α if x < α. The algorithm simply returns the
truncated mean of D2: µ̂ = 1

|D2|
∑
x∈D2

φα,β(x).

In the proof of Theorem 3, we derive a novel Bernstein’s
inequality under weak moment assumption as a key lemma
and conduct a refined analysis on the quantile of the heavy-
tailed distribution. The remaining parts of the proof of The-
orem 3 follow the main steps in Proof of Theorem 1 in (Lu-
gosi and Mendelson 2021). We first present the variant of
Bernstein’s inequality below:

Lemma 1 (Bernstein’s inequality under weak moment as-
sumption). SupposeXj , j = 1, . . . , n is a sequence of inde-
pendent zero-mean random variable bounded by |Xj | ≤M
and there exists γ ∈ (0, 1], s.t.

E |Xj |1+γ ≤ σ1+γ , for all j = 1, . . . , n.

then there exists Aγ ≥ 1 (depending only on γ) s.t.:

P

 1

n

n∑
j=1

Xj > t

 ≤ exp

{
− n

Aγ

t
γ+1
γ

σ
1+γ
γ +Mt

1
γ

}
.

Let D̃1 ∪ D̃2 be the uncorrupted dataset. The estimation



error of µ̂ can be decomposed as:

|µ̂− µ| ≤

∣∣∣∣∣∣ 1

|D2|
∑
x∈D2

φα,β(x)− 1∣∣∣D̃2

∣∣∣
∑
x∈D̃2

φα,β(x)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1∣∣∣D̃2

∣∣∣
∑
x∈D̃2

φα,β(x)− EX∼P [φα,β(X)]

∣∣∣∣∣∣
+ |EX∼P [φα,β(X)]− µ|

=:B1 +B2 +B3

Because D̃2 and D2 differ by at most 2ε |D2| entries,

B1 ≤ 2ε max
x,y∈R

|φα,β(x)− φα,β(y)| = 2ε(β − α).

Because
{
φα,β(x) : x ∈ D̃2

}
consists i.i.d samples from a

distribution with bounded (1 + γ)-th centered moment and
support bounded between [α, β], by Lemma 4:

B2 ≤ Õ
(

σ

N
γ

1+γ

+
|β − α|
N

)
By concentration of Bernoulli random variables, α and β
are close to the ε̃ and (1− ε̃)-quantile of distribution P . Fur-
thermore, we can show that the truncated random variable
φα,β(X), where X ∼ P , has a mean close to the original
random variable:

B3 ≤ O
(
σε̃

γ
1+γ

)
.

We finish the proof by combining these together.

6 Comparison between Different Optimality
Conditions

In Section 4. we derive an optimality condition based on the
suboptimal gap of actions in Theorem 2. Alternatively, we
can get another optimality condition with the following ob-
servation: π̂ is optimal if the suboptimality gap SubOpt(π̂)
is less than the policy gap ∆Π

min. Formally, we can get
the following sufficient condition for optimality with The-
orem 1:

Proposition 5 (Optimality condition). Under the conditions
in Theorem 1, if 2Hb < ∆Π

min, then SubOpt(π̂) = 0 with
probability at least 1− δ.

By Proposition 1, the action gap ∆Amin ≤ ∆Π
min and the

difference can be large. This means the condition in Propo-
sition 5 is usually more conservative and thus less preferable
than that in Theorem 2. In the following, we use contextual
bandit as an illustrative example to show that why utilizing
the action gap idea leads to a better sufficient condition.

When H = 1, MDP is specialized to contextual bandit.
And Algorithm 1 returns a policy π̂ that chooses the action
with the largest lower confidence bound (LCB) in each state.
Similar to the discussion above, we can make sure π̂ is op-
timal by comparing either the action gap or policy gap. We
will show that utilizing the action gap is preferable.

In contextual bandit, the action gap can be written as:

∆Amin = min
(s,a)∈C

(r1(s, π∗(s))− r1(s, a)),

where π∗ is an optimal policy and
C := {(s, a) : s ∈ supp(p0), r1(s, a) 6= r1(s, π∗(s))}.

Because the best suboptimal policy should only choose a
suboptimal action in one state, we can write the policy gap
as:

∆Π
min = min

(s,a)∈C
p0(s)(r1(s, π∗(s))− r1(s, a)).

Because p0(s) can be very small for some state s, the policy
gap ∆Π

min can be much smaller than the action gap ∆Amin.
Since there is no state transition in contextual bandits,

b21(·, ·) = 0 and the value function estimation in Algorithm 1
can be written as:

Q
1
(s, a) = max{0, r̂1(s, a)− b11(s, a)} ∀s, a (8)

By the definition of π̂ and the fact that b1(·, ·) is a proper
confidence bound, with probability at least 1− δ/4, the sub-
optimality of π̂ at any s can be bounded by:
V ∗1 (s)−Q1(s, π̂(s)) = r1(s, π∗(s))− r1(s, π̂(s))

≤r1(s, π∗(s))−Q
1
(s, π̂(s)) ≤ r1(s, π∗(s))−Q

1
(s, π∗(s))

=r1(s, π∗(s))−max{0, r̂1(s, π∗(s))− b11(s, π∗(s))}
≤2b11(s, π∗(s)), (9)
where π∗ is an optimal policy. Thus under the conditions in
Theorem 1, the suboptimality gap of π̂ can be bounded by:

SubOpt(π̂) =Es∼p0 [V ∗1 (s)−Q1(s, π̂(s))]

≤Es∼p0
[
2b11(s, π∗(s))

]
≤ 2b. (10)

We can ensure the optimality of π̂ by using either the action
gap or policy gap:
• on one hand, by (9), if 2b1(s, π∗(s)) ≤ 2b < ∆Amin for

all s ∈ S, then for all s ∈ S, π̂ chooses an optimal action
and thus achieves the optimal value;

• on the other hand, by (10), if 2b < ∆Π
min, then π̂ achieve

the optimal value.
However, the condition 2b < ∆Π

min is more conservative
than 2b < ∆Amin because ∆Π

min can be much smaller than
∆Amin. Similarly, in the more general MDP setting, ∆Amin and
∆Π

min differ by at least a factor of state occupancy probabil-
ity as shown in Proposition 1, thus Theorem 2 provides a
more desirable optimality condition than Proposition 5.

7 Conclusion
We provided a new optimality condition for corruption-
robust offline RL with heavy-tailed rewards. We show that if
Õ
(
Hσε

γ
1+γ + εH2

)
< ∆Amin, then a modified pessimistic

value iteration algorithm can obtain a policy with the opti-
mal value even under data corruption.

Future work should answer the question: what is the suf-
ficient and necessary condition for learners to get a policy
with optimal value? A less fundamental but equally interest-
ing direction is to strengthen the sample complexity in this
paper.
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