The Label Complexity of Mixed-Initiative Classifier Training

Jerry Zhu / University of Wisconsin-Madison Jina Suh, Saleema Amershi / Microsoft Research

June 22, 2016

Microsoft Research

MOTIVATION

- Train a classifier
- Start with no labeled data
- Use human annotators
- Main message: Do not run active learning. We have a better procedure

THEORETICAL LABEL COMPLEXITY

Interactive classifier training

(Example) train this 1D threshold classifier:

- Human oracle, starting from no labeled data
- Cost = label complexity
- Shall we do active learning?

- Training is computer-initiated: computer picks x to query, no idea where θ* is
- Active learning label complexity (realizable, Kulkarni et al. 1993)

$$AL \ge \log(1-\delta) + \max\left(VC, \log \frac{1}{\epsilon}\right)$$

But an optimal oracle can do better!

• Human knows θ^* , provides optimal teaching set:

- Teaching dimension TD = smallest training set size to teach a concept
- ▶ $TD \leq AL$ always [Cakmak & Thomaz 2011; Angluin 2004; Goldman & Kearns 1995]
- ▶ $TD \ll AL$ often
- Training is human-initiated: human must pick the teaching set

	optimal oracle
computer-initiated	AL
human-initiated	TD

But humans are not always optimal oracles

► Naive oracle: can

be arbitrarily bad in picking x (but always gives correct labels y)

$$\begin{array}{c} & & \\ & & \\ 0 & & \\ \theta^* \end{array}$$

	optimal oracle	naive oracle
computer-initiated	AL	AL
human-initiated	TD	∞

Best of the two worlds: mixed-initiative training

The mixed-initiative algorithm

- 1: Data $D = \emptyset$
- 2: for i = 1 to TD do
- 3: if human no longer wants to lead then
- 4: break;
- 5: **else**
- 6: human chooses (x_i, y_i)
- 7: append (x_i, y_i) to D
- 8: end if
- 9: end for
- 10: run active learning starting from ${\cal D}$ until completion

	optimal oracle	naive oracle
computer-initiated	AL	AL
human-initiated	TD	∞
mixed-initiated	TD	TD + AL

"Neither optimal nor naive" oracle

Seed oracle: provides one point per positive region

	optimal	seed	naive
computer-initiated	AL	AL	AL
human-initiated	TD	∞	∞
mixed-initiated	TD	$TD + AL - AL_B$	TD + AL

Teacher education

- Goal: naive or seed \rightarrow optimal oracle
- Show analogues: "To teach θ' you could have used D' (optimal teaching set)"
- Show expert-written explanation

EMPIRICAL LABEL COMPLEXITY

Experiment Setup

Mechanical Turk, between-subjects

- 481 participants
- Integer 1D threshold and interval classifier
- Goal: Teach a robot assistant acceptable car prices

1D Threshold Classifier Task

OK 19000; ind No Ed. 1 2 3 Input range [10000, 30]		Human Mixed Computer Co	onditions	5
Input range [10000, 30	o Ed.	1 2 3	Θ*	19000; inclusive
Analogue 4 5 x AL complexity 14	ogue	A 5 X AL co	ut range mplexity	[10000, 30000] 14

"If your price threshold was \$20000 or below, you could show your robot these 2 examples: \$20000 is acceptable, \$20001 is unacceptable"

1D Interval Classifier Task

Conditions 7 a*, b* 1260, 1360; inclusive Input range [500, 1500] AL complexity 26

Procedure

Instructions	Teacher Education	Training Task	Post-Task Survey
Cover story Target concept Instructions	Step-by-step tutorial with quizzes Hints	Human-initiated Computer-initiated Mixed-initiative	Demographics Difficulty Confidence Teaching experience Attention Numeracy Teaching strategy

Empirical Label Complexity

Optimal Teachers

Human	TD
Computer	AL
Mixed	TD

1D Threshold Classifier

1D Interval Classifier

Seed Teachers

Human	∞
Computer	AL
Mixed	TD + (AL – AL _B)

Naïve Teachers

Human	∞
Computer	AL
Mixed	TD + AL

1D Threshold Classifier

1D Interval Classifier

Effects of Training Paradigms on Optimal Teachers

1D Threshold Classifier

1D Interval Classifier

Optimal Not optimal

Benefits of Mixed-Initiative Training

- Enables optimal teaching Prevents over-teaching
- Eliminates not-completed (NC) participants
- Removes blind search complexity

Effects of Teacher Education

1D Threshold Classifier

1D Interval Classifier

■ Optimal ■ Seed ■ Naïve

BRIDGING THEORY AND HUMANS

Humans alone are inefficient

Humans can provide more than the necessary TD training items. (29% in threshold, 8.1% in interval)

"I taught robot all acceptable price ranges."

→ Support for mixed-initiative training

Humans are noisy

Human teachers provided wrong labels 3.5% of the time.

Nearly half (19/39) of the participants in computer-initiated, interval

→ Allow for attentive labeling or correcting mislabels

Humans have incorrect mental models

Several participants did not understand the robot

"My teaching strategy was to provide the lowest and highest acceptable prices, then provide some acceptable prices in between the range."

→ Educate humans how to interact with ML algorithms

Labeling effort = label complexity?

Manually selecting an example requires more cognitive effort than providing a label for a given example.

Computer-initiated: 17.3 labels/min Human-initiated: 2.8 labels/min

 \rightarrow Help humans explore data or generate examples efficiently \mathbb{A}

Future research

Teacher education strategy Interaction techniques or translation layer Efficient exploration Other mixed approach

SUMMARY

- Formal justification of mixed-initiative classifier training
- Label complexity analysis and empirical verification
- Benefits of a mixed-initiative training and teacher education
- Limitations and design implications
- Future research directions
- Main message: Mixed-initiative training is a better procedure

Thank you!

Jerry Zhu / University of Wisconsin-Madison Jina Suh, Saleema Amershi / Microsoft Research

June 22, 2016

