The Security of Latent Dirichlet Allocation

Shike Mei and Jerry Zhu*

Department of Computer Sciences University of Wisconsin-Madison

AISTATS 2015

Shike Mei and Jerry Zhu (Wisconsin) The Security of Latent Dirichlet Allocation

AISTATS 2015 1 / 27

My topics are buggy!

Shike Mei and Jerry Zhu (Wisconsin) The Security of Latent Dirichlet Allocation

<ロ> (日) (日) (日) (日) (日)

```
My topics are buggy!
```

• !@#\$ in top words

(日) (周) (三) (三)

My topics are buggy!

- !@#\$ in top words
- duplicate documents?

∃ →

▲ 同 ▶ → 三 ▶

My topics are buggy!

- !@#\$ in top words
- duplicate documents?
- clean up, save the day

Shike Mei and Jerry Zhu (Wisconsin) The Security of Latent Dirichlet Allocation

< ロ > < 同 > < 三 > < 三

• real people use LDA

-

Image: A match a ma

• real people use LDA

• attacker wants them to see !@#\$

► < ∃ ►</p>

- real people use LDA
- attacker wants them to see !@#\$
 - to influence their decision

- ∢ ∃ ▶

real people use LDA

- attacker wants them to see !@#\$
 - to influence their decision
 - to profit financially and politically

- real people use LDA
- attacker wants them to see !@#\$
 - to influence their decision
 - to profit financially and politically
- data poisoning attack

real people use LDA

- attacker wants them to see !@#\$
 - to influence their decision
 - to profit financially and politically
- data poisoning attack
 - attacker can modify the corpus

real people use LDA

- attacker wants them to see !@#\$
 - to influence their decision
 - to profit financially and politically
- data poisoning attack
 - attacker can modify the corpus
 - but not the LDA code

- real people use LDA
- attacker wants them to see !@#\$
 - to influence their decision
 - to profit financially and politically
- data poisoning attack
 - attacker can modify the corpus
 - but not the LDA code
 - prefers small modifications

- real people use LDA
- attacker wants them to see !@#\$
 - to influence their decision
 - to profit financially and politically
- data poisoning attack
 - attacker can modify the corpus
 - but not the LDA code
 - prefers small modifications
 - user runs vanilla LDA on poisoned corpus, sees planted topics

real people use LDA

- attacker wants them to see !@#\$
 - to influence their decision
 - to profit financially and politically
- data poisoning attack
 - attacker can modify the corpus
 - but not the LDA code
 - prefers small modifications
 - user runs vanilla LDA on poisoned corpus, sees planted topics
- our paper shows how the attacker may do so optimally

Latent Dirichlet allocation

$$\begin{array}{rcl} \psi_1 \dots \psi_k & \sim & Dir(\beta) \\ \theta_1 \dots \theta_n & \sim & Dir(\alpha) \\ & z_{di} & \sim & \theta_d \\ & w_{di} & \sim & \psi_{z_{di}} \end{array}$$

Shike Mei and Jerry Zhu (Wisconsin) The Security of Latent Dirichlet Allocation

▲ ▲ ■ ▶ ■ つへの AISTATS 2015 4 / 27

(日) (同) (三) (三)

• The user: (without attack)

-

- The user: (without attack)
 - \blacktriangleright receives corpus W

< 回 > < 三 > < 三 >

- The user: (without attack)
 - ▶ receives corpus W
 - $\blacktriangleright\,$ runs off-the-shelf LDA and gets $\hat{\psi}\mid W$

► < Ξ ►</p>

- The user: (without attack)
 - ▶ receives corpus W
 - \blacktriangleright runs off-the-shelf LDA and gets $\hat{\psi} \mid W$
 - under the hood: $\hat{\psi} = \operatorname{argmax} p(\psi \mid W, \alpha, \beta)$, variational or MCMC

- The user: (without attack)
 - ▶ receives corpus W
 - runs off-the-shelf LDA and gets $\hat{\psi} \mid W$
 - under the hood: $\hat{\psi} = \operatorname{argmax} p(\psi \mid W, \alpha, \beta)$, variational or MCMC
 - stares at top words in $\hat{\psi}_1 \dots \hat{\psi}_k$

• The attacker:

-

A (1) > A (2) > A

• The attacker:

• has target topics ψ^* in mind

-

- \blacktriangleright has target topics ψ^* in mind
- ▶ example: $\psi_{1,!}^* \oplus 9 \max(\hat{\psi}_{1,1} \dots \hat{\psi}_{1,v})$, renormalize ψ_1^*

- \blacktriangleright has target topics ψ^* in mind
- ▶ example: $\psi_{1,!}^* \bigoplus 9 \max(\hat{\psi}_{1,1} \dots \hat{\psi}_{1,v})$, renormalize ψ_1^*
- changes W to $ilde{W}$ so that $\left(\hat{\psi} \mid ilde{W}
 ight) pprox \psi^{*}$

- \blacktriangleright has target topics ψ^* in mind
- ▶ example: $\psi_{1,!}^* \bigoplus 9 \max(\hat{\psi}_{1,1} \dots \hat{\psi}_{1,v})$, renormalize ψ_1^*
- changes W to $ilde{W}$ so that $\left(\hat{\psi} \mid ilde{W}
 ight) pprox \psi^{*}$
- gives $ilde{W}$ to the user

- \blacktriangleright has target topics ψ^* in mind
- ▶ example: $\psi_{1,!}^* \oplus 9 \max(\hat{\psi}_{1,1} \dots \hat{\psi}_{1,v})$, renormalize ψ_1^*
- changes W to $ilde{W}$ so that $\left(\hat{\psi} \mid ilde{W}
 ight) pprox \psi^{*}$
- gives \tilde{W} to the user
- The user:

- \blacktriangleright has target topics ψ^* in mind
- ▶ example: $\psi_{1,!}^* \oplus 9 \max(\hat{\psi}_{1,1} \dots \hat{\psi}_{1,v})$, renormalize ψ_1^*
- changes W to \tilde{W} so that $\left(\hat{\psi} \mid \tilde{W}\right) \approx \psi^{*}$
- gives \tilde{W} to the user
- The user:
 - ullet runs off-the-shelf LDA and gets $\hat{\psi} \mid ilde{W}$

- \blacktriangleright has target topics ψ^* in mind
- ► example: $\psi_{1,!}^* \oplus 9 \max(\hat{\psi}_{1,1} \dots \hat{\psi}_{1,v})$, renormalize ψ_1^*
- changes W to $ilde{W}$ so that $\left(\hat{\psi} \mid ilde{W}
 ight) pprox \psi^*$
- gives W
 to the user
- The user:
 - \blacktriangleright runs off-the-shelf LDA and gets $\hat{\psi} \mid ilde{W}$
 - stares at top words in $\hat{\psi}_1 \dots \hat{\psi}_k$ and sees ! @# in topic 1

Formulating the attack

$$\begin{split} \min_{\tilde{W}, \hat{\psi}} & \|\psi^* - \hat{\psi}\|_{\epsilon}^2 \\ \text{s.t.} & \hat{\psi} = \operatorname*{argmax} p(\psi \mid \tilde{W}, \alpha, \beta) \\ & \tilde{W} \geq 0 \\ & \|\tilde{W} - W\|_1 \leq L \end{split}$$

 $\tilde{W}:$ doc-word count matrix, relaxed to real L: attack budget

How come there is optimization in the constraint?

$$\begin{split} \min_{\tilde{W}, \hat{\psi}} & \|\psi^* - \hat{\psi}\|_{\epsilon}^2 \\ \text{s.t.} & \hat{\psi} = \operatorname*{argmax}_{\epsilon} p(\psi \mid \tilde{W}, \alpha, \beta) \\ & \tilde{W} \geq 0 \\ & \|\tilde{W} - W\|_1 \leq L \end{split}$$

• bilevel optimization (Stackelberg game)

How come there is optimization in the constraint?

$$\begin{split} \min_{\tilde{W}, \hat{\psi}} & \|\psi^* - \hat{\psi}\|_{\epsilon}^2 \\ \text{s.t.} & \hat{\psi} = \operatorname*{argmax}_{\epsilon} p(\psi \mid \tilde{W}, \alpha, \beta) \\ & \tilde{W} \geq 0 \\ & \|\tilde{W} - W\|_1 \leq L \end{split}$$

- bilevel optimization (Stackelberg game)
- hard

(日) (同) (三) (三)

KKT conditions to the rescue

Replace the lower problem ...

$$\begin{split} \min_{\tilde{W}, \hat{\psi}} & \|\psi^* - \hat{\psi}\|_{\epsilon}^2 \\ \text{s.t.} & \hat{\psi} = \operatorname*{argmax}_{\epsilon} p(\psi \mid \tilde{W}, \alpha, \beta) \\ & \tilde{W} \geq 0 \\ & \|\tilde{W} - W\|_1 \leq L \end{split}$$

< 🗇 🕨 < 🖃 🕨

3

KKT conditions to the rescue

... with its KKT conditions (variational approximation)

$$\begin{split} \min_{\tilde{W}, \hat{\psi}} & \|\psi^* - \hat{\psi}\|_{\epsilon}^2 \\ \text{s.t.} & \eta_{kv} - \beta - \sum_d \phi_{dvk} m_{dv} = 0 \\ & \gamma_{dk} - \alpha - \sum_v \phi_{dvk} m_{dv} = 0 \\ & \phi_{dvk} - \frac{\exp(\Psi(\gamma_{dk}) + (\Psi(\eta_{kv}) - \Psi(\sum_{v'} \eta_{kv})))}{\sum_k \exp(\Psi(\gamma_{dk}) + (\Psi(\eta_{kv}) - \Psi(\sum_{v'} \eta_{kv'})))} = 0 \\ & \tilde{W} \ge 0 \\ & \|\tilde{W} - W\|_1 \le L \end{split}$$

• nonlinear constraints, but single level optimization

KKT conditions to the rescue

... with its KKT conditions (variational approximation)

$$\begin{split} \min_{\tilde{W}, \hat{\psi}} & \|\psi^* - \hat{\psi}\|_{\epsilon}^2 \\ \text{s.t.} & \eta_{kv} - \beta - \sum_d \phi_{dvk} m_{dv} = 0 \\ & \gamma_{dk} - \alpha - \sum_v \phi_{dvk} m_{dv} = 0 \\ & \phi_{dvk} - \frac{\exp(\Psi(\gamma_{dk}) + (\Psi(\eta_{kv}) - \Psi(\sum_{v'} \eta_{kv})))}{\sum_k \exp(\Psi(\gamma_{dk}) + (\Psi(\eta_{kv}) - \Psi(\sum_{v'} \eta_{kv'})))} = 0 \\ & \tilde{W} \ge 0 \\ & \|\tilde{W} - W\|_1 \le L \end{split}$$

- nonlinear constraints, but single level optimization
- gradient descent

Shike Mei and Jerry Zhu (Wisconsin) The Security of Latent Dirichlet Allocation
Let's pretend to be the attacker

Promote "marijuana" to top-10 in this topic: class court State bill federal act. legislation states

Let's pretend to be the attacker

Can demote words, too

AISTATS 2015 12 / 27

Can demote words, too

AISTATS 2015 12 / 27

Shike Mei and Jerry Zhu (Wisconsin) The Security of Latent Dirichlet Allocation

3. 3

Image: A math a math

Can attack by adding / removing sentences

< 🗇 🕨 < 🖃 🕨

3

Can attack by adding / removing sentences

goal: move "president" to another topic money Wish Veal^{ron} Veal^{ron} veal^{ron} president new →

Can attack by adding / removing sentences

Shike Mei and Jerry Zhu (Wisconsin) The Security of Latent Dirichlet Allocation

3

(日) (周) (三) (三)

protect your corpus

Shike Mei and Jerry Zhu (Wisconsin) The Security of Latent Dirichlet Allocation

3

(日) (周) (三) (三)

- protect your corpus
- inspect docs with large "suspicious topic" proportion $heta_{d,k}$

3

- protect your corpus
- inspect docs with large "suspicious topic" proportion $\theta_{d,k}$
- adversarial classification [Li Vorobeychik AISTATS'15]

I don't care about LDA

Shike Mei and Jerry Zhu (Wisconsin) The Security of Latent Dirichlet Allocation

3

I don't care about LDA

Data poisoning attack can happen to any learner

I don't care about LDA

Data poisoning attack can happen to any learner 140 120 CE DAYS 100 80 60 original, $\beta_1 = -0.1$ 0 40 1900 1920 1940 1960 1980 2000 YEAR $\|\mathbf{y} - \mathbf{y}_0\|_p$ small modifications \min $\mathbf{y} \in \mathbb{R}^n, \hat{\beta} \in \mathbb{R}^2$ $\hat{\beta} = \min_{\beta \in \mathbb{R}^2} \|\mathbf{y} - X\beta\|^2$ s.t. $\ddot{\beta}_1 \geq 0$ attack goal: nonnegative slope

AISTATS 2015 15 / 27

$$\begin{split} \min_{\mathbf{y} \in \mathbb{R}^n, \hat{\beta} \in \mathbb{R}^2} & \|\mathbf{y} - \mathbf{y}_0\|_2 \\ \text{s.t.} & \hat{\beta} = \min_{\beta \in \mathbb{R}^2} \|\mathbf{y} - X\beta\|^2 \\ & \hat{\beta}_1 \ge 0 \end{split}$$

AISTATS 2015 16 / 27

 $\min_{\mathbf{y} \in \mathbb{R}^{n}, \hat{\beta} \in \mathbb{R}^{2} } \|\mathbf{y} - \mathbf{y}_{0}\|_{1}$ s.t. $\hat{\beta} = \min_{\beta \in \mathbb{R}^{2}} \|\mathbf{y} - X\beta\|^{2}$ $\hat{\beta}_{1} \ge 0$

AISTATS 2015 17 / 27

Data poisoning attack on any learner

$$\begin{split} \min_{\substack{D,\hat{\theta}}} & \quad d_1(\hat{\theta},\theta^*) + d_2(D,D_0) \; \; \text{attacker's problem} \\ \text{s.t.} & \quad \hat{\theta} = \mathop{\mathrm{argmin}}_{\theta\in\Theta} \frac{1}{|D|} \sum_{z_i\in D} \ell(z_i,\theta) + \Omega(\theta) \; \; \text{learner's problem} \end{split}$$

Attack linear regression, logistic regression, SVM [Mei Zhu AAAI'15]

I don't care about attacks, either

Shike Mei and Jerry Zhu (Wisconsin) The Security of Latent Dirichlet Allocation

3

Image: A math a math

I don't care about attacks, either

How about education?

$$\begin{split} \min_{D,\hat{\theta}} & \quad d_1(\hat{\theta},\theta^*) + \|D\|_0 \quad \text{teacher finding optimal lesson } D \\ \text{s.t.} & \quad \hat{\theta} = \mathop{\mathrm{argmin}}_{\theta\in\Theta} \frac{1}{|D|} \sum_{z_i\in D} \ell(z_i,\theta) + \Omega(\theta) \quad \text{student's cognitive model} \end{split}$$

I don't care about attacks, either

How about education?

$$\begin{split} \min_{D,\hat{\theta}} & \quad d_1(\hat{\theta},\theta^*) + \|D\|_0 \quad \text{teacher finding optimal lesson } D \\ \text{s.t.} & \quad \hat{\theta} = \mathop{\mathrm{argmin}}_{\theta\in\Theta} \frac{1}{|D|} \sum_{z_i\in D} \ell(z_i,\theta) + \Omega(\theta) \quad \text{student's cognitive model} \end{split}$$

Human categorization [PZKB NIPS'14, Zhu AAAI'15]

human trained on	human test accuracy
optimal lesson D	72.5%
iid	69.8%
	(statistically significant)

Shike Mei and Jerry Zhu (Wisconsin) The Security of Latent Dirichlet Allocation

Image: A test in te

This whole thing doesn't look like machine learning

Shike Mei and Jerry Zhu (Wisconsin) The Security of Latent Dirichlet Allocation

3

3 ×

< 4 → <

This whole thing doesn't look like machine learning

It is not.

3

3.5

< 4 → <

This whole thing doesn't look like machine learning

It is not. We call it machine teaching.

• The student runs a linear SVM:

Given a training set with n items $\mathbf{x}_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$ student learns $\mathbf{w} \in \mathbb{R}^d$

3

• The student runs a linear SVM:

Given a training set with n items $\mathbf{x}_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$ student learns $\mathbf{w} \in \mathbb{R}^d$

 $\bullet\,$ The teacher wants to teach a target \mathbf{w}^*

$$\mathbf{x}^{\top}\mathbf{w}^{*} = 0$$

• The student runs a linear SVM:

Given a training set with n items $\mathbf{x}_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$ student learns $\mathbf{w} \in \mathbb{R}^d$

 $\bullet\,$ The teacher wants to teach a target \mathbf{w}^*

$$\mathbf{x}^{\top}\mathbf{w}^{*} = 0$$

• What is the smallest training set the teacher can construct?

Teacher's non-*iid* training set with n = 2 items

Example two

• The student estimates a Gaussian density:

Given
$$\mathbf{x}_1 \dots \mathbf{x}_n \in \mathbb{R}^d$$

Steve learns $\hat{\mu} = \frac{1}{n} \sum \mathbf{x}_i$, $\hat{\Sigma} = \frac{1}{n-1} \sum (\mathbf{x}_i - \hat{\mu}) (\mathbf{x}_i - \hat{\mu})^\top$

3

A (10) < A (10) </p>

Example two

• The student estimates a Gaussian density:

Given
$$\mathbf{x}_1 \dots \mathbf{x}_n \in \mathbb{R}^a$$

Steve learns $\hat{\mu} = \frac{1}{n} \sum \mathbf{x}_i, \quad \hat{\Sigma} = \frac{1}{n-1} \sum (\mathbf{x}_i - \hat{\mu}) (\mathbf{x}_i - \hat{\mu})^\top$

.1

 \bullet The teacher wants to teach a target Gaussian with (μ^*, Σ^*)

Example two

Teacher's minimal training set: n = d + 1 tetrahedron vertices

Machine teaching is stronger than active learning

Sample complexity to achieve ϵ error

• passive learning $1/\epsilon$

Machine teaching is stronger than active learning

Sample complexity to achieve ϵ error

- passive learning $1/\epsilon$
- active learning $\log(1/\epsilon)$

Machine teaching is stronger than active learning

Sample complexity to achieve ϵ error

- passive learning $1/\epsilon$
- active learning $\log(1/\epsilon)$
- machine teaching 2: the teacher knows θ

Machine teaching

• teacher knows the learning algorithm

A 🖓 h

3

Machine teaching

- teacher knows the learning algorithm
- teacher has a target model
- teacher knows the learning algorithm
- teacher has a target model
- teacher constructs the smallest training set (Teaching Dimension [Goldman Kearns 1995])

- teacher knows the learning algorithm
- teacher has a target model
- teacher constructs the smallest training set (Teaching Dimension [Goldman Kearns 1995])
- applications in education and security

- teacher knows the learning algorithm
- teacher has a target model
- teacher constructs the smallest training set (Teaching Dimension [Goldman Kearns 1995])
- applications in education and security
- many open problems in optimization and theory

- teacher knows the learning algorithm
- teacher has a target model
- teacher constructs the smallest training set (Teaching Dimension [Goldman Kearns 1995])
- applications in education and security
- many open problems in optimization and theory

- teacher knows the learning algorithm
- teacher has a target model
- teacher constructs the smallest training set (Teaching Dimension [Goldman Kearns 1995])
- applications in education and security
- many open problems in optimization and theory

References:

```
http://pages.cs.wisc.edu/~jerryzhu/machineteaching/
```

Thank you

Shike Mei and Jerry Zhu (Wisconsin) The Security of Latent Dirichlet Allocation

3

<ロ> (日) (日) (日) (日) (日)