Game Redesign in No-regret Game Playing

Yuzhe Ma, Young Wu, Xiaojin (Jerry) Zhu

Motivation

- Many real-world problems are intrinsically multi-agent games
 - Rock-Paper-Scissors
 - Gambling
 - Decision making in economic or societal fields.

- Players are selfish: Nash Equilibrium might lead to suboptimal global objective.
- Shape the behavior (selected actions) of the players.

Mechanism Design

- Designer is the rule maker
 - Designer may not have full control over the game

- Assume agents are rational players
 - In case of multiple NE, which NE is adopted by rational players

Game Redesign

- The original loss function is $\ell^o(a) = (\ell_1^o(a), \dots, \ell_M^o(a)), \ell_i^o(a) \in [L, U], \forall i$
- Players apply no-regret learning algorithms (e.g., EXP3.P) to play the game T rounds
- In round t = 1, ..., T: Players take actions $a^t = (a_1^t, ..., a_M^t)$ Original loss is $\ell^o(a^t)$ Designer changes the loss to $\ell(a^t)$ Player *i* observes loss $\ell_i(a^t)$ instead of $\ell_i^o(a^t)$ Designer incurs redesign cost $C(\ell^o, \ell, a^t)$ (e.g., $||\ell^o(a^t) - \ell(a^t)||_1$)

Game Redesign Goal

• Force all players to take a target action profile a^{\dagger} as often as possible

$$\sum_{t=1}^T \mathbb{1}\{a^t = a^\dagger\}$$

• Small cumulative redesign cost

$$\sum_{t=1}^{T} C(\ell^o, \ell, a^t)$$

Interior Design

Assumption:
$$\ell_i^o(a^{\dagger}) \in [L + \rho, U - \rho]$$
 for some $\rho \in (0, \frac{U-L}{2})$

Redesign strategy:

$$\forall i, a, \ell_i(a) = \begin{cases} \ell_i^o\left(a^{\dagger}\right) - \left(1 - \frac{d(a)}{M}\right)\rho & \text{if } a_i = a_i^{\dagger}, \\ \ell_i^o\left(a^{\dagger}\right) + \frac{d(a)}{M}\rho & \text{if } a_i \neq a_i^{\dagger} \end{cases}$$

where $d(a) = \sum_{j=1}^{M} 1\{a_j = a_j^{\dagger}\}$

Key Ideas Behind Our Redesign

$$\forall i, a, \ell_i(a) = \begin{cases} \ell_i^o\left(a^{\dagger}\right) - \left(1 - \frac{d(a)}{M}\right)\rho & \text{ if } a_i = a_i^{\dagger}, \\ \ell_i^o\left(a^{\dagger}\right) + \frac{d(a)}{M}\rho & \text{ if } a_i \neq a_i^{\dagger} \end{cases}$$

(1). For player *i*, $\ell\left(a_{i}^{\dagger}, a_{-i}\right) = \ell(a_{i}, a_{-i}) - \left(1 - \frac{1}{M}\right)\rho$ (induced regret) (2). $\ell^{o}\left(a^{\dagger}\right) = \ell\left(a^{\dagger}\right)$ (no design cost when target is selected)

The designer can force all players to follow a target action profile in almost every but $O(T^{\alpha})$ ($\alpha < 1$) rounds while incurring $O(T^{\alpha})$ redesign cost.

Boundary Design

Assumption:
$$\exists i, \ell_i^o(a^{\dagger}) \in \{L, U\}$$

The designer can force all players to follow a target action profile in almost every but $O\left(T^{\frac{1+\alpha}{2}}\right)$ ($\alpha < 1$) rounds while incurring $O\left(T^{\frac{1+\alpha}{2}}\right)$ redesign cost.

The Tragedy of Commons

- 2 farmers, each can farm 0 to 15 sheep
- The price of a sheep is $\sqrt{30 (a_1 + a_2)}$
- Payoff of farmer 1 is $a_1 \times \sqrt{30 (a_1 + a_2)}$ (similar for farmer 2)

Nash Equilibrium: $a^* = (12, 12)$

- Social welfare: $(a_1+a_2) \times \sqrt{30 (a_1 + a_2)}$ maximized at $a_1 + a_2 = 20$
- Social equality: $a_1 = a_2 = 10$
- Designer goal: $a^{\dagger} = (10, 10)$
- Redesign forces a^{\dagger} in 98% of rounds when $T = 10^7$.
- The average design cost in each round is 0.5 (loss range is $[-15\sqrt{15}, 0]$)

Thanks!

Contact: ma234@wisc.edu