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Abstract

To ensure the usefulness of Reinforcement Learning (RL) in
real systems, it is crucial to ensure they are robust to noise and
adversarial attacks. In adversarial RL, an external attacker has
the power to manipulate the victim agent’s interaction with
the environment. We study the full class of online manip-
ulation attacks, which include (i) state attacks, (ii) observa-
tion attacks (which are a generalization of perceived-state at-
tacks), (iii) action attacks, and (iv) reward attacks. We show
the attacker’s problem of designing a stealthy attack that max-
imizes its own expected reward, which often corresponds to
minimizing the victim’s value, is captured by a Markov De-
cision Process (MDP) that we call a meta-MDP since it is
not the true environment but a higher level environment in-
duced by the attacked interaction. We show that the attacker
can derive optimal attacks by planning in polynomial time
or learning with polynomial sample complexity using stan-
dard RL techniques. We argue that the optimal defense policy
for the victim can be computed as the solution to a stochas-
tic Stackelberg game, which can be further simplified into a
partially-observable turn-based stochastic game (POTBSG).
Neither the attacker nor the victim would benefit from deviat-
ing from their respective optimal policies, thus such solutions
are truly robust. Although the defense problem is NP-hard,
we show that optimal Markovian defenses can be computed
(learned) in polynomial time (sample complexity) in many
scenarios.

1 Introduction
Reinforcement Learning (RL) has become a staple with a
plethora of applications including the breakthrough Chat-
GPT (Ouyang et al. 2022). With the growth of RL appli-
cations, it is critical to understand the security threats posed
to RL and how to defend against them. In many applications,
noisy measurements can cause the agent-environment inter-
action to evolve entirely differently than what one would ex-
pect in theory. Even worse, malicious attackers can strate-
gically modify the agent-environment interaction to induce
catastrophic outcomes for the agent. If RL methods are to be
used in diverse and critical settings, it is essential to ensure
these RL algorithms are robust to potential attacks.

In adversarial RL, a victim agent interacts with an en-
vironment while being disrupted by an attacker. The at-
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tacker has the power to manipulate each aspect of the
victim-environment interaction. In particular, the attacker
can change: (i) the environment’s state (state attacks), (ii)
the victim’s observation (observation attacks), (iii) the ac-
tion taken by the victim (action attacks), and (iv) the re-
ward received by the victim (reward attacks). When the en-
vironment is fully-observable, observation attacks translate
to well-studied perceived-state attacks. We refer to all of
these attack surfaces by online manipulation attacks. The
attacker may use a subset or all of these attack surfaces to
optimize its own expected reward from the attack, which of-
ten corresponds to minimizing the victim’s value. However,
the attacker cannot perform arbitrary manipulations without
raising suspicion. Hence, the attacker must restrict its ma-
nipulations to a predefined set of stealthy attacks. On the
other hand, the attacker-aware victim seeks to choose a de-
fense policy whose value is provably robust even under the
worst possible stealthy attack.

From the attacker’s perspective, it faces an optimal con-
trol problem: it needs to strategically choose stealthy attacks
to optimize its value. Unlike typical control problems, the
attacker must deal with the uncertainty of the victim’s ac-
tions in addition to that of the stochastic environment. Thus,
the attacker’s problem involves a multi-agent feature. For
any fixed victim policy π, we can view the attacker’s prob-
lem as computing its best response attack to the victim’s
chosen π. From the victim’s perspective, we argue it faces
a Stochastic Stackelberg game: it needs to choose a pol-
icy that achieves maximum value in the environment un-
der the attacker’s best-response attack. A defense policy de-
signed following this principle ensures neither the victim nor
the attacker would benefit from deviating from their chosen
policies, and so an equilibrium would be achieved. This im-
plies that regardless of the attack, the defense policy always
achieves at least the game’s optimal value. However, com-
puting optimal Stackelberg strategies for stochastic games is
NP-hard. Thus, both the attacker and the victim are faced
with challenging optimization problems.

Although the attack and defense problems are of great
importance, complete solutions have yet to be discovered.
For the attack problem, most works focus on the empiri-
cal aspects, lacking theoretical guarantees. Provably opti-
mal attacks have only been devised for the special case of
test-time, perceived-state attacks (Russo and Proutiere 2021;



Zhang et al. 2020a; Sun et al. 2022). The situation is even
worse for the defense problem, which is arguably more im-
portant. Nearly all proposed defenses are designed to be ef-
fective against a specific, known attack. This results in a cat-
and-mouse game: the attacker can just design a new attack
for the given defense policy and so the victim would always
be at risk. In addition, the two approaches with provable
guarantees are restricted to the planning, reward-poisoning
setting (Banihashem, Singla, and Radanovic 2021), and the
test-time, perceived-state attack setting (Zhang et al. 2021).
Furthermore, neither defense can be computed efficiently
and it is unrealistic to assume the victim knows the attacker’s
exact algorithm.

Our Contributions. Despite the challenges of the attack
and defense problems, we develop frameworks for comput-
ing optimal attacks and defenses for any combination of at-
tack surfaces, which are provably efficient in many cases.
From the attacker’s side, we show that for any fixed vic-
tim policy, the optimal attack can be computed as the so-
lution to another Markov Decision Process (MDP). We call
this environment a meta-MDP since it is not the true en-
vironment, but is a higher-level environment induced by the
victim-attacker-environment interaction. Importantly, the at-
tacker can simulate an interaction with the meta-MDP by in-
teracting with the victim and the true environment. Hence,
the attacker can attack optimally by solving the meta-MDP
using any standard MDP planning or RL algorithms. In addi-
tion, we show that the size of the meta-MDP is polynomial
in the size of the original environment and the size of the
victim’s policy. Thus, optimal attacks can always be com-
puted or learned efficiently. Our framework also extends to
linear MDPs. Hence, we provide the first provably optimal
attacks for beyond perceived-state attacks and the first prov-
ably optimal attacks for the linear setting, all of which can
be computed in polynomial time. We note our framework
also solves the certifying robustness problem posed in (Wu
et al. 2022).

On the victim’s side, we argue that the defense prob-
lem is most naturally modeled by a stochastic Stackelberg
game (Vorobeychik and Singh 2021), which can be captured
by a much simpler partially-observable turn-based stochas-
tic game (POTBSG) (Hansen, Miltersen, and Zwick 2013).
Thus, the victim can compute its optimal robust defense
by finding a weak Stackelberg equilibrium (WSE) for the
meta-POTBSG. Again, the victim can simulate the meta-
POTBSG by interacting with the attacker and the true en-
vironment. When the attacker is adversarial, the victim can
defend optimally by solving the meta-POTBSG using any
standard zero-sum POTBSG planning or distributed learn-
ing algorithms. Unlike the attack problem, we show that the
victim’s defense problem is NP-hard in general even to find
approximate solutions when observation attacks are permit-
ted. However, we show that optimal Markovian defenses can
be computed efficiently when excluding observation attacks
by exploiting the sequential nature of the attacks. This gives
a broad class of games for which WSE is computable. Over-
all, we present the first-ever provable defense algorithms for
both the planning and learning settings and show our de-

fenses can be computed efficiently for a broad class of in-
stances.

Related Work
Many prior works have studied adversarial RL under various
models and objectives. Amongst the first works, Behzadan
and Munir (2017); Huang et al. (2017); Kos and Song (2017)
study perceived-state attacks through the lens of adversar-
ial examples for deep neural nets (Goodfellow, Shlens, and
Szegedy 2014). Kos and Song (2017) also considers adver-
sarial examples, but with the goal of minimizing the number
of attacks needed to achieve large damage. These works fo-
cused on achieving large damage at the current time. Later
Lin et al. (2017); Sun et al. (2020) developed more advanced
heuristics that incorporate future value into their attacks to
achieve long-term damage. Meanwhile, Tretschk, Oh, and
Fritz (2018) trained an adversarial deep net to compute per-
turbations that allows other objectives for the attacker.

Afterward, many works began considering the objective
of maximizing the damage to the victim rather than mini-
mizing the number of attacks. Russo and Proutiere (2021);
Zhang et al. (2020a) developed optimal algorithms for com-
puting perceived-state attacks. Both works formulated the
attack problem as a different MDP as we do here. Sun et al.
(2022) formulated an actor-director model for the attack
problem that is easier to solve for some MDPs and retains
guarantees of optimality. The idea of adversarial training
was then used in conjunction with the attack formulation
from (Zhang et al. 2020a) to obtain experimentally robust
victim policies (Zhang et al. 2021).

Action and reward attacks have been considered heavily
in the training-time setting. For example, Tessler, Efroni,
and Mannor (2019); Lee et al. (2021) considered action at-
tacks. Reward poisoning attacks are the focus of the work by
Zhang et al. (2020b); Rangi et al. (2022). In fact, a combi-
nation action and reward attack are devised by Rangi et al.
(2022). Most of these works consider the policy teaching
setting, where the attacker’s goal is for the victim to follow
a fixed policy π†. Some algorithms achieve sublinear regret
for the attacker when the victim policy is no regret (Liu and
Lai 2021); though, none compute truly optimal attacks.

2 Attack Surfaces
POMDPs. We denote a infinite-horizon discounted envi-
ronment POMDP by M = (S,O,A, P,R, γ, µ) where (i)
S is the state set, (ii) O is the observation set, (iii) A is the
action set, (iv) P : S × A → ∆(S) is the transition ker-
nel, (v) R : S × A → ∆(R) is the reward distribution,
(vi) γ is the discount factor, and (vii) µ ∈ ∆(S) is the ini-
tial state distribution. We let O(s) denote the distribution
of observations at state s. We also let R denote the set of
all supported rewards. The total expected reward the vic-
tim receives from following policy π in environment M is
its value, i.e., the expected cumulative discounted rewards
V π
M := Eπ

M [
∑∞

t=0 γ
tr(st, at)].

Suppose the victim interacts with a Markovian environ-
ment, M , using a fixed stationary, Markovian policy π :
O → ∆(A). At any time t, let st denote M ’s current state



and ot denote the generated observation. In the standard set-
ting, the victim chooses an action at ∼ π(ot) and then re-
ceives a reward rt ∼ R(st, at). Afterwards, M transitions
to its next state st+1 ∼ P (st, at). We see there are several
points during time t at which information is exchanged be-
tween the victim and M . We further break down the interac-
tion at time t based on these points of information exchange,
which we call subtimes:
1. At the first subtime, t1, M receives its state st ∼

P (st−1, at−1).
2. At the second subtime, t2, the victim receives its obser-

vation ot ∼ O(st).
3. At the third subtime, t3, M receives the victim’s action

at ∼ π(ot).
4. At the fourth subtime, t4, the victim receives its reward

rt ∼ R(st, at).

Online Attacks. In the adversarial setting, a third-party
called the attacker interferes with the victim-M interaction.
Here, the attacker may intercept and then corrupt the infor-
mation being exchanged between the victim and environ-
ment M . The attacker has access to four attack surfaces:
1. (State Attack) A state attack changes the state of M

from st to s†t . The attack influences the observation
ot ∼ O(s†t). If M receives action at, the attack also in-
fluences the reward rt ∼ R(s†t , at) and the next state
st+1 ∼ P (s†t , at).

2. (Observation Attack) An observation attack causes the
victim to receive observation o†t instead of ot ∼ O(st).
The attack influences the victim’s action at ∼ π(o†t).

3. (Action Attack) An action attack causes M to receive ac-
tion a†t instead of at. The attack influences the reward
rt ∼ R(st, a

†
t) and next state st+1 ∼ P (st, a

†
t).

4. (Reward Attack) A reward attack causes the victim to re-
ceive reward r†t instead of reward rt ∼ R(st, at).

We call each of these attack surfaces as online manipula-
tion attacks. These attack surfaces in conjunction give the
attacker the power to corrupt every element of the triple
(s, a, r) that define the interaction between the victim and
M .

If M is fully observable, observation attacks correspond
to perceived-state attacks, which change what the victim
thinks is M ’s state. Notice unlike the other surfaces, state at-
tacks could be performed at two different subtimes. Namely,
the attacker can change the state before M transitions at t1
or before M receives the victim’s action at t3. For simplic-
ity, we assume state attacks only happen at t1, but our results
apply equally well to both versions.

Adversarial Interaction. Overall, the victim-attacker-M
interaction at time t now evolves as follows:
1. At subtime t1, M is in state st.

(a) Attacker: changes st to s†t .
(b) M : enters state s†t and generates observation ot ∼

O(s†t).

2. At subtime t2, M is in state s†t and has generated obser-
vation ot.

(a) Attacker: changes ot to o†t .

(b) Victim: chooses action at ∼ π(o†t).

3. At subtime t3, M is in state s†t and the victim chose ac-
tion at.

(a) Attacker: changes at to a†t .

(b) M : generates reward rt ∼ R(s†t , a
†
t) and generates

state st+1 ∼ P (s†t , a
†
t).

4. At subtime t4, M has generated reward rt.

(a) Attacker: changes rt to r†t .

(b) Victim: receives reward r†t .

This process then repeats starting from st+1.

Attacker Constraints. In general, the attacker may not ar-
bitrarily manipulate the interaction. For example, some at-
tacks may be physically impossible or risk detection. As
such, we assume the attacker has a set B that defines the
feasible manipulations it can perform. For example, the at-
tacker might require a manipulated observation to be visu-
ally similar to the true observation. Thus, the set of feasi-
ble observation attacks should depend on the true observa-
tion. Applying the same logic to each attack surface, we see
the feasible attack sets should take the form: B(s) ⊆ S ,
B(o) ⊆ O, B(a) ⊆ A, and B(r) ⊆ R. However, in some
cases, the feasibility of an attack would depend on the inter-
action before the attack, not just the current element being
manipulated. To be fully general, we allow the feasibility
sets to take the form: at subtime t1, B(s) ⊆ S; at subtime t2,
B(s, o) ⊆ O; at subtime t3, B(s, o, a) ⊆ A; and, at subtime
t4, B(s, o, a, r) ⊆ R.

3 Optimal Attacks
Attacker’s Goal. In Section 2, we saw how an attacker
can disrupt an interaction but haven’t discussed why it would
do this. Suppose the attacker has a reward function g(s, a, r)
that depends on the victim’s received reward, possibly in ad-
dition to M ’s state and the victim’s action. The attacker’s
goal is then to construct an attack that maximizes its own
expected reward. Commonly, an attacker just wants to min-
imize the victim’s expected reward under attack, or equiva-
lently maximize the damage to the victim’s expected reward.
In this case, the attacker’s reward function is g(s, a, r) =
−r. Alternatively, the attacker may want the victim to be-
have in a specified way. This goal is equivalent to the at-
tacker wanting the victim to choose actions that match a
fixed target policy π† as often as possible. In this case, the
attacker’s reward function is g(s, a, r) = 1

{
a = π†(s)

}
.

Definition 1 (Attack Problem). For any π, the attacker’s
seeks a policy ν∗ ∈ N that maximizes its expected reward
from the victim-attacker-M interaction:

ν∗ ∈ argmax
ν∈N

Eπ,ν
M

[ ∞∑
t=0

γtg(st, at, rt)

]
. (1)



We show that the attacker’s problem is captured by a
MDP. The key insight is that by defining the attacker’s state
set to capture the results of previous attacks from t1 up to the
current subtime, then each attack becomes Markovian with
respect to the expanded state set. This is not a significant
burden on the attacker since it would need to keep track of
this information anyway to compute the feasible attack sets.
Thus, the attacker just needs to keep track of the information
within a time step to compute optimal attacks.
Definition 2 (Meta-MDP). For any victim policy π, the at-
tacker’s meta-MDP is M = (S,A, P , r, γ, µ) where,

• S = S ∪ (S ×O) ∪ (S ×O ×A) ∪ (S ×O ×A×R).
• A(s) = B(s), A(s, o) = B(s, o), A(s, o, a) =
B(s, o, a), and A(s, o, a, r) = B(s, o, a, r).

• The transitions vary per subtime. Let s ∈ S, a ∈ A(s),
and s′ ∈ S.
1. If s = s, then a = s† and s′ = (s†, o):

P (s′ | s, a) = O(o | s†).
2. If s = (s, o), then a = o† and s′ = (s, o†, a):

P (s′ | s, a) = π(a | o†).
3. If s = (s, o, a), then a = a† and s′ = (s, o, a†, r):

P (s′ | s, a) = R(r | s, a†).
4. If s = (s, o, a, r), then a = r† and s′ = s′:

P (s′ | s, a) = P (s′ | s, a).
All other transitions have probability 0.

• Let s ∈ S, and a ∈ A(s). If s = (s, o, a, r) and a =
r†, then r(s, a) = g(s, a, r†). For all other meta-states,
r(s, a) = 0.

• γ = γ1/4.
• µ(s) = µ(s) for s ∈ S and µ(s) = 0 otherwise.

Reward Subtlety. Note that the attacker only receives a
reward at every fourth subtime. This means the discount fac-
tor has to be “slowed down” so that the factor at every fourth
time step matches that of each single time step of M . Specif-
ically, choosing γ = γ1/4 ensures that γ4t = γt.
Proposition 1. The maximum expected reward the attacker
can achieve from any attack on π is V ∗

M
, the maximum ex-

pected total discounted reward for the meta-MDP M . Fur-
thermore, any optimal deterministic, stationary policy ν∗ for
M is an optimal attack policy.

Online Interaction. Suppose the attacker has computed
some attack policy ν from M . In order to use ν to interact
with the victim and M , the attacker must know the meta-
state at any given subtime. As long as the attacker can ob-
serve the interaction between the victim policy π and M , it
can effectively simulate the interaction with the meta-MDP
M online using a constant amount of memory. At time t, the
attacker only needs to store st, ot, at, and rt when they are
revealed to the attacker. With this information, the attacker
knows the meta-state for each subtime and so can apply ν to
determine its next attack. Upon reach the next time t+1, the
attacker can forget st, ot, at, and rt and start from st+1. See
Algorithm 1.

Algorithm 1: Attacker Interaction Protocol
Input: (π, ν)

1: for t = 1 . . . do
2: Attacker sees st, and computes a state attack s†t =

ν(st)

3: Attacker sees ot ∼ O(s†t), and computes an observa-
tion attack o†t = ν(st, ot)

4: Attacker sees at ∼ π(o†t), and computes an action
attack a†t = ν(st, ot, at)

5: Attacker sees rt ∼ R(s†t , a
†
t), and computes a reward

attack r†t = ν(st, ot, at, rt)

6: Attacker receives reward g(s†t , a
†
t , r

†
t ), and forgets

(st, ot, at, rt)
7: end for

Solving M . If the attacker has full knowledge of M and
the victim’s policy π, then the attacker has all the knowl-
edge needed to construct the meta-MDP M . Once M is con-
structed, the attacker can use any planning algorithm, such
as policy iteration, to compute the optimal attack. Alterna-
tively, if the attacker does not know M and π, it can still
simulate interacting with M online as described before to
perform learning. In particular, the attacker can replace the
call to ν in Algorithm 1 with any off-the-shelf learning al-
gorithm. For the episodic setting, we view the attacker as
attacking a new victim following the same policy π in each
episode.

Observe that |S| ≤ |S||O||A||R|, |A| ≤ |S|+|O|+|A|+
|R|, and γ = γ1/4. Thus, whenever M ’s rewards are finitely
supported, |M | = poly(|M |), where |M | is the total size
of M ’s description. As such, any polytime planning algo-
rithm or polynomial sample-complexity learning algorithm
applied to M yields an algorithm for computing optimal at-
tacks that has polynomial complexity.

Proposition 2. When M ’s rewards have finite support or
no reward attacks are allowed, |M | = poly(|M |). Thus, an
optimal attack policy can be computed in polynomial time by
planning in M , and learning an optimal attack policy can be
performed with polynomial sample complexity by learning
in M .

Remark 1 (Restricted Surfaces). By restricting A to sin-
gleton sets (e.g. set A(s, o, a) = {a} to disallow action at-
tacks), M recovers optimal attacks for each individual sur-
face as well as attacks for any subset of available attack sur-
faces. This captures all standard test-time attacks, generaliz-
ing the perceived-state attack MDP of (Zhang et al. 2020a).
We also note if the attacker does not perform reward attacks,
M can be modified to avoid R and so M having finite sup-
ported rewards is unnecessary in the complexity results.

One might ask whether the perceived-state attack MDP
defined in (Zhang et al. 2020a) would work in the linear
setting. We point out that the transition takes the following



form,

P̃ (s′ | s, s†) = Ea∼π(s†)P (s′ | s, a)

=

∫
a

P (s′ | s, a)π(a | s†)da.

As π and P are multiplied together, P̃ would be a quadratic
transition. On the other hand, our particular choice of sub-
times induces linear structure in M . Specifically, each tran-
sition of P is defined by a single distribution involving π or
M . If both π and M have a linear structure, then so will M .
Then, M can be solved by standard linear RL algorithms.
Thus, so long as π is linear, the attacker can compute opti-
mal attacks on linear environments.
Theorem 1. If M is linear and π is linear, then M is lin-
ear. Furthermore, the dimension of M , d(M), is at most
max{d(π), d(M)} + 1. Thus, if π is linear, optimal attacks
on linear environments can be computed or learned effi-
ciently

Remark 2 (Beyond Markovian Policies). Our construction
can be easily modified to handle non-Markovian victim poli-
cies. If the victim uses some finite amount of past history
H̃, we simply modify the meta-state space to remember the
same amount of past history and adjust the construction ap-
propriately. The size of M is now a polynomial in both |M |
and the size of the policy when described explicitly as a
mapping from histories to action distributions. We defer the
details to the Appendix.

4 Optimal Defense
Now that we have seen how the attacker can best attack, it
begs the question of how the victim should defend against
attacks. Intuitively, the victim should choose a defense pol-
icy that is robust to attack. However, it does not suffice to
just be robust against a particular attack. In fact, the attacker
could lie about its attack algorithm to bait the victim into
choosing a policy that actually benefits the attacker. Even
if some attacker does use that particular attack algorithm,
other attackers may employ different methods that lead the
victim to poor value. As new attacks are formulated, the vic-
tim would have to constantly create more complex policies
designed with all known attacks in mind. This would be-
come a never-ending cat-and-mouse game during which the
victim’s policy will often be at risk of new attacks. Thus, for
a policy to be satisfactorily robust, we require it to be robust
against the worst possible attack. This way, no matter what
future strategies an attacker may use, the victim is already
prepared.

We can formalize this intuition using the Stackelberg ap-
proach for Security Applications (Korzhyk, Conitzer, and
Parr 2010). For any π and ν, let V π,ν

1 and V π,ν
2 denote the

victim’s and attacker’s expected reward respectively under
the victim-attacker-M interaction induced by π and ν. Note,
both of these quantities can be computed efficiently using
the techniques from Section 3. Let V1 and V2 denote infinite
matrices whose (π, ν) entry corresponds to V π,ν

1 and V π,ν
2

respectfully. We define an infinite bimatrix game G whose
payoff matrices are (V1, V2). For any fixed victim π, it is

clear that a rational attacker would play some best-response
policy, ν ∈ BR(π) := maxν∈N V π,ν

2 . Thus, an optimal de-
fense policy is exactly an optimal Stackelberg strategy for
player 1 in G (Conitzer 2015).

Definition 3 (Defense Problem). The victim seeks a pol-
icy π∗ that maximizes its expected reward from the victim-
attacker-M interaction under the worst-case attack:

π∗ ∈ max
π∈Π

min
ν∈BR(π)

V π,ν
1 . (2)

Observe that this solution is truly robust: by definition, the
attacker given π would never want to deviate from BR(π),
and similarly, by definition the victim would never want to
deviate from its defense policy when assuming the worst
possible attack. Thus, we consider such attack and defense
policies as truly optimal. However, as the victim faces partial
observability, an optimal defense for the victim is history-
dependent in general. Consequently, the attacker’s best re-
sponse must also be history-dependent. Thus, Π and N con-
sist of history-dependent policies in the definition above.

Although optimal Stackelberg strategies for Stochastic
games are generally difficult to compute (Letchford et al.
2021), we can exploit the special structure of the victim-
attacker-M interaction to develop useful algorithms. Re-
call that at subtime t2 in Algorithm 1, the attacker changes
the observation to o†, and then the victim chooses an ac-
tion a = π(o†). If we simply give the victim the auton-
omy to choose any action a at this point rather than accord-
ing to a fixed policy π, then this interaction evolves like a
turn-based game. In fact, we show this game can be mod-
eled as a partially observable turn-based stochastic game
(POTBSG) (Zheng, Jung, and Lin 2022). POTBSGs exhibit
much more structure than a general imperfect-information
stochastic game, so enable more efficient solution methods.
We see the construction is almost identical to Definition 2.

Definition 4. The victim-attacker’s POTBSG is G = (S1 ∪
S2,O,A, P , r, γ, µ) where,

• S1 := S ×O×{∅} and S2 := S ∪ (S ×O)∪ (S ×O×
A) ∪ (S ×O ×A×R).

• O(s) := o for s = (s, o,∅) and O(s) := s otherwise.
• A(s) := B(s), A(s, o) := B(s, o), A(s, o,∅) :=
A, A(s, o, a) := B(s, o, a), and A(s, o, a, r) :=
B(s, o, a, r).

• Let s ∈ S, a ∈ A(s), and s′ ∈ S.
1. If s = s, then a = s† and s′ = (s†, o):

P (s′ | s, a) := O(o | s†).
2. If s = (s, o), then a = o† and s′ = (s, o†,∅):

P (s′ | s, a) := π(a | o†).
3. If s = (s, o,∅), then a = a and s′ = (s, o†, a):

P (s′ | s, a) := 1.

4. If s = (s, o, a), then a = a† and s′ = (s, o, a†, r):
P (s′ | s, a) := R(r | s, a†).

5. If s = (s, o, a, r), then a = r† and s′ = s′:
P (s′ | s, a) := P (s′ | s, a).

All other transitions have probability 0.



• Let s ∈ S, and a ∈ A(s). r1(s, a) := r† and r2(s, a) :=
g(s, a, r†) if s = (s, o, a, r) and r1(s, a) := r2(s, a) :=
0 otherwise.

• γ := γ1/5.
• µ(s) := µ(s) for s ∈ S and µ(s) := 0 otherwise.

Note that S1 is the set of states in which the victim takes
an action, and S2 is the set of states in which the attacker
takes an action. The observation and action set O and A as
functions of the states are combined for the two players, and
this implies that the observations and actions for the victim
are A(S1) and O(S1), and for the attacker are A(S2) and
O(S2). Observe that V π,ν

G,1
= V π,ν

1 and V π,ν

G,2
= V π,ν

M
and so

G is just the normal-form representation of the POTBSG G.

Proposition 3. Any WSE for G yields an optimal defense
policy.

In general, methods to compute WSE are unknown. How-
ever, we show many settings where a WSE for G can be
computed, even efficiently. First, suppose the attacker is
completely adversarial so that G becomes a zero-sum game.
In this case, it is known that WSE = SSE = NE. Thus, it
suffices to compute an NE for a zero-sum POTBSG.

Proposition 4. If the attacker is completely adversarial, an
optimal defense policy can be computed as an NE of G us-
ing any planning or distributed learning algorithms for zero-
sum POTBSGs.

Note, it is important that the victim uses a distributed
learning algorithm since it would not be able to see the
attacker’s manipulations, only the effects of the manipula-
tions, nor be able to collaborate with the attacker. From
Proposition 3, we see that the victim can compute an op-
timal defense policy to an adversarial attacker by computing
any CCE to G. However, even computing an approximately
optimal Markovian policy against a fixed attack is equiva-
lent to solving a POMDP, which is NP-hard (Lusena, Gold-
smith, and Mundhenk 2001). Thus, computing near-optimal
defenses is intractable in the worst case.

Proposition 5. For any ϵ > 0 an ϵ-approximate optimal
defense policy is NP-hard to compute even when restricting
Π and N to be the class of Markovian policies.

Efficient Methods. The main bottleneck to computing de-
fenses efficiently in fully-observable systems is the pres-
ence of perceived-state attacks. Absent these attacks, the
POTBSG specializes to a traditional TBSG, which is a spe-
cial case of a stochastic game.

Observation 1. When M is fully observable and the at-
tacker cannot perform perceived-state attacks, G simplifies
to a TBSG.

In the adversarial case, we see that G is simply a zero-sum
TBSG. In zero-sum TBSGs, even stationary NE can be com-
puted or learned efficiently (Cui and Yang 2021) unlike the
case with CCE for MGs (Daskalakis, Golowich, and Zhang
2022) and the solutions are exact.

Proposition 6. If M is fully-observable, no perceived-state
attacks are allowed, and M ’s rewards have finite support

(or no reward attacks are allowed), and the attacker is ad-
versarial, then an optimal stationary defense policy can be
computed in polynomial time and learned with polynomial
sample complexity.

Although it is unclear whether Markovian policies guar-
antee the victim as much value as history-dependent ones,
Markovian policies are commonplace since they are eas-
ier to store and deploy in practice. In fact, for the finite-
horizon planning setting, the attacker need not be restricted.
We give polynomial time planning algorithms to compute
an optimal defense so long as perceived-state attacks are
banned. To our knowledge, this is the first non-trivial set-
ting for which WSE can be computed efficiently and the first
non-trivial setting for which SSE can be computed beyond
single-period games.
Theorem 2. If M is fully-observable and has a finite hori-
zon, no perceived-state attacks are allowed, and M ’s re-
wards have finite support (or no reward attacks are al-
lowed), then an optimal defense policy can be computed in
polynomial time.

The intuition is the victim can simulate the attacker’s best-
response function using backward induction. Once it knows
the best response for a particular stage game, it can then
brute-force find the best action to take at that stage. The
key insight is that the attacker’s best response is always de-
terministic since it gets to see the victim’s realized actions.
Thus, the victim also has no benefit from randomization. As
such, the victim can brute-force compute its optimal deter-
ministic action to take during a single stage and then propa-
gate that solution backward to be used in previous times.

To illustrate this, we derive a backward induction algo-
rithm for efficient defense against action attacks and present
the full defense algorithm in the Appendix. Suppose the vic-
tim has already committed to {π∗

t }Ht=h+1, where H is the
finite time-horizon. Clearly, for any choice of victim’s ac-
tion a, the attacker’s best response to a and the future partial
policy is:

BRh(s, a) = argmax
a†∈A(s,a)

gh(s, a, rh(s, a))

+ Es′∼Ph(s,a†)V
∗
h+1,2(s

′, π∗
h+1(s

′)),

where V ∗
h,2(s, a) is the maximum value achieved. Then, the

victim can compute its best action for the stage game (h, s)
as a maximizer of,

V ∗
h,1(s) =max

a∈A
min

a†∈BRh(s,a)
rh(s, a

†)

+ Es′∼Ph(s,a†)V
∗
h+1,1(s

′).

When the game is zero-sum, the algorithm is even simpler:
the victim need not even simulate the attacker’s best re-
sponse. The recursion is simply:

V ∗
h,1(s) =max

a∈A
min

a†∈A(s,a)
rh(s, a

†)

+ Es′∼Ph(s,a†)V
∗
h+1,1(s

′).

The construction for defending against all non-perceived
state surfaces is a bit more complicated but retains this same
structure.



Figure 1: Optimal Policy Path.

Remark 3 (Multi-Agent Extension). We note that all of our
results remain the same when multiple victims are present.
This can be done without changing any of the previous nota-
tions by interpreting A = A1 × . . .×An as the joint action
space and π as a joint policy. From the attacker’s perspec-
tive, attacking many victims just looks like attacking a sin-
gle victim with a large action space. A WSE in G still breaks
up into an independent joint policy for the victims and the
attacker, but the joint policy may require the victims to cor-
relate with each other.

5 Experiments
We illustrate our frameworks with a classical grid-world
shortest path problem with obstacles. Here, each state is a
cell in a n× n grid. Some grid cells are filled with lava and
so dangerous to the victim. From any cell, the victim can
move left (L), right (R), up (U), or down (D) so long as it
remains on the grid. In addition, the victim can stay (S) in
its current cell. The agent wishes to get from the top-left
cell (0, 0) to the bottom-right, “goal”, cell (n − 1, n − 1)
as quickly as possible while avoiding lava. To capture this
goal, we assume the victim receives a reward of 1 for en-
tering the goal cell and continues to receive a reward of 1
for each time it remains there to incentivize the victim to
reach the goal quickly. We also assume the victim receives a
penalty reward of −H whenever it enters a lava cell, where
H is the finite horizon.

Here, we test our methods on a 10 × 10 grid world with
H = 20 so that the victim has enough time to reach the goal
and stay there. We computed an optimal policy π∗ for the
grid, which achieves the victim a value of 3. In Figure 1 we
visualize π∗ through the path the victim follows when using
π∗. The black cells represent a cell the victim entered during
its interaction. The orange cells represent lava.

Grid Attacks
The attacker can utilize its surfaces to disrupt the victim’s
path. For simplicity, assume that the attacker is purely ad-
versarial and so it seeks to prevent the victim from reaching
the goal and even trick it into lava cells if possible. Sup-
pose that most of the grid is under security and so attacks
cannot be safely made. The attacker is restricted to only at-
tacking edges of the grid, which are not monitored. Here,
the regions include the top-right subgrid and the bottom-left
subgrid shaded in yellow. However, in those regions, it may
use any attack it likes from its given surface.

In Figure 2, we see from left to right the path under an
optimal perceived-state attack, true-state attack, and action

Figure 2: Attacked Paths.

Figure 3: Defense Policy Path

attack. The agent receives −100, 0, and −160 value from
each attack respectively. In all cases, the victim no longer
reaches the goal after getting attacked in the top-right sub-
grid. We see the perceived-state attack functions by tricking
the agent into entering lava; whereas the action attack sim-
ply forces the victim into lava. On the other hand, the state
attacks can transport the victim into lava, but they imme-
diately leave and so suffers less damage than in the other
attacks despite seeming to be the most powerful.

Grid Defense
We see that if the victim simply follows π∗, the effects of
attacks can be catastrophic. The victim knows the upper-
right and bottom-left subgrids are not monitored and so
can assume attacks are conducted there. Using this informa-
tion, the defense algorithm yields a policy π̂ that completely
avoids the unsafe region. The victim still achieves the opti-
mal value of 3 even under the strongest-possible attack. The
new path under attack is illustrated in Figure 3. We see the
robust path simply squeezes between the two unsafe regions.

6 Conclusions
In this paper, we rigorously studied the attack and defense
problems of reinforcement learning. We showed that for any
attack’s surface, a malicious attacker can optimally and effi-
ciently maximize its own rewards by solving a higher lever
meta-MDP. Then, we formally defined the defense problem
and showed it is a WSE of a POTBSG. In the zero-sum set-
ting, we showed standard zero-sum MARL can be used to
find optimal defense policies. When perceived-state attacks
are not allowed, the victim can also compute an optimal de-
fense policy in polynomial time using a robust backward in-
duction algorithm. Although we present an optimal defense,
this defense may not be useful if the attacker is too powerful.
It is critical for the victim to improve its detection abilities
to restrict the attacker’s feasible actions.
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