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Our position

 Current graph-based Semi-supervised 

learning (SSL) methods have three limitations:

 data is restricted to live on a single manifold

 learning must happen in batch mode

 the target label is assumed smooth on the 

manifold

 We propose three new directions:

multiple manifolds learning

Online SSL

Compressive sensing for SSL



Background and notation

 Input: n labeled points {(xi,yi)}, m unlabeled {xi}

 Goal: learn f: XY

 Graph on n+m points, Wij edge weight

 Assumption: large edge weight  similar label

 Weight matrix W, degree matrix D, Laplacian
matrix L=D-W

 Optimization: 

minimize the energy f’Lf, 

subject to given labels fiyi



Limitation 1: no intersecting 

manifolds

 Existing graph-based SSL works well on a 

single manifold: 

 Or on multiple well-separated manifolds:

 Edge weight depends on simple (Euclidean) 

distance: the closer, the larger

RBF weight:

 K nearest neighbor (1 if close, 0 otherwise)



Limitation 1: no intersecting 

manifolds

 But cannot handle intersecting manifolds:

 Euclidean-distance-based weights will mix up 

manifolds



Solution: local covariance

 The sample covariance matrix (ellipsoid) 

captures local geometry

 Similar nearby ellipsoids  large edge weight

 But how to measure covariance similarity?



A distance on covariance 

matrices

 Hellinger distance

 Symmetric, value in [0,1]

 Let p be the normal distribution at mean 0 with 

covariance 1, similarly for q

 Define the Hellinger distance between two 

covariance matrices as



Property of Hellinger distance

 Large value if the two covariance matrices are 

similar;  close to 0, if they differ in density, 

dimensionality or orientation

 Ideal for tracing a manifold in a mixture of 

multiple manifolds



Hellinger distance for multi-

manifold

 Similar covariance  large weight

 Example: red=large weight, yellow=small 

weight

 Use this graph in manifold regularization – it 

will separate the manifolds.



Limitation 2: need all data at 

once

 In many applications,  data stream in.  Cannot 

store them all.  Want:

Online processing and then discard each 

incoming item

 Learn even when the item is unlabeled (different 

from standard online learning)

 Tolerate adversarial concept drifts (changes in 

XY)

 Theoretic guarantee

Uses only finite memory budget



Online SSL setting

1. At time t, adversary picks (xt, yt) not 

necessarily iid, shows xt

2. Learner uses current predictor ft to predict 

ft(xt)

3. With a small probability,  adversary reveals yt, 

otherwise it abstains (unlabeled)

4. Learner updates ft ft+1, based on xt and yt (if 

given)

5. Repeat for tt+1



Solution: online convex 

programming

 Batch SSL minimizes a risk functional J(f) on 

all data

 If J can be decomposed into a sum of 

instantaneous convex risks Jt(f) on individual 

data item 

 Then one can do gradient descent on Jt(f) at 

each step

 Even though each Jt(f) is different, one can 

show this gradient descent procedure 

optimizes something sensible: in particular, 

there is no regret



No-regret guarantee

 In online learning with concept drift, accuracy 
is not a good measure, because adversary can 
change the true labels arbitrarily often

 Instead, measure the difference to the best 
batch hypothesis f* (which will also be bad if 
concept drifts too often), known as the regret

 [Zinkevich03] the gradient descent procedure 
has zero regret asymptotically.



Online graph-based SSL

 This can be applied to graph-based SSL

 The instantaneous risk involves a subgraph

from xt to all previous points

 Limited memory version: only keep a fixed 

length buffer, instead of all previous points

 Open questions: better ways to define the 

instantaneous risk, such that the manifold 

structure is summarized using finite memory. 

(on-going work)



Limitation 3: f has to be smooth

 Eigen value/vectors of Laplacian:

 Eigenvectors form orthonormal basis 

 Any f can be decomposed as

 Existing SSL assumption: f uses a few low 

frequency eigenvectors, i.e., the corresponding 

i are large (non-zero). 

 Low frequency eigenvectors: whose 

eigenvalues are close to zero



New assumption: sparsity

 Allow f to have high frequency eigenvectors, 

as long as  is sparse (a few large entries)

 Recent advances in compressive sensing 

determine when learning can happen

 The signal representation basis is 

 The measurement basis is the canonical basis I 

(identity matrix)

 Labeled data in transductive learning = 

measurements made with random rows from I



SSL as compressive sensing

 Key quantity: coherence (I, )  max entry in 



 Theorem: let there be n labeled points, m 

unlabeled points.  Assume  has Sn+m non-

zero entries (but could be anywhere, both low 

and high freq) and f=  .  Then 

labeled points is sufficient to exactly learn f.



Example

 Unweighted ring graph with 1024 nodes

 Sparsity S=3, nonsmooth function 

 Draw n random points to get label (true f values).  
Recovery f using L-1 minimization as standard in 
compressive sensing.  Measure recovery error.

 Repeat several times for each n.



Example

 Each trial is a dot

 Exact recovery happens when n>35

 Compressive sensing  transductive learning for 
sparse but nonsmooth functions



Conclusions

 We have presented three new research 

directions for graph-based SSL

Multi-manifold learning

Online SSL

Compressive sensing

 We hope to inspire new research, making SSL 

an even more valuable tool for multimedia 

analysis.

 We thank the presenter, and you!


