
Corruption-Robust Offline Reinforcement Learning

Xuezhou Zhang Yiding Chen Jerry Zhu Wen Sun
Princeton University UW Madison UW Madison Cornell University

Abstract

We study the adversarial robustness in of-
fline reinforcement learning. Given a batch
dataset consisting of tuples (s, a, r, s′), an ad-
versary is allowed to arbitrarily modify ε frac-
tion of the tuples. From the corrupted dataset
the learner aims to robustly identify a near-
optimal policy. We first show that a worst-
case Ω(Hdε) optimality gap is unavoidable
in linear MDP of dimension d, even if the
adversary only corrupts the reward element
in a tuple. This contrasts with dimension-free
results in robust supervised learning and best-
known lower-bound in the online RL setting
with corruption. Next, we propose robust
variants of the Least-Square Value Iteration
(LSVI) algorithm utilizing robust supervised
learning oracles, which achieve near-matching
performances in cases both with and without
global data coverage. The algorithm requires
the knowledge of ε to design the pessimism
bonus in the no-coverage case. Surprisingly,
the knowledge of ε is necessary, as we show
that being adaptive to unknown ε is impossi-
ble. This again contrasts with recent results
on corruption-robust online RL and implies
that corruption-robust offline RL is a strictly
harder problem.

1 Introduction

Offline Reinforcement Learning (RL) (Lange et al.,
2012; Levine et al., 2020) has received increasing atten-
tion recently due to its appealing property of avoiding
online experimentation and making use of offline histor-
ical data. In applications such as assistive medical diag-
nosis and autonomous driving, historical data is abun-
dant and keeps getting generated by high-performing
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policies (from human doctors/drivers). However, it
is often unethical or expensive to allow an online RL
algorithm to freely experiment with potentially sub-
optimal policies, as often human lives are at stake.
Offline RL provides a powerful framework aiming to
find a good policy based on historical data alone. Ex-
citing advances have been made in designing stable
and high-performing empirical offline RL algorithms
(Fujimoto et al., 2019; Laroche et al., 2019; Wu et al.,
2019; Kumar et al., 2019, 2020; Agarwal et al., 2020;
Kidambi et al., 2020; Siegel et al., 2020; Liu et al.,
2020; Yang and Nachum, 2021; Yu et al., 2021). On
the theoretical front, recent works have proposed effi-
cient algorithms with theoretical guarantees, based on
the principle of pessimism in face of uncertainty (Liu
et al., 2020; Buckman et al., 2020; Yu et al., 2020; Jin
et al., 2020c; Rashidinejad et al., 2021), or variance
reduction (Yin et al., 2020, 2021).

In this work, however, we investigate a different as-
pect of the offline RL framework, namely the statistical
robustness in the presence of data corruption. Data
corruption is one of the main security threats against
modern ML systems: autonomous vehicles can mis-
read traffic signs contaminated by adversarial stickers
(Eykholt et al., 2018); chatbots were misguided by
tweeter users to make misogynistic and racist remarks
(Neff, 2016); recommendation systems are fooled by
fake reviews/comments to produce incorrect rankings.
Despite the many vulnerabilities, robustness against
data corruption has not been extensively studied in
RL until recently. To the best of our knowledge, all
prior works on corruption-robust RL study the on-
line RL setting. As direct extensions to the setting of
adversarial bandits, earlier works focus on designing
robust algorithms in fully adversarial environments,
i.e. the reward functions at all rounds are adversarially
generated, and show that O(

√
T ) regret is achievable

(Even-Dar et al., 2009; Neu et al., 2010, 2012; Zimin
and Neu, 2013; Rosenberg and Mansour, 2019; Jin
et al., 2020a). While such setting might appear certain
game-theoretical situations, in most practical scenarios,
such as the ones described above, only a small fraction
of the data are actually adversarial while the majority
of the data are benign.
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Recent works start to study the Huber’s contamination
setting (Lykouris et al., 2019; Chen et al., 2021), where
both rewards and transitions can be contaminated but
only in ε fraction of all episodes. This setting turns
out to be significantly harder, and both works can only
tolerate at most ε ≤ O(1/

√
T ) fraction of corruptions

even against oblivious adversaries. Zhang et al. (2021)
recently proposes the first online RL algorithm that can
be robust against a constant fraction (i.e. ε ≥ Ω(1)) of
adaptive corruption on both rewards and transitions
while being agnostic to the value of ε, albeit requiring
the help of an exploration policy with finite relative
condition number.

In this work, we extend the study of robust RL to
the offline setting. Following (Lykouris et al., 2019;
Chen et al., 2021; Zhang et al., 2021), we study the
Huber’s contamination model in offline reinforcement
learning, formally defined in Assumption 2.2. Huber’s
contamination model is a classic model for studying
sparse data contamination, and is widely used in the
traditional literature of robust statistics (Huber et al.,
1967). We refer interesting readers to a comprehensive
survey (Diakonikolas and Kane, 2019) of recent ad-
vances along these directions. Motivated by these prior
works, in this paper we ask the following question:

Given an offline RL dataset with ε-fraction of corrupted
data, what is the information-theoretic limit of robust
identification of the optimal policy?

Towards answering this question, we summarize the
following contributions of this work:

1. We provide the formal definition of ε-contamination
model in offline RL, and establish an information-
theoretical lower-bound of Ω(Hdε) in the setting of
linear MDP with dimension d.

2. We design a robust variant of the Least-Square Value
Iteration (LSVI) algorithm utilizing robust super-
vised learning oracles with a novel pessimism bonus
term, and show that it achieves near-optimal per-
formance in cases with (Theorem 3.2) or without
global data coverage (Theorem 3.3).

3. In the without coverage case, we establish a sufficient
condition for learning based on the relative condition
number with respect to any comparator policy —
not necessary the optimal one. When specialized to
offline RL without corruption, our partial coverage
assumption is much weaker than the full coverage
assumption in (Jin et al., 2020c) for linear MDP.

4. In contrast to (Zhang et al., 2021), we show that ag-
nostic learning, i.e. learning without the knowledge
of ε, is generally impossible in the offline RL setting,
establishing a separation in hardness between online
and offline RL in face of data corruption.

While our paper’s main contributions are on corruption
robust offline RL, it is worth noting when specialized
to the clean offline RL setting, i.e., ε = 0, our work also
gives two improved results: (1) under the linear MDP
setting, we achieve an optimality gap with respect to
any comparator policy (not necessarily the optimal one)
in the order of O(d3/2/

√
N) with N being the number

of offline samples, saving a
√
d factor over previously

best-known results. (2) our analysis works for the set-
ting where offline data only has partial coverage which
is formalized using the concept of relative condition
number with respect to the comparator policy1.

2 Preliminaries

To begin with, let us formally introduce the episodic
linear MDP setup we will be working with, the data
collection and contamination protocol, as well as the
robust linear regression oracle.

Environment. We consider an episodic
finite-horizon Markov decision process (MDP),
M(S,A, P,R,H, µ0), where S is the state space, A is
the action space, P : S × A → ∆(S) is the transition
function, such that P (·|s, a) gives the distribution
over the next state if action a is taken from state s,
R : S × A → ∆(R) is a stochastic and potentially
unbounded reward function, H is the time horizon,
and µ0 ∈ ∆S is an initial state distribution. The value
functions V πh : S → R is the expected sum of future
rewards, starting at time h in state s and executing π,

i.e. V πh (s) := E
[∑H

t=hR(st, at)|π, s0 = s
]
, where the

expectation is taken with respect to the randomness
of the policy and environment M. Similarly, the
state-action value function Qπh : S ×A → R is defined

as Qπh(s, a) := E
[∑H

t=hR(st, at)|π, s0 = s, a0 = a
]
.

We use π∗h, Q∗h, V ∗h to denote the optimal policy,
Q-function and value function, respectively. For any
function f : S → R, we define the Bellman operator as

(Bf)(s, a) = Es′∼P (·|s,a)[R(s, a) + f(s′)]. (1)

We then have the Bellman equation

V πh (s) = 〈Qπh(s, ·), πh(·|s)〉A, Qπh(s, a) = (BV πh+1)(s, a)

and the Bellman optimality equation

V ∗h (s) = max
a

Q∗h(s, a), Q∗h(s, a) = (BV ∗h+1)(s, a)

We define the averaged state-action distribution dπ

of a policy π: dπ(s, a) := 1
H

∑H
h=1 Pπ(st = s, at =

1Contemporary to ours, Jin et al. (2020c) added a new
Corollary 4.5 in the latest arXiv version of their paper that
matches with our results.
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a|s0 ∼ µ0) . We aim to learn a policy that maximizes
the expected cumulative reward and thus define the
performance metric as the suboptimality of the learned
policy π compared to a comparator policy π̃:

SubOpt(π, π̃) = Es∼µ0 [V π̃1 (s)− V π1 (s)]. (2)

Notice that π̃ doesn’t necessarily have to be the op-
timal policy π∗, in contrast to most recent results in
pessimistic offline RL, such as (Jin et al., 2020c; Buck-
man et al., 2020).

For the majority of this work, we focus on the linear
MDP setting (Yang and Wang, 2019; Jin et al., 2020b).

Assumption 2.1 (Linear MDP). There exists a known
feature map φ : S × A → Rd, d unknown signed mea-
sures µ = (µ(1), ..., µ(d)) over S and an unknown vector
θ ∈ Rd, such that for all (s, a, s′) ∈ S ×A× S,

P (s′|s, a) = φ(s, a)>µ(s′), R(s, a) = φ(s, a)>θ + ω

where ω is a zero-mean and σ2-subgaussian distribution.
Here we also assume that the parameters are bounded,
i.e.‖φ(s, a)‖≤ 1, E[R(s, a)] ∈ [0, 1] for all (s, a) ∈ S×A
and max(‖µ(S)‖, ‖θ‖) ≤

√
d.

Clean Data Collection. We consider the offline set-
ting, where a clean dataset D̃ = {(s̃i, ãi, r̃i, s̃′i)}i=1:N

of transitions is collected a priori by an unknown ex-
perimenter. In this work, we assume the stochasticity
of the clean data collecting process, i.e. there exists
an offline state-action distribution ν ∈ ∆(S × A), s.t.
(s̃i, ãi) ∼ ν(s, a), r̃i ∼ R(s̃i, ãi) and s̃′i ∼ P (s̃i, ãi).
When there is no corruption, D̃ will be observed by the
learner. However, in this work, we study the setting
where the data is contaminated by an adversary before
revealed to the learner.

Contamination model. We define an adversarial
model that can be viewed as a direct extension to the ε-
contamination model studied in the traditional robust
statistics literature.

Assumption 2.2 (ε-Contamination in offline RL).
Given ε ∈ [0, 1] and a set of clean tuples D̃ =
{(s̃i, ãi, r̃i, s̃′i)}i=1:N , the adversary is allowed to inspect
the tuples and replace any εN of them with arbitrary
transition tuples (s, a, r, s′) ∈ S×A×R×S. The result-
ing set of transitions is then revealed to the learner. We
will call such a set of samples ε-corrupted, and denote
the contaminated dataset as D = {(si, ai, ri, s′i)}i=1:N .
In other words, there are at most εN number of indices
i, on which (s̃i, ãi, r̃i, s̃

′
i) 6= (si, ai, ri, s

′
i).

Under ε-contamination, we assume access to a robust
linear regression oracle.

Assumption 2.3 (Robust least-square oracle (RLS)).
Given a set of ε-contaminated samples S =

{(xi, yi)}1:N , where the clean data is generated as:
x̃i ∼ ν, P (‖x‖≤ 1) = 1, ỹi = x̃i>w∗ + γi, where γi’s
are subgaussian noise with zero-mean and γ2-variance.
Then, a robust least-square oracle returns an estimator
ŵ, such that

1. If Eν [xx>] � ξ, then with probability at least 1− δ,

‖ŵ − w∗‖2≤ c1(δ) ·
(√

γ2poly(d)
ξ2N + γ

ξ ε

)
2. With probability at least 1 − δ,

Eν
(
‖x>(ŵ − w∗)‖22

)
≤ c2(δ) ·

(
γ2poly(d)

N + γ2ε
)

where c1 and c2 hide absolute constants and
polylog(1/δ).

Such guarantees are common in the robust statistics
literature, see e.g. (Bakshi and Prasad, 2020; Pensia
et al., 2020; Klivans et al., 2018). In particular, in
the simpler setting of bounded reward, i.e. ri ∈ [0, 1]
for all i, Regular Least Square (RLS) already satisfies
Assumption 2.3 with polyd = O(d), see e.g. Appendix
F of (Lykouris et al., 2019). We note that while we
focus on oracles with such guarantees, our algorithm
and analysis are modular and allow one to easily plug
in oracles with stronger or weaker guarantees.

3 Algorithms and Main Results

In this work, we focus on a Robust variant of Least-
Squares Value Iteration (LSVI)-style algorithms (Jin
et al., 2020c), which directly calls a robust least-square

oracle to estimate the Bellman operator B̂V̂h(s, a).
Optionally, it may also subtract a pessimistic bonus
Γh(s, a) during the Bellman update. A template of
such an algorithm is defined in Algorithm 1. In sec-
tion 3.2 and 3.3, we present two variants of the LSVI
algorithm designed for two different settings, depend-
ing on whether the data has full coverage over the
whole state-action space or not. However, before that,
we first present an algorithm-independent minimax
lower-bound that illustrates the hardness of the robust
learning problem in offline RL, in contrast to classic
results in statistical estimation and supervised learning.

3.1 Minimax Lower-bound

Theorem 3.1 (Minimax Lower bound). Under as-
sumptions 2.1 (linear MDP) and 2.2 (ε-contamination),
for any fixed data-collecting distribution ν, no algo-
rithm L : (S ×A×R×A)N → Π can find a better than
O(dHε)-optimal policy with probability more than 1/4
on all MDPs. Specifically,

min
L,ν

max
M,fc

SubOpt(π̂, π∗) = Ω (dHε) (3)
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where fc denotes an ε-contamination strategy that cor-
rupts the data based on the MDP M and clean data
D̃ and returns a contaminated dataset, and L denotes
an algorithm that takes the contaminated dataset and
return a policy π̂, i.e. π̂ = L(fc(M, D̃)).

The detailed proof is presented in appendix B, but the
high-level idea is simple. Consider the tabular MDP
setting which is a special case of linear MDP with
d = SA. For any data generating distribution ν, by the
pigeonhole principle, there must exists a least-sampled
(s, a) pair, for which ν(s, a) ≤ 1/SA. If the adversary
concentrate all its attack budget on this least sampled
(s, a) pair, it can perturb the empirical reward on this
(s, a) pair to be as much as r̂(s, a) = r(s, a) + SAε.
Further more, assume that there exists another (s∗, a∗)
such that r(s∗, a∗) = r(s, a)+SAε/2. Then, the learner
has no way to tell if truly r(s, a) > r(s∗, a∗) (i.e., the
learner believes what she observes and believes there is
no contamination) or if the data is contaminated and
in fact r(s, a) < r(s∗, a∗). Either could be true and
whichever alternative the learner chooses to believe, it
will suffer at least SAHε/2 optimality gap in one of
the two scenarios.

Remark 3.1 (dimension scaling). Theorem 3.1 says
that even if the algorithm has control over the data
collecting distribution ν (without knowingM a priori),
it can still do no better than Ω(dHε) in the worst-case,
which implies that robustness is fundamentally impossi-
ble in high-dimensional problems where d & 1/ε. This
is in sharp contrast to the classic results in the robust
statistics literature, where estimation errors are found
to not scale with the problem dimension, in settings
such as robust mean estimation (Diakonikolas et al.,
2016; Lai et al., 2016) and robust supervised learning
(Charikar et al., 2017; Diakonikolas et al., 2019). From
the construction we can see that the dimension scaling
appears fundamentally due to a multi-task learning
effect: the learner must perform SA separate reward
mean estimation problems for each (s, a) pair, while the
data is provided as a mixture for all these tasks. As a
result, the adversary can concentrate on one particular
task, raising the contamination level to effectively dε.

Remark 3.2 (Offline vs. Online RL). We note that
the construction in Theorem 3.1 remains valid even if
the adversary only contaminates the rewards, and if
the adversary is oblivious and perform the contami-
nation based only on the data generating distribution
ν rather than the instantiated dataset D̃. In con-
trast, the best-known lower-bound for robust online
RL is Ω(Hε) (Zhang et al., 2021). It remains unknown
whether Ω(Hε) is tight, as no algorithm yet can achieve
a matching upper-bound without additional informa-
tion. We will come back to this discussion in section
3.3.

In what follows, we show that the above lower-bound is
tight in both d and ε, by presenting two upper-bound
results nearly matching the lower-bound.

Algorithm 1 Robust Least-Square Value Iteration
(R-LSVI)

1: Input: Dataset D = {(si, ai, ri, s′i)}1:N ; pessimism
bonus Γh(s, a) ≥ 0, robust least-squares Oracle:
RLS(·).

2: Split the dataset randomly into H subset: Dh =
{(shi , ahi , rhi , s′hi )}1:(N/H), for h ∈ [H].

3: Initialization: Set V̂H+1(s)← 0.
4: for step h = H,H − 1, . . . , 1 do

5: Set ŵh ← RLS
({

(φ(shi , a
h
i ), yhi )

}
i∈Dh

)
, where

yhi = rhi + V̂h+1(s′hi ).

6: Set Q̂h(s, a) ← φ(s, a)>ŵh − Γh(s, a), clipped
within [0, H − h+ 1].

7: Set π̂h(a|s) ← arg maxa Q̂h(s, a) and V̂h(s) ←
maxa Q̂h(s, a).

8: Output: {π̂h}Hh=1.

3.2 Robust Learning with Data Coverage

To begin with, we study the simple setting where the
offline data has sufficient coverage over the whole state-
action distribution. This is often considered as a strong
assumption. However, results in this setting will estab-
lish meaningful comparison to the above lower-bound
and the no-coverage results later. In the context of
linear MDP, we say that a data generating distribution
has coverage if it satisfies the following assumption.

Assumption 3.1 (Uniform Coverage). Under assump-
tion 2.1, define Σν := Eν [φ(s, a)φ(s, a)>] as the covari-
ance matrix of ν. We say that the data generating
distribution ξ-covers the state-action space for ξ > 0,
if Σν � ξI i.e. the smallest eigenvalue of Σν is strictly
positive and at least ξ.

Under such an assumption, we show that the R-LSVI
without pessimism bonus can already be robust to data
contamination.

Theorem 3.2 (Robust Learning under ξ-Coverage).
Under assumption 2.1, 2.2 and 3.1, for any ξ, ε >
0, given a dataset of size N , Algorithm 1 with bonus
Γh(s, a) = 0 achieves

(4 )
SubOpt(π̂, π∗) ≤ Õ

(√
(σ +H)2H3poly(d)

ξ2N

+
(σ +H)H2

ξ
ε

)

with probability at least 1− δ.
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The proof of Theorem 3.2 follows readily from the stan-
dard analysis of approximated value iterations and rely
on the following classic result connecting the Bellman
error to the suboptimality of the learned policy, see e.g.
Section 2.3 of (Jiang, 2020).

Lemma 3.1 (Optimality gap of VI). Under assump-
tion 2.1, Algorithm 1 with Γh(s, a) = 0 satisfies

SubOpt(π̂, π∗) ≤ 2H max
s,a,h
|Q̂h(s, a)− (BhV̂h+1)(s, a)|

≤ 2H max
s,a,h
‖φ(s, a)‖2·‖ŵh − w∗h‖2 (5)

where w∗h := θ +
∫
S V̂h+1(s′)µh(s′)ds′ is the best linear

predictor.

The result then follows immediately using property
1 of the robust least-square oracle and the fact that
E[((r(s, a) + V̂ (s′)) − (BhV̂ )(s, a))2|s, a] ≤ (σ + H)2

(Lemma A.2).

Remark 3.3 (Data Splitting and tighter
d-dependency). The data splitting in step 2 of
Algorithm 1 is mainly for the sake of theoretical analy-
sis and is not required for practical implementations.
Nevertheless, it directly contributes to our tighter
bounds. Specifically, the data splitting makes V̂h+1,
which is learned based on Dh+1, independent from Dh,
at the cost of an additional H multiplicative factor. In
contrast, the typical covering argument used in online
RL will introduce another O(d1/2) multiplicative
factor, and naively applying it to the offline RL setting
will make the finally sample complexity scales as
O(d3/2), see e.g. Corollary 4.5 of (Jin et al., 2020c).
Our result above, when specialized to offline RL
without corruption (i.e., ε = 0), achieves the following
results.

Corollary 3.1 (Uncorrupted Learning under
ξ-Coverage). Under assumption 2.1 and 3.1, for any
ξ > 0, given a clean dataset of size N , with bonus
Γh(s, a) = 0 and ridge regression with regularizer
coefficient λ = 1 as the RLS solver, Algorithm 1
achieves with probability at least 1− δ

(6 )SubOpt(π̂, π∗) ≤ Õ
(
H3d

ξ
√
N

)
.

Remark 3.4 (Tolerable ε). Notice that Theorem 3.2
requires ε ≤ ξ to provide a non-vacuous bound. This is
because if ε > ξ, then similar to the lower-bound con-
struction in Theorem 3.1, the adversary can corrupt all
the data along the eigenvector direction corresponding
to the smallest eigenvalue, in which case the empically
estimated reward along that direction can be arbitrar-
ily far away from the true reward even with a robust
mean estimator, and thus the estimation error becomes
vacuous.

Remark 3.5 (Unimprovable gap). Notice in contrast
to classic RL results, Theorem 3.2 implies that in the
presence of data contamination, there exists an unim-
provable optimality gap (σ+H)H2ε/ξ for the proposed
algorithm, even if the learner has access to infinite data.
Also note that because ‖φ(s, a)‖≤ 1, ξ is at most 1/d.
This implies that asymptotically, V ∗ − V π̂ ≤ O(H3dε)
when ξ is on the order of 1/d, matching the lower-bound
upto H factors.

Remark 3.6 (Agnosticity to problem parameters). It
is worth noting that in theorem 3.2, the algorithm
does not require the knowledge of ε or ξ, and thus
works in the agnostic setting where these parameters
are not available to the learner (given that the robust
least-square oracle is agnostic). In other words, the
algorithm and the bound are adaptive to both ε and ξ.
This point will be revisited in the next section.

3.3 Robust Learning without Coverage

Next, we consider the harder setting where assumption
3.1 does not hold, as often in practice, the offline data
will not cover the whole state-action space. Instead,
we provide a much weaker sufficient condition under
which offline RL is possible.

Assumption 3.2 (relative condition number). For
any given comparator policy π̃, under assumption 2.1
and 2.2, define the relative condition number as

κ = sup
w

w>Σ̃w

w>Σνw
(7)

where Σ̃ denotes Σdπ̃ and we take the convention that
0
0 = 0. We assume that κ <∞.

The relative condition number is recently introduced
in the policy gradient literature (Agarwal et al., 2019;
Zhang et al., 2021). Intuitively, the relative condition
number measures the worst-case density ratio between
the occupancy distribution of comparator policy and
the data generating distribution. For example, in a

tabular MDP, κ = maxs,a
dπ̃(s,a)
ν(s,a) . Here, we show that

a finite relative condition number with respect to an
arbitrary comparator policy is already sufficient for
offline RL, for both clean and contaminated setting.

Without data coverage, we now rely on pessimism to
retain reasonable behavior. However, the challenge, in
this case, is to design a valid confidence bonus using
only the corrupted data. We now present our con-
structed pessimism bonus that allows Algorithm 1 to
handle ε-corruption, albeit requiring the knowledge of
ε.

Theorem 3.3 (Robust Learning without Coverage).
Under assumption 2.1, 2.2 and 3.2, with ε > 0, given
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any comparator policy π̃ with κ < ∞, define the ε-
robust empirical covariance as

Λh =
3

5

(
H

N

∑
i∈Dh

φ(shi , a
h
i )φ(shi , a

h
i )> + (ε+ λ) · I

)
,

(8)

λ = c′ · dH log(N/δ)/N

where Dh denotes the data for step h and c′ is an
absolute constant. Then, Algorithm 1 with pessimism
bonus

(9 )

Γh(s, a) =

(
(σ +H)

√
Hpoly(d)√
N

+ ((σ +H) + 2H
√
d)
√
ε

+
√
dλ

)√
c2(δ/H)‖φ(s, a)‖Λ−1

h

will with probability at least 1− δ achieve

(10 )
SubOpt(π̂, π̃) ≤ Õ

(
(σ +H)

√
H3κpoly(d)√
N

+ ((σ +H)H +H2
√
d)
√
dκε

)

Remark 3.7 (Arbitrary comparator policy). Notice
that in comparison to Theorem 4.2 of (Jin et al., 2020c),
Lemma 3.2 allows the comparator policy to be arbi-
trary, and the implication is profound. Specifically,
Lemma 3.2 indicates that a pessimism-style algorithm
always retains reasonable behavior, in the sense that,
given enough data, it will eventually find the best policy
among all the policies covered by the data generating
distribution, i.e. arg maxπ V

π(µ), s.t. κ(π) <∞. Sim-
ilar to the ξ-coverage, when specialized to standard
offline RL, our analysis provides a tighter bound.

Corollary 3.2 (Uncorrupted Learning without Cover-
age). Under assumption 2.1 and 3.2, given any com-
parator policy π̃ with κ < ∞, define the empirical
covariance as

Λh =
H

N

N/H∑
i=1

φ(shi , a
h
i )φ(shi , a

h
i )> + λ · I (11)

λ = c′ · dH log(N/δ)/N

where c′ is an absolute constant. Then, with pessimism
bonus

Γh(s, a) = H

(
√
d · λ+

√
Hd log(N/δλ)

N

)
·‖φ(s, a)‖Λ−1

h

and ridge regression with regularizer coefficient λ as the
RLS solver, Algorithm 1 will with probability at least
1− δ achieve

(12 )SubOpt(π̂, π̃) ≤ Õ

((
H2d+H2.5

√
d
)√dκ

N

)

We note that the leading term (first term) O(d3/2)
is directly due to the assumption that the linear
MDP parameter max(‖µ(S)‖, ‖θ‖) ≤

√
d. If instead

max(‖µ(S)‖, ‖θ‖) ≤ ρ for some ρ indepdent of d, then
the above bound will become linear in d. In contrast,
the covering-number style analysis will generate d3/2

regardless of the parameter norm, since its second term
will become O(d3/2) and dominate (as one needs to
perform a covering argument to cover the quadratic
penalty term Γh(s, a)).

The proof of Theorem 3.3 is technical but largely fol-
lows the analysis framework of pessimism-based offline
RL and consists of two main steps. The first step
establishes Γh(s, a) as a valid bonus by showing

|Q̂h(s, a)− (BhV̂h+1)(s, a)|≤ Γh(s, a), w.p. 1− δ/H.
(13)

The second step applies the following Lemma connect-
ingthe optimality gap with the expectation of Γh(s, a)
under visitation distribution of the comparator policy.

Lemma 3.2 (Suboptimality for Pessimistic Value Iter-
ation). Under assumption 2.1, and under the event E
that the Γh(s, a) satisfies the required property of bound-
ing the Bellman error, i.e. |Q̂h(s, a)−(BhV̂h+1)(s, a)|≤
Γh(s, a),∀h ∈ [H], then against any comparator policy
π̃, it achieves

SubOpt(π̂, π̃) ≤ 2

H∑
h=1

Edπ̃ [Γh(s, a)] (14)

We then further upper-bound the expectation through
the following inequality, which bounds the distribution
shift effect using the relative condition number κ:

Edπ̃
[√

φ(s, a)>Λ−1φ(s, a)

]
≤
√

5dκ (15)

The detailed proof can be found in Appendix C. Note
that the prior work (Jin et al., 2020c) only establishes
results in terms of the suboptimality comparing with
the optimal policy, and when specializes to linear MDPs,
they assume the offline data has global full coverage.
We replace these redundant assumptions with a single
assumption of partial coverage with respect to any com-
parator policy, in the form of a finite relative condition
number.
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Remark 3.8 (Novel bonus term). One of our main
algorithmic contributions is the new bonus term that
upper-bound the effect of data contamination on the
Bellman error. Ignoring ε-independent additive terms
and absolute constants, our bonus term has the form

H
√
ε ·
√
φ(s, a)>Λ−1φ(s, a). (16)

In comparison, below is the one used in (Lykouris et al.,
2019) for online corruption-robust RL:

Hε ·
√
φ(s, a)>Λ−2φ(s, a). (17)

In the tabular case, (17) evaluates to Hε/ν(s, a) and
(16) evaluates to H

√
ε/ν(s, a), and thus (17) is actually

tighter than (16) for ν(s, a) ≥ ε. However, in the linear
MDP case, the relation between the two is less obvious.
As we shall see, when offline distribution has good
coverage, i.e. Λ is well-conditioned, (17) appears to be
tighter. However, as the smallest eigenvalue of Λ goes
to zero, a.k.a. lack of coverage, (17) actually blows up
rapidly, whereas both (16) and the actual achievable
gap remain bounded.

We demonstrate these behaviors with a numerical sim-
ulation, shown in Figure 1. In the simulation, we
compare the size of three terms

maximum possible gap =

max
‖y‖∞≤2H,‖y‖0≤εN

φ(s, a)>Λ−1

(
1

N

N∑
i=1

φ(si, ai) · yi

)

bonus 1 = Hε ·
√
φ(s, a)>Λ−2φ(s, a)

bonus 2 = H
√
ε ·
√
φ(s, a)>Λ−1φ(s, a)

The maximum possible gap is defined as above since for
any (s, a) pair and in any step h, the bias introduced
to its Bellman update due to corruption takes the form
of

φ(s, a)>Λ−1

(
1

N

N∑
i=1

φi (ỹi − yi)

)
(18)

where ỹi = r̃i+V̂h+1(s̃′i) and yi = ri+V̂h+1(s′i), in which
r̃i and x̃′i are the clean reward and transitions. For the
sake of clarity, here we assume that the adversary only
contaminates the reward and transitions in a bounded
fashion while keeping the current (s, a)-pairs unchanged.
(18) can then be upper-bounded by (??), because there
are at most εN tuples on which r̃i 6= ri or s̃′i 6= s′i, and

for any such tuple (r̃i+V̂h+1(s̃′i))−(ri+V̂h+1(s′i)) ≤ 2H.

In the simulation, we set H = 1 to ignore the scal-
ing on time horizon and let λ = 1; We let both the
test data φ(s, a) and the training data φ(si, ai) to be
sampled from a truncated standard Gaussian distri-
bution in R3, denoted by ν, with mean 0, and covari-
ance eigenvalues 1, 1, λmin. We set the training data

Figure 1: bonus size simulation

size set to N = 106 and contamination level set to
ε = 0.01. The x-axis tracks − log(λmin), while the y-
axis tracks Es,a∼νbonus(s, a), with expectation being
approximated by 1000 test samples from ν. It can be
seen that bonus 1 starts off closely upper-bounding
the maximum possible gap when the data has good
coverage, but increases rapidly as λmin decreases. Note
that for a fixed N , bonus 1 will eventually plateau at
HNε/λ, but this term scales with N , so the error blows
up as the number of samples grows, which certainly is
not desirable. Bonus 2, on the other hand, is not as
tight as bonus 1 when there is good data coverage, but
remains intact regardless of the value of λmin, which
is essential for the more challenging setting with poor
data coverage.

This new bonus term can be of independent interest in
other robust RL contexts. For example, in the online
corruption-robust RL problem, as a result of using
the looser bonus term (16), the algorithm in (Lykouris
et al., 2019) can only handle ε = T−3/4 amount of
corruptions in the linear MDP setting, while being
able to handle ε = T−1/2 amount of corruptions in
the tabular setting, due to the tabular bonus being
tighter. Our bonus term can be directly plugged into
their algorithm, allowing it to handle up to ε = T−1/2

amount of corruption even in the linear MDP setting,
achieving an immediate improvement over previous
results.2

Note that our algorithm and theorem are adaptive to
the unknown relative coverage κ, but is not adaptive
to the level of contamination ε (i.e., algorithm requires
knowing ε or a tight upper bound of ε). One may ask
whether there exists an agnostic result, similar to Theo-
rem 3.2, where an algorithm can be adaptive simultane-
ously to unknown values of ε and coverage parameter κ.
Our last result shows that this is unfortunately not pos-

2Though our bound improve their result, the tolerable
corruption amount is still sublinear, which is due to the
multi-layer scheduling procedure used in their algorithm.
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sible without full data coverage. In particular, we show
that no algorithm can achieve a best-of-both-worlds
guarantee in both clean and ε-corrupted environments.
More specifically, in this setting, κ is still unknown to
the learner, and the adversary either corrupt ε amount
of tuples (ε is known) or does not corrupt at all—but
the learner does not know which situation it is.

Theorem 3.4 (Agnostic learning is impossible with-
out full coverage). Under assumption 2.1 and 3.2,
for any algorithm L : (S × A × R × A)N → Π
that achieves diminishing suboptimality in clean en-
vironment, i.e., for any clean dataset D̃ it achieves
SubOpt(L(D̃)) = g(N) for some positive function g
such that limN→∞ g(N) = 0, we have that for any
ε ∈ (0, 1/2], there exists an MDP M† such that with
probability at least 1/4, maxfc SubOpt(π̂, π̃) ≥ 1/2.

Intuitively, the logic behind this result is that to achieve
vanishing errors in the clean environment, the learner
has no choice but to trust all data as clean. However, it
is also possible that the same dataset could be generated
under some adversarial corruption from another MDP
with a very different optimal policy—thus the learner
cannot be robust to corruption under that MDP.

Specifically, consider a 2-arm bandit problem. The
learner observes a dataset of N data points of arm-
reward pairs, of which p fraction is arm a1 and (1− p)
fraction is arm a2. For simplicity, we assume that N
is large enough such that the empirical distribution
converges to the underlying sampling distribution. As-
sume further that the average reward observed for a1

is r̂1 = 1
2 + ε

2p , for some ε ≤ p, and the average reward

observed for a2 is 1
2 . Given such a dataset, two data

generating processes can generate such a dataset with
equal likelihood and thus indistinguishable based only
on the data:

1. There is no contamination. The MDP has a re-
ward setting where a1 indeed has reward r1 =
Bernoulli( 1

2 + ε
2p ) and a2 has r2 = Bernoulli( 1

2 ).

Since there is no corruption, κ = 1/p in this MDP.

2. The data is ε-corrupted. In particular, in this MDP,
the actual reward of a1 is r1 = Bernoulli( 1

2 −
ε
2p ),

and the adversary is able to increase empirical mean
by ε/p via changing εN number of data points from
(a1, 0) to (a1, 1). One can show that this can be
achieved by the adversary with probability at least
1/2 (which is where the probability 1/2 in the theo-
rem statement comes from). In this MDP, we have
κ = 1/(1− p).

Now, since the algorithm achieves a diminishing sub-
optimal gap in all clean environments, it must return
a1 with high probability given such a dataset, due to

the possibility of the learner facing the data generation
process 1. However, committing to action a1 will incur
ε/2p suboptimal gap in the second MDP with the data
generation process 2. On the other hand, note that
the relative condition number in the second MDP is
bounded, i.e. 1

1−p ≤ 2 for ε ≤ p ≤ 1/2. Therefore, for

any ε ∈ (0, 1/2], one can construct such an instance
with p = ε, such that the relative condition number for
the second MDP is 1

1−p ≤ 2 and the relative condition

number for the first MDP is 1
ε <∞, while the learner

would always suffer ε/2p = 1/2 suboptimality gap in
the second MDP if she had to commit to a1 under the
first MDP where data is clean.

Remark 3.9 (Offline vs. Online RL: Agnostic Learn-
ing). Theorem 3.4 shows that no algorithm can simul-
taneously achieve good performance in both clean and
corrupted environments without knowing which one it
is currently experiencing. This is in sharp contrast to
the recent result in (Zhang et al., 2021), which shows
that in the online RL setting, natural policy gradient
(NPG) algorithm can find an O(

√
κε)-optimal policy

for any unknown contamination level ε with the help
of an exploration policy with finite relative condition
number. Without such a helper policy, however, ro-
bust RL is much harder, and the best-known result
(Lykouris et al., 2019) can only handle ε ≤ O(1/

√
T )

corruption, but still does not require the knowledge
of ε. Intuitively, such adaptivity is lost in the offline
setting, because the learner is no longer able to evaluate
the current policy by collecting on-policy data. In the
online setting, the construction in Theorem 3.4 will
not work. Our construction heavily relies on the fact
that ν has ε probability of sampling a1, which allows
adversary in the second MDP to concentrate its cor-
ruption budget all on a1. In the online setting, one can
simply uniform randomly try a1 and a2 to significantly
increase the probability of sampling a1 which in turn
makes the estimation of r1 accurate (up to O(ε) in the
corrupted data generation process).

4 Discussions and Conclusion

In this paper, we studied corruption-robust RL in the
offline setting. We provided an information-theoretical
lower bound and two near-matching upper-bounds for
cases with or without full data coverage, respectively.
We also establish an impossibility result, showing that
an agnostic algorithm is impossible in corruption-robust
offline RL and distincting the offline setting from the
online counterpart. Finally, when specialized to the
uncorrupted setting, our algorithm and analysis also
obtained tighter bounds than prior works.
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Appendices

A Basics

Lemma A.1. ‖w∗h‖≤ H
√
d for all h.

Proof. By definition, we have

w∗h = θ +

∫
S
V̂h+1(s′)µh(s′)ds′ (19)

and thus

‖w∗h‖ ≤ ‖θ‖+‖
∫
S
V̂h+1(s′)µh(s′)ds′‖ (20)

≤ ‖θ‖+
∫
S
‖V̂h+1(s′)µh(s′)‖ds′ (21)

≤
√
d+ (H − h+ 1)

√
d (22)

≤ H
√
d. (23)

Lemma A.2. Note that E[[(r(s, a) + V̂ (s′))− (BhV̂ )(s, a)]2|s, a] ≤ γ2 = (σ +H/2)
2

Proof.

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y ) ≤ V ar(X) + V ar(Y ) + 2
√
V ar(X)V ar(Y )

Because 0 ≤ V̂ (s′) ≤ H,

E[(V̂ (s′)− E[V̂ (s′)|s, a])2|s, a] = E[V̂ (s′)2|s, a]− E[V̂ (s′)|s, a]2 (24)

≤HE[V̂ (s′)|s, a]− E[V̂ (s′)|s, a]2 ≤ H2

4
. (25)

E[[(r(s, a) + V̂ (s′))− (BhV̂ )(s, a)]2|s, a] (26)

=E[[(r(s, a) + V̂ (s′))− E[r(s, a) + V̂ (s′)|s, a]]2|s, a] (27)

=E[(r(s, a)− E[r(s, a)|s, a])2|s, a] + E[(V̂ (s′)− E[V̂ (s′)|s, a])2|s, a] (28)

+ 2E[(r(s, a)− E[r(s, a)|s, a])(V̂ (s′)− E[V̂ (s′)|s, a])|s, a] (29)

≤E[(r(s, a)− E[r(s, a)|s, a])2|s, a] + E[(V̂ (s′)− E[V̂ (s′)|s, a])2|s, a] (30)

+ 2

√
E[(r(s, a)− E[r(s, a)|s, a])2|s, a]E[(V̂ (s′)− E[V̂ (s′)|s, a])2|s, a] (By Cauchy’s Ineq) (31)

=V ar(r(s, a) | (s, a)) + V ar(V̂ (s′) | (s, a)) + 2

√
V ar(r(s, a) | (s, a))V ar(V̂ (s′) | (s, a)) (32)

=

(√
V ar(r(s, a) | (s, a)) +

√
V ar(V̂ (s′) | (s, a))

)2

≤ (σ +H/2)
2

(33)

B Proof of the Minimax Lower-bound

Proof of Theorem 3.1. Given any dimension d, time horizon H, consider a tabular MDP with action space

size A > 2 and state space size S ≤
(
A
2

)H/2
s.t. SA = d. Consider a “tree” with self-loops, which has S nodes and
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depth dlogA/2
(
S
(
A
2 − 1

)
+ 1
)
e. There is 1 node at the first level, A2 nodes at the second level,

(
A
2

)2
nodes at the

third level, . . . ,
(
A
2

)dlogA/2(S(A2 −1)+1)e−2
nodes at the second to last level. The rest nodes are all at the last level.

Define the MDP induced by this graph, where each state corresponds to a node, and each action corresponds to
an edge. The agent always starts from the first level. For each state at the first dlogA/2

(
S
(
A
2 − 1

)
+ 1
)
e − 2

levels, there are A/2 actions that lead to child nodes, and the rest leads back to that state, i.e. self-loops. The leaf
states are absorbing state, i.e. all actions lead to self-loops. Denote this transition structure as P . Let’s consider
two MDPs with the same transition structure and different reward function, i.e. M = (P,R), M ′ = (P,R′).

For MDP M , define R(s∗, a∗) = Bernoulli(SAε/2) on one particular (s∗, a∗) pair, where s∗ is a leaf state at the
last level, a∗ is a self-loop action. Every other (s, a) pair receive reward 0. Let (s′, a′) = arg min(s,a) ν(s, a) be
the state-action pair appears least often in the data collecting distribution. For MCP M ′, define R′(s∗, a∗) =
Bernoulli(SAε/2), R′(s′, a′) = Bernoulli(SAε) and 0 everywhere else. Then, it can be easily verified that: on

M , the expected cumulative reward of the optimal policy is
(
H − dlogA/2

(
S
(
A
2 − 1

)
+ 1
)
e
)
SAε/2; on M ′, the

expected cumulative reward of the optimal policy is at least
(
H − dlogA/2

(
S
(
A
2 − 1

)
+ 1
)
e
)
SAε; no policy can

be simultaneously better than
(
H − dlogA/2

(
S
(
A
2 − 1

)
+ 1
)
e
)
SAε/4-optimal on both M and M ′. Note that

because S ≤
(
A
2

)H/2
,

(
H − dlogA/2

(
S

(
A

2
− 1

)
+ 1

)
e
)
SAε/4 = Ω(HSAε). (34)

With probability at least 1/2, we have N(s′, a′) ≤ Tν(s′, a′) ≤ T/SA by the pigeonhole principle. Conditioning
on N(s′, a′) ≤ T/SA, with probability at least 1/2, the amount of positive reward r(s′, a′) will not exceed
SAεN(s′, a′) ≤ εT , and thus an ε-contamination adversary can perturb all the positive rewards on (s′, a′) to
0. In other words, with probability 1/4, the learner will observe a dataset whose likelihood under M and
(M ′ + ε-contamination) are exactly the same, and thus the learner must suffer at least Ω(HSAε) regret on one of
the MDPs.

C Proof of Upper-bounds

Proof of Lemma 3.2. Applying Lemma F.2 with π = π̂, π′ = π̃, and {Q̂h}Hh=1 being the Q-functions constructed
by the meta-algorithm, we have

V̂1(s)− V π̃1 (s) =

H∑
h=1

Eπ̃
[
〈Q̂h(sh, ·), π̂h(·|sh)− π̃h(·|sh)〉A|s1 = s

]
+

H∑
h=1

Eπ̃
[
Q̂h(sh, ah)− (BhV̂h+1)(sh, ah)|s1 = s

]
(35)

Similarly, applying Lemma F.2 with π = π′ = π̂, we have

V̂1(s)− V π̂1 (s) =

H∑
h=1

Eπ̂
[
Q̂h(sh, ah)− (BhV̂h+1)(sh, ah)|s1 = s

]
(36)
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Then, we have

SubOpt(π̂, π̃) =
(
V π̂1 (µ)− V̂1(µ)

)
+
(
V̂1(µ)− V π̂1 (µ)

)
(37)

=−
H∑
h=1

Eπ̃
[
(BhV̂h+1)− Q̂h

]
+

H∑
h=1

Eπ̃
[
(BhV̂h+1)− Q̂h

]
(38)

+

H∑
h=1

Eπ̃
[
〈Q̂h(sh, ·), π̃h(·|sh)− π̂h(·|sh)〉A

]
(39)

≤0 + 2

H∑
h=1

Eπ̃[Γh(s, a)] + 0 (40)

=2

H∑
h=1

Eπ̃[Γh(s, a)] (41)

as needed.

Proof of Theorem 3.3. To simplify the notation, below we use M for the number of data points per time step,
i.e. M := N/H. We first show that

|Q̂h(s, a)− (BhV̂h+1)(s, a)|≤ Γ(s, a). (42)

The robust least-square oracle guarantees

Eν
(
‖x>(ŵ − w∗)‖22

)
≤ c2(δ) ·

(
γ2poly(d)

M
+ γ2ε

)
(43)

=⇒ ‖ŵh − w∗h‖2Σ ≤ c2(δ) ·
(
γ2poly(d)

M
+ γ2ε

)
(44)

=⇒ ‖ŵh − w∗h‖2Σ+(2ε+λ)I ≤ c2(δ) ·
(
γ2poly(d)

M
+ γ2ε+ (2ε+ λ)H2d

)
(45)

Then,

|Q̂h(s, a)− (BhV̂h+1)(s, a)| = |φ(s, a)(ŵh − w∗h)| (46)

≤ ‖ŵh − w∗h‖(Σ+(2ε+λ)I)‖φ(s, a)‖(Σ+(2ε+λ)I)−1 (47)

≤

√
c2(δ) ·

(
γ2poly(d)

M
+ γ2ε+ (2ε+ λ)H2d

)
‖φ(s, a)‖(Σ+(2ε+λ)I)−1 (48)

≤
√
c2(δ) ·

(
γpoly(d)√

M
+ (γ + 2H

√
d)
√
ε+H

√
dλ)

)
‖φ(s, a)‖Λ−1 (49)

where the last step are due to W ≤ H
√
d and

Λ =
3

5

(
1

M

M∑
i=1

φiφ
>
i + (ε+ λ) · I

)
(50)

�3

5

(
1

M

M∑
i=1

φ̃iφ̃
>
i + (2ε+ λ) · I

)
(51)

� (Σ + (2ε+ λ) · I) (52)

where φ̃ denotes the clean data and the last step applies Lemma F.3 because M(2ε+ λ) ≥ Ω(d log(M/δ)) due to
the definition of λ and ε ≥ 0.
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Next, we show that Algorithm 1 achieves the desired optimality gap. By Lemma 3.2, we have

SubOpt(π̂) ≤ 2HEπ∗ [Γ(s, a)] (53)

≤
√
c2(δ) ·

(
γHpoly(d)√

N
+ (Hγ + 2H2

√
d)
√
ε+H2

√
dλ

)
Eπ∗ [‖φ(s, a)‖Λ−1 ] (54)

Focusing on the last term, applying Lemma F.3 again, we have

Ed∗ [‖φ(s, a)‖Λ−1 ] ≤Ed∗ [‖φ(s, a)‖( 1
5 (Σ+λI))−1 ] (55)

=Ed∗
[√

φ>(
1

5
(Σ + λI))−1φ

]
(56)

≤
√
Ed∗ [φ>(

1

5
(Σ + λI))−1φ] (57)

≤

√
tr

(
Σ∗(

1

5
(Σ + λI))−1

)
(58)

≤

√
κtr

(
Σ(

1

5
(Σ + λI))−1

)
(59)

≤

√√√√5κ

d∑
i=1

σi
σi + λ

(60)

≤
√

5dκ (61)

Combining the two terms give the desired results.

D Proof of uncorrupted learning results

In this section, we prove the conclusion in Corollary 3.1 and 3.2. The proof follows closely the classic analysis of
Least Squared Value Iteration (LSVI) methods with the only difference being the data splitting, which allows us
to ditch the covering argument and obtain a tighter bound. Such a trick is only possible in the offline setting
where the data are assumed to be i.i.d. For completeness, we specify the uncorrupted algorithm in Alg. 2.

Algorithm 2 Uncorrupted Least-Square Value Iteration (LSVI)

1: Input: Dataset D = {(si, ai, ri, s′i)}1:N ; pessimism bonus Γh(s, a) ≥ 0, λ > 0.
2: Split the dataset randomly into H subset: Dh = {(shi , ahi , rhi , s′hi )}1:(N/H), for h ∈ [H].

3: Initialization: Set V̂H+1(s)← 0.
4: for step h = H,H − 1, . . . , 1 do

5: Set Λh ← H
M

∑N/H
i=1 φ(shi , a

h
i )φ(shi , a

h
i )> + λ · I.

6: Set ŵh ← Λ−1
h (HN

∑N/H
i=1 φ(shi , a

h
i ) · (rhi + V̂h+1(sh+1

i ))).

7: Set Q̂h(s, a)← φ(s, a)>ŵh − Γh(s, a), clipped within [0, H − h+ 1].
8: Set π̂h(a|s)← arg maxa Q̂h(s, a) and V̂h(s)← maxa Q̂h(s, a).
9: Output: {π̂h}Hh=1.

We first prove the following lemma:

Lemma D.1 (Bound on the Bellman Error). Under assumption 2.1, given a dataset of size N , Algorithm 1
achieves

|(BhV̂h+1)(s, a)− Q̂h(s, a)|≤ H

(
√
d · λ+

√
Hd log(N/δλ)

N

)
·
√
φ(x, a)>Λ−1

h φ(x, a)

for all (s, a, h) ∈ S ×A× [H], with probability at least 1− δ.
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Proof. We start by applying the following decomposition

(BhV̂h+1)(s, a)− Q̂h(s, a) (62)

=(BhV̂h+1)(s, a)− (B̂hV̂h+1)(s, a) (63)

=φ(s, a)>wh − φ(s, a)>Λ−1
h

H
N

N/H∑
i=1

φ(si, ai) · (BhV̂h+1)(si, ai)


︸ ︷︷ ︸

(i)

− (64)

φ(s, a)>Λ−1
h

H
N

N/H∑
i=1

φ(si, ai) ·
(
ri + V̂h+1(s′i)− (BhV̂h+1)(si, ai)

)
︸ ︷︷ ︸

(ii)

(65)

Therefore, by triangle inequality we have

|(BhV̂h+1)(s, a)− Q̂h(s, a)|≤ |(i)|+|(ii)| (66)

Then, we bound the two terms separately:

|(i)| =

∣∣∣∣∣∣φ(s, a)>wh − φ(s, a)>Λ−1
h

H
N

N/H∑
i=1

φ(si, ai) · φ(si, ai)
>wh

∣∣∣∣∣∣
=
∣∣φ(s, a)>wh − φ(s, a)>Λ−1

h (Λh − λ · I)wh| = λ · |φ(s, a)>Λ−1
h wh

∣∣
≤ λ · ‖wh‖Λ−1

h
·‖φ(s, a)‖Λ−1

h
≤ H
√
d · λ ·

√
φ(s, a)>Λ−1

h φ(s, a).

For the second term, define
εhi (V ) = rhi + V (sh′i )− (BhV )(shi , a

h
i ) (67)

Then, we have

|(ii)| =

∣∣∣∣∣∣φ(s, a)>Λ−1
h

H
N

N/H∑
i=1

φ(si, ai) · εhi (V̂h+1)

∣∣∣∣∣∣
≤
∥∥∥H
N

N/H∑
i=1

φ(si, ai) · εhi (V̂h+1)
∥∥∥

Λ−1
h︸ ︷︷ ︸

(iii)

·
√
φ(x, a)>Λ−1

h φ(x, a). (68)

From here, because of our data splitting, V̂h+1 is independent from Dh, and thus we can bypass the covering
argument and directly apply matrix concentrations. In particular, by applying Lemma F.1, we have that with
probability at least 1− δ

(iii) ≤ H
√
Hd log(1 +N/Hλ) + 2H log(1/δ)

N
(69)

Combining the two terms gives

|(BhV̂h+1)(s, a)− Q̂h(s, a)|≤ H

(
√
d · λ+

√
Hd log(N/δλ)

N

)
·
√
φ(x, a)>Λ−1

h φ(x, a) (70)

Now, given Lemma D.1, applying Lemma 3.2, we have

SubOpt(π̂, π̃) ≤ 2

H∑
h=1

Edπ̃ [Γh(s, a)] ≤ 2H2

(
√
d · λ+

√
Hd log(N/δλ)

N

)
· Edπ̃ [

√
φ(x, a)>Λ−1

h φ(x, a)] (71)
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The last step would be to bound Edπ̃ [
√
φ(x, a)>Λ−1

h φ(x, a)], similar to the last section. In particular, applying

Lemma F.3, we have

Edπ̃
[√

φ(x, a)>Λ−1
h φ(x, a)

]
≤Edπ̃

[√
3φ(x, a)>(Σ + λI)φ(x, a)

]
(72)

≤
√

3Edπ̃ [φ(x, a)>(Σ + λ · I)φ(x, a)] (73)

≤
√

3dκ (74)

where step 72 requires λ ≥ HΩ(d log(N/δ))/N . Thus,

SubOpt(π̂, π̃) ≤2H2
(√

d · λ+
√
Hd log(N/δλ)

)√3dκ

N
(75)

≤Õ

(
H2
(
d
√

log(N/δ) +
√
Hd log(N/(dδ))

)√3dκ

N

)
(76)

E Lower-bound on best-of-both-world results

Proof of Theorem 3.4. Consider two instances of the offline RL problem, with two MDPs, M and M ′, both
of which are actually simple two-arm bandit problems, along with their data generating distribution ν and ν′,
defined below.

1. Instance 1: Bandit M has r1 = Bernoulli( 1
2 + ε

2p ) and r2 = Bernoulli( 1
2 ). The data generating distribution is

ν(a1) = p and ν(a2) = 1− p. The relative condition number is 1/p.

2. Instance 2: Bandit M has r1 = Bernoulli( 1
2 −

ε
2p ) and r2 = Bernoulli( 1

2 ). The data generating distribution is

ν(a1) = p and ν(a2) = 1− p, same as instance 1. The relative condition number is 1/(1− p).

Let D and D′ be i.i.d. datasets of size N generated by instances 1 and 2, respectively, generated by the following
coupling process. First, the actions are sampled from ν and shared across instances, e.g. ND(a1) = ND′(a1)
and ND(a2) = ND′(a2). Then, the rewards of a2 are sampled from Bernoulli( 1

2 ) and shared across tasks, e.g.
ND(a2, 0) = ND′(a2, 0) and ND(a2, 1) = ND′(a2, 1).

Finally, let Xi, Yi be Bernoulli random variables s.t. Xi =

{
0 U ≤ 1

2 −
ε
2p

1 o.w.
, Yi =

{
0 U ≤ 1

2 + ε
2p

1 o.w.
, where

U is picked uniformly random in [0, 1]. Then (Xi, Yi) is a coupling with law: P ((Xi, Yi) = (0, 0)) = 1
2 −

ε
2p ,

P ((Xi, Yi) = (1, 0)) = 0, P ((Xi, Yi) = (0, 1)) = ε
2p , P ((Xi, Yi) = (s3, s3)) = 1

2 −
ε
2p , Xi and Yi can be thought as

the outcome of Bernoulli( 1
2 + ε

2p ), Bernoulli( 1
2 + ε

2p ) respectively. Then, let the rewards of a1 of the two instances
be generated by Yi and Xi respectively. We then have

P (

N(a1)∑
i=1

1 [Xi 6= Yi]) ≥ P (N(a1) ≤ pN) · P (

pN∑
i=1

1 [Xi 6= Yi]) ≥
1

2
· 1

2
=

1

4
(77)

In other words, with probability at least 1
4 , instance 1 and 2 are indistinguishable under ε-contamination, in

particular the adversary can replace at most εN of (a1, 0) with (a1, 1) in D′ to replicate D. Therefore, instance 1
and (instance 2 + ε-contamination) are with probability at least 1/4 indistinguishable. Now, if an algorithm
wants to achieve best of both world guarantee, it must return a1 as the optimal arm with high probability when
observing a dataset generated as above, in which case it will suffer a suboptimality of ε

2p if the data is generated

by (instance 2 + ε-contamination). As p ≥ ε ≥ 0 goes to 0, this gap blows up, while the relative condition number
1/(1− p) remains bounded, thus contradiction.
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F Technical Lemmas

Lemma F.1 (Concentration of Self-Normalized Processes (Abbasi-Yadkori et al., 2011)). Let {εt}∞t=1 be a
real-valued stochastic process that is adaptive to a filtration {Ft}∞t=0. That is, εt is Ft-measurable for all t ≥ 1.
Moreover, we assume that, for any t ≥ 1, conditioning on Ft−1, εt is a zero-mean and σ-subGaussian random
variable such that

E[εt|Ft−1] = 0 and E[exp(λεt)|Ft−1] ≤ exp(λ2σ2/2), ∀λ ∈ R. (78)

Besides, let {φt}∞t=1 be an Rd-valued stochastic process such that φt is Ft−1-measurable for all t ≥ 1. Let
M0 ∈ Rd×d be a deterministic and positive-definite matrix, and we define Mt = M0 +

∑t
s=1 φsφ

>
s for all t ≥ 1.

Then for any δ > 0, with probability at least 1− δ, we have for all t ≥ 1 that

∥∥∥ t∑
s=1

φs · εs
∥∥∥2

M−1
t

≤ 2σ2 · log

(
det(Mt)

1/2 det(M0)−1/2

δ

)
.

Lemma F.2 (Extended Value Difference (Cai et al., 2020)). Let π = {πh}Hh=1 and π′ = {π′h}Hh=1 be two arbitrary

policies and let {Q̂h}Hh=1 be any given Q-functions. For any h ∈ [H], we define a value function V̂h:S → R by

letting V̂h(x) = 〈Q̂h(x, ·), πh(·|x)〉A for all s ∈ S. Then for all s ∈ S, we have

V̂1(s)− V π
′

1 (s) =

H∑
h=1

Eπ′
[
〈Q̂h(sh, ·), πh(·|sh)− π′h(·|sh)〉A|s1 = s

]
(79)

+

H∑
h=1

Eπ′
[
Q̂h(sh, ah)− (BhV̂h+1)(sh, ah)|s1 = s

]
, (80)

where the expectation Eπ′ is taken with respect to the trajectory generated by π′, and Bh is the Bellman operator.

Lemma F.3 (Concentration of Covariances (Zanette et al., 2021)). Let {φi}1:N ⊂ Rd be i.i.d. samples from an
underlying bounded distribution ν, with ‖φi‖i≤ 1 and covariance Σ. Define

Λ =

N∑
i=1

φiφ
>
i + λ · I (81)

for some λ ≥ Ω(d log(N/δ)). Then, we have that with probability at least (1− δ),

1

3
(NΣ + λI) � Λ � 5

3
(NΣ + λI) (82)

Proof. See (Zanette et al., 2021) Lemma 39 for a detailed proof.


