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Our position

Current graph-based Semi-supervised
learning (SSL) methods have three limitations:

data is restricted to live on a single manifold
learning must happen in batch mode

the target label is assumed smooth on the
manifold

We propose three new directions:

multiple manifolds learning
Online SSL
Compressive sensing for SSL



Background and notation

Input: n labeled points {(xi,y1)}, m unlabeled {xi}
Goal: learn f: XY

Graph on n+m points, W; edge weight
Assumption: large edge weight - similar label

Weight matrix W, degree matrix D, Laplacian
matrix L=D-W

Optimization:
minimize the energy f'Lf,
subject to given labels firyi



Limitation 1: no intersecting
manifolds

Existing graph- based SSL works well on a
single man ., . 5§

-.?' Fd' '

Or on multiple WeII separated manlfolt ERel
Edge weight depends on simple (Euclldean)
distance: the closer, the larger

RBF weightw;; = exp (—Ad(x;, x;)?)

K nearest neighbor (1 if close, O otherwise)



Limitation 1: no intersecting

manifolds
]

o But cannot handle intersecting manifolds:

O Euclldean distance-based weights will mix up
manifolds




Solution: local covariance

_
o The sample covariance matrix (ellipsoid)
captures local g@@mgi_lﬂy D (@ = pa)(wj = pa) "
o Similar nearby ellipsoids > large edge weight

X = s v i
- P i

o But how to measure covariance similarity?



A distance on covariance
matrices

Hellinger distanciz?(p.q) = % [ (V/p(@) - x/r(:r))ifﬂ'r
Symmetric, value in [0,1]

Let p be the normal distribution at mean O with
covariance X,, similarly for g

Define the Hellinger distance between two
covariance matrices as

1ol
g |21[1]% T
21 + 222

H(31,29) = H(p,q) = J 1



Property of Hellinger distance

o Large value if the two covariance matrices are
similar; close to O, If they differ in density,
dimensionality or orientation

o ldeal for tracing a manifold in a mixture of
mU|tIp|e ma_: p—_— - Comment  H(X;,Xs)

similar 0.02
density 0.28
dimension 1

orientation® 1



Hellinger distance for multi-
manifold

H?(Sg;,5e ;)

Similar covariance - large weigu“ _ o0

Example: red=large weight, yellow=small
weight ﬂ

— (“) 0 9'9

Use this graph in manifold regularization — it
will separate the manifolds.



Limitation 2: need all data at
once

In many applications, data stream in. Cannot
store them all. Want:
Online processing and then discard each
Incoming item
Learn even when the item is unlabeled (different
from standard online learning)

Tolerate adversarial concept drifts (changes in
X-2Y)

Theoretic guarantee
Uses only finite memory budget



Online SSL setting

At time t, adversary picks (x,, y,) not
necessarily iid, shows x;

Learner uses current predictor f, to predict
fi(X)

With a small probability, adversary reveals y,,
otherwise It abstains (unlabeled)

Learner updates f, = f..,, based on x,and y;, (if
given)

Repeat for t<t+1



Solution: online convex
programming

Batch SSL minimizes a risk functional J(f) on
all data

If J can be decomposed |nto a sum of

Instantaneous y ) — L y~r 7 ponindividual
- T t=1"

data item

)]
fte1 = fr — tff_ﬁ}ﬂ

Then one can do gradight descent on J(f) at
each step

Even though each J(f) is different, one can
show this gradient descent procedure
optimizes something sensible: in particular,



No-regret guarantee

In online learning with concept drift, accuracy
IS not a good measure, because adversary can
change the true labels arbitrarily often

Instead, measure the difference to the best
batch hypothesis f* (which will also be bad if
concept drifts too often), known as the regret

T
regre't — %Z ']IL- (](f) o ')T(]Lr)
t=1

[Zinkevich03] the gradient descent procedure
has zero regret asymptotically.

limsupp_ % 23:1 Ji(fe) —J(f7) <0




Online graph-based SSL

This can be applied to graph-based SSL

The Instantaneous risk involves a subgraph
from x; to all previous points

Limited memory version: only keep a fixed
length buffer, instead of all previous points

Open questions: better ways to define the
Instantaneous risk, such that the manifold
structure Is summarized using finite memory.
(on-going work)



Limitation 3: f has to be smooth

Eigen value/vectors of Laplacicr = 3, Ay,
Eigenvectors form orthonormal bev = {y;}
Any f can be decomposed if = 3. a;v;

Existing SSL assumption: f uses a few low
frequency eigenvectors, I.e., the corresponding
o; are large (non-zero).

Low frequency eigenvectors: whose
eigenvalues are close to zero



New assumption: sparsity

Allow f to have high frequency eigenvectors,
as long as a Is sparse (a few large entries)

Recent advances in compressive sensing
determine when learning can happen
The signal representation basis is ¥

The measurement basis Is the canonical basis |
(identity matrix)

Labeled data in transductive learning =
measurements made with random rows from |



SSL as compressive sensing

Key gquantity: coherence pu(l, ¥) oc max entry in
v

Theorem: let there be n labeled points, m
unlabeled points. Assume a has S<n+m non-

zero entries (but could be anywhere, both low
and high fre > Cp?(1,%)Slog(n +m)

labeled points Is sufficient to exactly learn f.



Example

Unweighted ring graph with 1024 nodes
Sparsity S=3, nonsmooth func! f = —v5 — 1.3¢5 + g3
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Draw n random points to get label (true f values).
Recovery f using L-1 minimization as standard in
compressive sensing. Measure recovery error.

Repeat several times for each n.



Example

]
o Each trial 1s a dot

o Exact recovery happens when n>35
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Conclusions

We have presented three new research
directions for graph-based SSL

Multi-manifold learning
Online SSL
Compressive sensing
We hope to inspire new research, making SSL

an even more valuable tool for multimedia
analysis.

We thank the presenter, and you!



