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Abstract

Bar charts are common visual tools used to convey statistical
information. Even though bar charts are effective in making
abstract concepts more accessible, poorly-designed bar charts
- whether designed intentionally or unintentionally - can eas-
ily mislead the viewer. For example, a poorly-designed bar
chart may only present part of the effective range on the ver-
tical axis. This exaggerates the contrast among bars, leading
an unsuspecting graph viewer to wrong conclusions. More
broadly, misrepresentation in data visualization is becoming
an increasing societal problem contributing to daily misinfor-
mation. This paper presents a computational and cognitive so-
lution to this problem. Our idea is to train viewers by showing
them a few dozen carefully designed bar charts that are mis-
leading, together with guidance on why these bar charts are
misleading. We then test whether the viewers identify simi-
larly misleading bar charts in the future. Importantly, we use
neural networks and cognitive models to optimize the training
(i.e., the design of those few dozen bar charts). Our experiment
shows that perceptual trainings can help viewers not be fooled
by similar misleading graphs in the future.

Keywords: bar charts; misleading graphs; perceptual fluency;
Neural networks; cognitive model.

Introduction
Graphs such as bar charts are commonly used to communi-
cate statistical information in print, social media, and news
media. While such graphs can be informative because they
can make abstract concepts more accessible, they can also be
misleading if they are poorly designed. For example, if a bar
chart’s y-axis starts at some value other than zero, it distorts
the depicted information by exaggerating the difference be-
tween the categories shown by the individual bars (see Figure
1). Formally, we define a graph as misleading if the displayed
size of an effect (e.g., the relative height of the two bars in the
bar chart in Figure 1) does not correspond to the size of the
true effect (Tufte, 2001). For example, in Figure 1 [see left
bar chart], the orange bar is about 1.75 times higher than the
white bar, whereas 29.4 percent is 42 times larger than 0.7
percent.

Since graph design software has become cost-effective and
accessible to all (Tan & Benbasat, 1990), it is easier for any-
one without experience to design graphs; and this can lead
to intentionally or unintentionally misleading graphs (Cairo,
2019). For example, a review of graphs used in medical ad-
vertisements showed that about one third of the graphs pre-
sented information in a misleading way (Cooper, Schriger,
Wallace, Mikulich, & Wilkes, 2003). Misleading graphs can
have serious implications in healthcare, for example, where

both patients and physicians already struggle to understand
how graphs communicate health risks (Galesic & Garcia-
Retamero, 2011). Even if viewers know that a graph is mis-
leading, they still face challenges in extracting the correct
answer, further compounding the problem (Harper, 2004).
Hence, to prevent such graphical misinformation, viewers
need to (1) notice that the graph is distorted, and (2) adjust
their process of extracting information from the graph accord-
ingly.

The goal of the present study is to investigate whether
viewers can be trained to become perceptually fluent at ex-
tracting correct information from misleading graphs. To
this end, we developed a perceptual training for misleading
graphs. We compare different versions of this training with
varying levels of feedback. We hypothesize that providing
specific feedback on the correct answer improves viewers’
benefit from the perceptual training. In the following sec-
tion, we first review literature on perceptual fluency, as well
as prior work on graph design and graph perception. Then, we
discuss prior research on perceptual trainings that counteract
perceptual biases — albeit not in the context of misleading
graphs.

Figure 1: An example of misleading bar charts.

Related Work
Perceptual fluency is the ability to extract information quickly
and effortlessly from visuals (Gibson, 2000). One bene-
fit of perceptual fluency is that it frees cognitive resources
so individuals can use these essential resources for higher-
order thinking (Kellman & Massey, 2013). Perceptual flu-
ency is acquired via nonverbal, inductive learning processes



(Goldstone & Barsalou, 1998). These processes are consid-
ered nonverbal because verbal reasoning does not aid but in-
terferes with perceptual learning (Koedinger, Corbett, & Per-
fetti, 2012). Second, these processes are considered inductive
because humans become more effective at recognizing visual
patterns based on numerous experiences with visual stimuli
(Gibson, 2000; Koedinger et al., 2012). The result is a highly
efficient perceptual system allowing viewers to see meaning-
ful chunks in a graph (as opposed to individual lines or areas)
that are linked to conceptual information about graphs that
can be retrieved from long-term memory (Richman, Gobet,
Staszewski, & Simon, 1996).

In order to understand how viewers read graphs, we draw
on the literature on graph design and graph perception. One
foundational study by Cleveland (1985) explored visual fea-
tures, such as color, length, position, and angle that affect
graph decoding (i.e., how viewers read a graph). Cleve-
land (1985) identified a variety of “elementary graphical-
perception tasks” (e.g., perceiving color, length, position,
and angles) that viewers rely on to read a graph. In addi-
tion, prior research on graph perception shows that two types
of processes are involved when viewers extract information
from graphs: perceptual processing and spatial processing
(Trickett & Trafton, 2006). Perceptual processing involves
the ability to extract available information from a graph, such
as the numbers on the x-axis in a bar chart. In other words,
perceptual processing involves “reading the data” (Curcio,
1987). Spatial processing comes into play when the infor-
mation is not directly in the graph and viewers must make
inferences beyond what they see in the bar chart (Trickett &
Trafton, 2006), such as comparing trends between bar charts
over time. In other words, spatial processing involves “read-
ing beyond the data” (Curcio, 1987).

In sum, these findings imply that graphs can become mis-
leading if they incorrectly display a visual feature that viewers
rely on to read a graph, such as position on a scale. In addi-
tion, since non-experts tend to rely more heavily on percep-
tual processing to extract information from graphs (Trickett
& Trafton, 2006), they use whatever information is readily
available in a graph. This can be problematic particularly
when the available visual features are misleading.

Misleading graphs pose severe issues. A large body
of research documents that poorly designed graphs can af-
fect viewers’ risk perception and consequently their decision
making process (Ancker, Senathirajah, Kukafka, & Starren,
2006; Stone et al., 2003). Indeed, perceptual biases affect hu-
man decision making. A prominent example of perceptual bi-
ases relates to race perception where police officers perceive a
black person as more threatening than a white person, result-
ing in disproportionate decisions to shoot black people [e.g.,
(James, Klinger, & Vila, 2014)]. Similarly, perceptual bi-
ases can affect perceptual experiences other than race, such as
when reading graphs. For example, since viewers are worse
at judging slopes compared to angles (Cleveland & McGill,
1985), they might experience more perceptual biases when

answering questions about slopes in a graph.
Perceptual trainings offer a solution to such biases. For ex-

ample, police officers undergo perceptual trainings that sys-
tematically expose them to racial variation in potential tar-
gets while ensuring that race is not indicative of whether the
target is threatening or not. Several studies found that such
trainings are effective in reducing perceptual biases among
police officers [e.g., (James et al., 2014; Plant & Peruche,
2005)]. Perceptual trainings have also been used in the con-
text of STEM learning to help individuals become efficient at
extracting scientific information from visual representations
(Kellman, Massey, & Son, 2010). The goal of such percep-
tual trainings is to allow individuals to quickly see meaningful
information in visual representations they encounter in educa-
tional materials, thereby freeing cognitive resources to invest
in further learning of STEM content knowledge.

Perceptual trainings are designed to engage individuals in
nonverbal, inductive learning processes. To this end, these
trainings expose individuals to numerous visual representa-
tions while asking them to perform quick judgment tasks,
such as whether or not a given visual shows a certain chem-
ical molecule. Throughout, they are encouraged to process
the information visually without overthinking the answer, so
as to encourage inductive processing. Further, these trainings
provide specific feedback on individuals’ performance on the
perceptual task (Rau & Patel, 2018).

While perceptual trainings have proven effective in the
context of police biases and STEM instruction, to our knowl-
edge, they have never been used to train viewers to extract
correct information from misleading graphs. One limitation
of prior research is that it has focused more on optimizing
graph design instead of training viewers to detect graphical
misinformation when present and to adjust their information
extraction processes accordingly. Further, there is no prior
data on the extent to which specific feedback can help indi-
viduals identify misleading graphs. In sum, while perceptual
trainings have proven an effective tool for perceptual learn-
ing, they have not yet been in the context of visual misin-
formation. The goal of the present paper is to address these
limitations.

This experiment investigates the following research ques-
tions: (1) Are viewers susceptible to misleading bar charts?
(2) Which type of feedback is most effective for a perceptual
training? (3) At what point during the training are viewers
able to identify misleading graphs?

Materials
Misleading Bar Charts
Our task asked participants to determine the ratio of two val-
ues in a misleading graph. We used bar charts as we expected
all our participants to be familiar with such graphs in their
daily lives.

One example of such a graph is given in Figure 2a: there
are two bars showing the number of tourists on Island A
(b1 = 56) and Island B (b2 = 81). We asked the partic-



ipants to determine the ratio between the two values i.e.,
y = b2/b1 ≈ 1.4. Note that the vertical axis intentionally does
not show the entire range of values. This is misleading, as the
ratio will be overestimated if a participant only pays attention
to how the bars “look like” (i.e., bar pixel heights). In this ex-
ample the pixel height ratio is ypixel = 5.2, which is far from
the true value ratio of y = 1.4.

(a) (b)

Figure 2: (a) Sample bar chart shown to human participants,
with the cover question: “The graph shows the number of
tourists who visit two islands on a Saturday. If Island A needs
one ferry to transport all the tourists, how many ferries does
Island B need? Quickly estimate the answer; you may en-
ter decimal values.” The number of tourists on Island A and
Island B in this example are 56 and 81 respectively. (b) An-
notated variables (not shown to participants).

Mathematically, each bar chart contains six values 1 of in-
terest (see Figure 2b): yl : the lower limit of the vertical axis;
yh: the upper limit of the vertical axis; y1: the lower vertical
tick value; y2: the upper vertical tick value; b1: value depicted
by the first bar; b2: value depicted by the second bar.

Visually, though, a participant would directly see only the
values y1,y2, and perceive four pixel heights: h1 : pixel height
of the y1 tick; h2 : pixel height of the y2 tick; h3 : pixel height
of bar 1; h4 : pixel height of bar 2. There is indeed enough
information to infer the correct y from visual perception:

y =
(yh− yl)h4 + ylh2− yhh1

(yh− yl)h3 + ylh2− yhh1
. (1)

However, with poor y-axis labeling, a participant can be mis-
led into estimating pixel height ratio ypixel instead:

ypixel =
h4

h3
. (2)

We call a bar chart misleading if its y and ypixel differ greatly.
In order to prepare a variety of bar charts with diverse mis-

leading potentials, we used the following procedure. We only
generated bar charts with two bars, both having positive val-
ues. Such a graph is designed by six values yl , yh, y1, y2,
b1 and b2. We sampled these six values using the generative

1We distinguish value, which is the number that would have been
shown on the y-axis, from pixel height which is the apparent height
of a landmark.

model given in Algorithm 1. We started by drawing the val-
ues of yl and yh uniformly between 10 and 100 (lines 1-3).
Next we sampled b1 and b2 followed by y1 and y2. We en-
sured that b1,b2 > yl so that the neither bar has 0 pixel height
in the generated image. Also we fixed b2 > b1, meaning the
ratio between the two values has a fixed range: 1 < y < 10.
This ensures that the range is never too large or too small for
the human participants to estimate. The function pixel(·) cal-
culates the pixel height of the different elements in the graph.
The checks in line 6 are performed to ensure that none of the
numbers displayed in the plot overlap. We determined the
pixel values in line 6 by generating several sample plots. The
function generate bar graph(·) generates the bar chart using
the values sampled. We used MATLAB for this purpose. We
also generated multiple cover questions. An example of such
a cover question is provided in the caption of Figure 2.

Algorithm 1 Generative Model for Bar Graphs
1: yl ← U({10, . . . ,100}); yh ← U({10, . . . ,100})
2: Redo step 1 if |yl− yh|< 3
3: yl ,yh = sort(yl ,yh)
4: b1 ← U({yl + 1, . . . ,min(yl + 20,yh)}); b2 ← U({yl +

1, . . . ,yh})
5: b1,b2 = sort(b1,b2)
6: Redo step 4 if b1 = b2 or pixel(b1,yl ,yh)< 68
7: y1← U({yl , . . . ,yh}); y2← U({yl , . . . ,yh})
8: y1,y2 = sort(y1,y2)
9: Redo step 7 if pixel(y2,yl ,yh)− pixel(y1,yl ,yh) < 34 or

min(|pixel(b1,yl ,yh) - pixel(y1,yl ,yh)|, |pixel(b2,yl ,yh)
- pixel(y1,yl ,yh)|, |pixel(b1,yl ,yh) - pixel(y2,yl ,yh)|,
|pixel(b2,yl ,yh) - pixel(y2,yl ,yh)|)< 61

10: generate bar graph(yl ,yh,y1,y2,b1,b2)

Perceptual Training
Our perceptual training consisted of a sequence of up to 30
bar charts. For each bar chart, we required the participant to
enter their estimate ŷ of the true ratio y. Then, the training
provided feedback on that chart. We compared three types of
feedback:

1. Random-charts verbal-feedback. The 30 charts are ran-
domly generated according to Algorithm 1. We displayed
the same feedback for each bar chart by stating “Pay atten-
tion to where the vertical axis starts” after the participant
entered their estimate ŷ. We did not show the correct y. An
example is given in Figure 3(left).

2. Random-charts y-feedback. The 30 charts are randomly
generated according to Algorithm 1. We provided the true
ratio y and repeat the participant’s estimate ŷ as feedback.
However, we did not explain which part of the graph the
participant should pay attention to. An example is given in
Figure 3(right).

3. Machine-teaching y-feedback. We generated a special se-
quence of 30 charts in an attempt to optimize learning of



a simple neural network model. The neural network is a
computational approximation of how humans might learn
to read the charts. The sequence is optimized using a ma-
chine teaching technique (Zhu, Singla, Zilles, & Rafferty,
2018). Details are presented in the Appendix. We provided
the true ratio y and repeated the participant’s estimate ŷ as
feedback.

Human Experiments
Participants
The human experiment was conducted using Amazon’s Me-
chanical Turk (MTurk) (Buhrmester, Kwang, & Gosling,
2016). For this experiment, we recruited 79 master workers.
Master is a certificate provided by MTurk to workers who
have consistently performed well on previous tasks. Each
participant was paid 5$ to go through 80 bar charts.

We randomly assigned each participant to one of four con-
ditions:

• The Random-charts verbal-feedback condition

• The Random-charts y-feedback condition

• The Machine-teaching y-feedback condition

• The control condition. This condition consisted of 30
randomly-generated bar charts, but we did not provide any
feedback. Thus the control condition can be thought of as
simply consisting of 80 test questions. The goal of this
condition was to check if participants can identify the mis-
leading graphs on their own without the perceptual train-
ing.

Procedure
A participant experienced a total of 80 bar charts in sequence.
The sequence was divided into three phases:

Phase 1: Pretest. In this phase, each participant was shown
a series of 20 randomly generated bar charts like the one in
Figure 2a. For the i-th bar chart (i = 1 . . .20) the participants
had to enter their estimated bar ratio ŷi. There was no feed-
back and the task immediately moved on to the next bar chart.

Phase 2: Training. In this phase, each participant received
30 bar charts specific to the condition.

Phase 3: Posttest. In order to investigate whether and
how soon they identify misleading bar charts, we interleaved
Phase 2 and Phase 3. That is, each misleading bar chart was
followed by a randomly-generated test bar chart. Bar charts
i = 21,23, . . . ,79 were the charts where the participant en-
tered estimate ŷi then received feedback depending on the
condition; bar charts i = 22,24, . . . ,80 were posttests where
the participant entered ŷi but received no feedback.

Results
Data cleaning Despite our MTurk task instructions, 7 par-
ticipants misunderstood the task: instead of responding with
an estimate of the b2/b1 ratio, they responded with the value

of b2. Such participants were easy to identify due to their
large responses in the range of 40 to 100. We manually re-
moved them leaving a total of 72 participants, which coin-
cidentally left 18 participants per condition. For additional
outlier removal, we pooled all 5760 remaining responses ŷ to-
gether and calculated their mean and standard deviation. We
then removed responses that were outside 2× standard devia-
tion around the mean. This removed 30 outlier responses out
of 5760 responses.

People do misread bar charts We investigated the pretest
phase to answer our first question: Are participants suscep-
tible to misleading bar charts? In the pretest phase, the par-
ticipants had not received different conditions yet. If the par-
ticipants tend to estimate the bar ratio by the perceived bar
heights instead of reading the y-axis labels carefully, then
their response ŷ should be closer to ypixel than the true ratio
y. We merged the pretest data from 72 participants across
all 4 conditions. With outlier removal, this led to a total
of n = 1392 pretest bar charts. The average absolute er-
ror between response and true ratio is 1

n ∑
n
i=1 |ŷi− yi| = 0.89

(stderr=0.03), while that between response and bar pixel ratio
is 1

n ∑
n
i=1 |ŷi− ypixel

i | = 0.43 (stderr=0.02). A t-test revealed
that the difference is significant at level α = 0.01. Therefore,
we conclude that, during the pretest phase, participants tend
to be misled by the pixel height ratio in bar charts.

Table 1: Average absolute error 1
n ∑i |ŷi− yi| by condition

Condition Pretest 1st-half Posttest 2nd-half Posttest
Random verbal feedback 0.89 0.73 0.71

n = 348 n = 269 n = 270
Random y feedback 0.99 0.51 0.42

n = 359 n = 270 n = 269
Machine teaching y feedback 0.91 0.48 0.39

n = 356 n = 270 n = 269
Placebo 0.81 0.80 0.79

n = 356 n = 269 n = 270

Perceptual training helps. We then addressed our sec-
ond question regarding the effectiveness of perceptual train-
ing. First, we checked whether the training interventions led
to learning gains. To this end, we conducted a repeated-
measures ANOVA with a Greenhouse-Geisser correction.
Results showed large significant gains from pretest to posttest
(i.e., lower absolute errors), F(1,68) = 41.824, p = .000,
η2

p = .381. Next, we tested the effects of each of the four con-
ditions on learning gains. To this end, we conducted a one-
way ANCOVA post-hoc Bonferroni. Results indicated that
“Machine-teaching y-feedback” (p = .005) and “Random-
charts y-feedback” and (p= .004) significantly improved par-
ticipants ability to identify misleading charts compared to
control condition. Their absolute error reduced by more than
half. There were no significant results with the “Random-
charts verbal-feedback” condition. This may be due to par-
ticipants not receiving the true ratio y as feedback. Finally,



Figure 3: Example of (left) verbal feedback and (right) true ratio y feedback.

participants in the control condition did not improve on their
own by being frequently exposed to the task. Recall that these
participants did not receive any feedback. Therefore, we con-
clude that the perceptual training was effective for these types
of misleading bar charts.

When are participants able to identify the misleading
graphs. To investigate our third question regarding the
speed in which this identification takes place, we split the
posttest phase into two sections: a 1st-half of 15 charts and
a 2nd-half of 15 charts. Recall that after the pretest phase,
our 30 misleading charts interleaved with 30 posttest charts.
We report the average absolute error 1

n ∑i |ŷi− yi| in Table 1.
We conducted a repeated measures ANOVA to investigate for
differences in absolute errors within the pretest, 1st-half of
the posttest and the 2nd-half of the posttest. Results indi-
cated a significant improvement in absolute errors between
the pretest and the 1st-half of the posttest (p=.000) but no
significant improvement between the 1st-half and the 2nd-
half of the posttest (p=.548). We also saw evidence that the
participants moved away from the wrong concept of pixel
height ratio ypixel: in the “Machine-teaching y-feedback” con-
dition 1

n ∑i |ŷi− ypixel
i | increased over the pretest (0.36), 1st-

half posttest (0.60), and 2nd-half posttest (1.00). Therefore,
we conclude that participants were able to identify the mis-
leading bar charts earlier (within the first 15 bar charts).

Discussion and Conclusion

The goal of this experiment was to investigate whether a per-
ceptual training intervention could help viewers extract cor-
rect information from misleading graphs. The learning gain
results between the pretest and the posttest indicated that both
the“Machine-teaching y-feedback”and the “Random-charts
y-feedback”versions of the training were effective. View-
ers who received these types of feedback outperformed view-
ers who received either no feedback (control) or no specific
feedback on the correct answer (verbal feedback). The supe-
rior version of the training provided feedback in the form of
the true ratio y. Finally, results indicated that the perceptual

training was effective earlier, as evident with the significant
improvement of absolute errors between the pretest and the
posttest items provided within the first half of the training.

These findings expand prior research on perceptual train-
ings in two ways. First, to our knowledge no prior research
has investigated whether a perceptual training can help view-
ers become better at extracting information from misleading
graphs. Our findings demonstrate that a perceptual training
can improve the extraction of information from a graph even
if the graph is misleading. Second, in line with prior research
on perceptual trainings in STEM (Rau & Patel, 2018), we
found that specific feedback in the form of the true ratio in-
creased the effectiveness of the perceptual training. Thus,
the design of perceptual training interventions for misleading
graphs can benefit from specific feedback that directs partici-
pants towards the correct answer. Third, our results show that
participants do not have to be exposed to many graphs to be
able to extract correct information from misleading graphs.

Our results should be interpreted in light of the follow-
ing limitations. First, we are using a relatively small sample
(18 participants per condition). Second, the recruited MTurk-
ers may have different motivations to complete the assigned
tasks. Third, we used a simple form of bar graph that stays
homogeneous throughout the training. Future research may
focus on other commonly used graphs such as pie charts and
line graphs. Despite these limitations, these results indicate
that viewers are susceptible to being misled and that a percep-
tual intervention can help them quickly identify such graphs.

In spite of these limitations, our research shows that a
perceptual training with specific feedback can be used to
help viewers extract correct information from misleading bar
graphs. This suggests that perceptual trainings have promise
to help circumvent visual misinformation.
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Appendix: Machine Teaching
We modeled the human learning using a feed-forward artifi-
cial neural network (ANN) (Demuth, Beale, De Jess, & Ha-
gan, 2014). The network had two main components: a con-
volutional neural network (CNN) (Krizhevsky, Sutskever, &
Hinton, 2012) to identify different components of the graph
and an optical character recognition (OCR) component that
read the two y-tick values. We use VGG (Simonyan & Zis-
serman, 2014) as our CNN. The weights of this CNN is held
frozen as is standard practice. The goal of the CNN is to ex-
tract useful features from the graph images e.g., pixel height
of the bars, pixel height of the vertical axis labels etc. The
goal of the OCR is to extract the vertical tick values. Af-
terwards, we pass these information through further layers to
extract the ratio y.

We now discuss how to construct a good training sequence
of length 30 (i.e. the machine teaching doses) using the ANN
as a surrogate participant. We first randomly generate a large
pool of candidate training bar charts P, and another pool of
test bar charts T . We train the ANN separately using each
bar chart in P, then determine the ANN’s performance on the
test set T . This allows us to rank the bar charts in P based
on their individual performance. Then we form the training
sequence by taking the top 30 bar charts in that order. This is
a greedy method; the training sequence so produced is likely



suboptimal. Nonetheless, this method enjoys computational
efficiency. Other, more computationally demanding methods
can potentially produce better machine teaching doses, and
are left for future research.


