Game Redesign in No-regret Game Playing

Yuzhe Ma, Young Wu, Xiaojin (Jerry) Zhu

UNIVERSITY OF WISCONSIN-MADISON

Motivation

- Many real-world problems are intrinsically multi-agent games
- Rock-Paper-Scissors
- Gambling
- Decision making in economic or societal fields.

- Players are selfish: Nash Equilibrium might lead to suboptimal global objective.
- Shape the behavior (selected actions) of the players.

Mechanism Design

- Designer is the rule maker
- Designer may not have full control over the game
- Assume agents are rational players
- In case of multiple NE, which NE is adopted by rational players

Game Redesign

- The original loss function is $\ell^{o}(a)=\left(\ell_{1}^{o}(a), \ldots, \ell_{M}^{o}(a)\right), \ell_{i}^{o}(a) \in[L, U], \forall i$
- Players apply no-regret learning algorithms (e.g., EXP3.P) to play the game T rounds
- In round $t=1, \ldots, T$:

Players take actions $a^{t}=\left(a_{1}^{t}, \ldots, a_{M}^{t}\right)$
Original loss is $\ell^{o}\left(a^{t}\right)$
Designer changes the loss to $\ell\left(a^{t}\right)$
Player i observes loss $\ell_{i}\left(a^{t}\right)$ instead of $\ell_{i}^{o}\left(a^{t}\right)$
Designer incurs redesign cost $C\left(\ell^{o}, \ell, a^{t}\right)\left(\right.$ e.g., $\left.\left\|\ell^{o}\left(a^{t}\right)-\ell\left(a^{t}\right)\right\|_{1}\right)$

Game Redesign Goal

- Force all players to take a target action profile a^{\dagger} as often as possible

$$
\sum_{t=1}^{T} 1\left\{a^{t}=a^{\dagger}\right\}
$$

- Small cumulative redesign cost

$$
\sum_{t=1}^{T} C\left(\ell^{o}, \ell, a^{t}\right)
$$

Interior Design

Assumption: $\ell_{i}^{o}\left(a^{\dagger}\right) \in[L+\rho, U-\rho]$ for some $\rho \in\left(0, \frac{U-L}{2}\right)$
Redesign strategy:

$$
\forall i, a, \ell_{i}(a)= \begin{cases}\ell_{i}^{o}\left(a^{\dagger}\right)-\left(1-\frac{d(a)}{M}\right) \rho & \text { if } a_{i}=a_{i}^{\dagger} \\ \ell_{i}^{o}\left(a^{\dagger}\right)+\frac{d(a)}{M} \rho & \text { if } a_{i} \neq a_{i}^{\dagger}\end{cases}
$$

where $d(a)=\sum_{j=1}^{M} 1\left\{a_{j}=a_{j}^{\dagger}\right\}$

Key Ideas Behind Our Redesign

$$
\forall i, a, \ell_{i}(a)= \begin{cases}\ell_{i}^{o}\left(a^{\dagger}\right)-\left(1-\frac{d(a)}{M}\right) \rho & \text { if } a_{i}=a_{i}^{\dagger} \\ \ell_{i}^{o}\left(a^{\dagger}\right)+\frac{d(a)}{M} \rho & \text { if } a_{i} \neq a_{i}^{\dagger}\end{cases}
$$

(1). For player $i, \ell\left(a_{i}^{\dagger}, a_{-i}\right)=\ell\left(a_{i}, a_{-i}\right)-\left(1-\frac{1}{M}\right) \rho$ (induced regret)
(2). $\ell^{\circ}\left(a^{\dagger}\right)=\ell\left(a^{\dagger}\right)$ (no design cost when target is selected)

The designer can force all players to follow a target action profile in almost every but $O\left(T^{\alpha}\right)(\alpha<1)$ rounds while incurring $O\left(T^{\alpha}\right)$ redesign cost.

Boundary Design

Assumption: $\exists i, \ell_{i}^{o}\left(a^{\dagger}\right) \in\{L, U\}$

The designer can force all players to follow a target action profile in almost every but $O\left(T^{\frac{1+\alpha}{2}}\right)(\alpha<1)$ rounds while incurring $O\left(T^{\frac{1+\alpha}{2}}\right)$ redesign cost.

The Tragedy of Commons

- 2 farmers, each can farm 0 to 15 sheep
- The price of a sheep is $\sqrt{30-\left(a_{1}+a_{2}\right)}$
- Payoff of farmer 1 is $\mathrm{a}_{1} \times \sqrt{30-\left(a_{1}+a_{2}\right)}$ (similar for farmer 2)

Nash Equilibrium: $a^{*}=(12,12)$

- Social welfare: $\left(a_{1}+a_{2}\right) \times \sqrt{30-\left(a_{1}+a_{2}\right)}$ maximized at $a_{1}+a_{2}=20$
- Social equality: $a_{1}=a_{2}=10$
- Designer goal: $a^{\dagger}=(10,10)$
- Redesign forces a^{\dagger} in 98% of rounds when $T=10^{7}$.
- The average design cost in each round is 0.5 (loss range is $[-15 \sqrt{15}, 0]$)

Thanks!

Contact: ma234@wisc.edu

