Unlabeled data: Now it helps, now it doesn’t
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Abstract

Empirical evidence shows that in favorable situatisesi-supervisetearning
(SSL) algorithms can capitalize on the abundancardébeledtraining data to
improve the performance of a learning task, in the sensdehagrlabeledtrain-
ing data are needed to achieve a target error bound. Howewaher situations
unlabeled data do not seem to help. Recent attempts at tlvadlyecharacter-
izing SSL gains only provide a partial and sometimes aplyreanflicting ex-
planations of whether, and to what extent, unlabeled datdelp. In this paper,
we attempt to bridge the gap between the practice and thé@gnoi-supervised
learning. We develop a finite sample analysis that charaetethe value of un-
labeled data and quantifies the performance improvemensbf®mpared to
supervised learning. We show that there are large clasgg®blems for which
SSL can significantly outperform supervised learning, iitdisample regimes
and sometimes also in terms of error convergence rates.

1 Introduction

Labeled data can be expensive, time-consuming and diffizalbtain in many applications. Semi-
supervised learning (SSL) aims to capitalize on the aburelahunlabeled data to improve learning
performance. Empirical evidence suggests that in certaiarfible situations unlabeled data can
help, while in other situations it does not. As a result, ¢hkave been several recent attempts
[1, 2, 3, 4, 5, 6] at developing a theoretical understandingemi-supervised learning. It is well-
accepted that unlabeled data can help only if there exisik between the marginal data distribution
and the target function to be learnt. Two common types oflicénsidered are the cluster assump-
tion [7, 3, 4] which states that the target function is logalnooth over subsets of the feature space
delineated by some property of the marginal density (but nmye globally smooth), and the man-
ifold assumption [4, 6] which assumes that the target fandies on a low-dimensional manifold.
Knowledge of these sets, which can be gleaned from unlate] simplify the learning task.
However, recent attempts at characterizing the amount pfamement possible under these links
only provide a partial and sometimes apparently conflicffiog example, [4] vs. [6]) explanations
of whether or not, and to what extent semi-supervised lagrhelps. In this paper, we bridge the
gap between these seemingly conflicting views and develominax framework based on finite
sample bounds to identify situations in which unlabeleddetip to improve learning. Our results
quantify both the amount of improvement possible using SSkell as the the relative value of
unlabeled data.

We focus on learning under a cluster assumption that is fiiwethin the next section, and estab-
lish that there exist nonparametric classes of distrilmstialenoted”yy, for which thedecision
sets(over which the target function is smooth) are discernalenfunlabeled data. Moreover,
we show that there existiairvoyantsupervised learners that, given perfect knowledge of the de
cision sets denoted b®, can significantly outperform any generic supervised leafi in these

*Supported in part by the NSF grants CCF-0353079, CCF-03/G21d CNS-0519824.
TSupported in part by the Wisconsin Alumni Research Fouadati



Figure 1: (a) Two separated high density sets with diffelan|s that (b) cannot be discerned if the
sample size is too small, but (¢) can be estimated if sampisityas high enough.

classes. Thatis, iR denotes a risk of interest,denotes the labeled data sample SfAZj’.‘n denotes
the clairvoyant supervised learner, afiddenotes expectation with respect to training data, then

SUPp., . E[R(fpm)] < infy, supp, . E[R(f,)]. Based on this, we establish that there also exist
semi-supervised learners, denofe,gn, that usen unlabeled examples in addition to théabeled
examples in order to estimate the decision sets, which perés well asfp ,,, provided thatn

grows appropriately relative to. Specifically, if the error bound qupyn decays polynomially (ex-
ponentially) inn, then the number of unlabeled dataneeds to grow polynomially (exponentially)
with the number of labeled data We provide general results for a broad range of learninglpros
using finite sample error bounds. Then we examine a concrstantiation of these general results
in the regression setting by deriving minimax lower boundste performance of any supervised

learner and compare that to upper bounds on the errcjﬁ}s,gfandfm,n.

In their seminal papers, Castelli and Cover [8, 9] suggesitatin the classification setting the
marginal distribution can be viewed as a mixture of clasgl@é@mnal distributions. If this mixture is
identifiable, then the classification problem may reduce somple hypothesis testing problem for
which the error converges exponentially fast in the numibéalzeled examples. The ideas in this
paper are similar, except that we do not require identifighidlf the mixture component densities,
and show that it suffices to only approximately learn theslenisets over which the label is smooth.
More recent attempts at theoretically characterizing S8tetbeen relatively pessimistic. Rigollet
[3] establishes that for a fixed collection of distributicatisfying a cluster assumption, unlabeled
data do not provide an improvement in convergence rate. Asiargument was made by Lafferty
and Wasserman [4], based on the work of Bickel and Li [10],tfier manifold case. However, in
a recent paper, Niyogi [6] gives a constructive example ofaascof distributions supported on a
manifold whose complexity increases with the number of ledhexamples, and he shows that the
error of any supervised learner is bounded from below by &teon, whereas there exists a semi-
supervised learner that can provide an error boun@(ef—'/?), assuming infinite unlabeled data.
In this paper, we bridge the gap between these seeminglyicorgl views. Our arguments can
be understood by the simple example shown in Fig. 1, wheréi#tgbution is supported on two
component sets separated by a margiand the target function is smooth over each component.
Given a finite sample of data, these decision sets may or miayendiscernable depending on the
sampling density (see Fig. 1(b), (c)).*fis fixed (this is similar to fixing the class of cluster-based
distributions in [3] or the manifold in [4, 10]), then given@ugh labeled data a supervised learner
can achieve optimal performance (since, eventually, itaies in regime (c) of Fig. 1). Thus, in this
example, there is no improvement due to unlabeled datarimstef the rate of error convergence for
a fixed collection of distributions. However, since the tegparation between the component sets
is unknown, given a finite sample of data, there always eagististribution for which these sets are
indiscernible (e.g.y — 0). This perspective is similar in spirit to the argument i [8Ve claim
that meaningful characterizations of SSL performance amhtifications of the value of unlabeled
data require finite sample error bounds, and that rates afcgance and asymptotic analysis may
not capture the distinctions between SSL and supervisediten Simply stated, if the component
density sets are discernable from a finite samplersiné unlabeled data but not from a finite sample
sizen < m of labeled data, then SSL can provide better performanceghpervised learning. We
also show that there are certain plausible situations irthvBiSL yields rates of convergence that
cannot be achieved by any supervised learner.
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Figure 2: Marginy measures the minimum width of a decision set or separatiovees the support
sets of the component marginal mixture densities. The masgiositive if the component support
sets are disjoint, and negative otherwise.

2 Characterization of model distributions under the cluster assumption

Based on the cluster assumption [7, 3, 4], we define the fallpwollection of joint distributions
Pxy(v) = Px x Py|x indexed by a margin parametgrLet X, Y be bounded random variables
with marginal distributionPy € Px and conditional label distributiofy | x € Py |x, supported

on the domaint’ = [0, 1]¢.

The marginal density(z) = Zszl arpr(x) is the mixture of a finite, but unknown, number of
component densitiefp; } £, whereK < oo. The unknown mixing proportions, > a > 0 and

Zszl ar, = 1. In addition, we place the following assumptions on the omigtcomponent densities:

1. pi is supported on a unique compact, connected'set X with Lipschitz boundaries. Specifi-
cally, we assume the following form for the component supgets: (See Fig. 2 for d=2 illustration.)

Cr={r=(v1,...,mq) € X: g;(gl)(iﬂl, sy xg1) Swg < g](f)(xla cogo1)},
whereg,(:)(-), g,(f)(-) ared — 1 dimensional Lipschitz functions with Lipschitz constadnt
2. px is bounded from above and beldiv< b < pi < B.

3. py is Holder« smooth onC, with Hdlder constank’; [12, 13].

Let the conditional label density ofi;, be denoted by, (Y|X = ). Thus, a labeled training
point(X,Y) is obtained as follows. With probability;, X is drawn fromp, andY is drawn from
pr(Y|X = ). In the supervised setting, we assume accesslabeled datal = {X;, Y;}
drawn i.i.d according tdPxy € Pxy (), and in the semi-supervised setting, we assume access to
m additional unlabeled dafd = { X}, drawn i.i.d according t®°’x € Px.

Let D denote the collection of all non-empty sets obtained agsatgions of{C}2_ | or their
complementd C¢HE || excluding the set’_, C¢ that does not lie in the support of the marginal
density. Observe thaD| < 2%, and in practical situations the cardinality Bfis much smaller
as only a few of the sets are non-empty. The cluster assumigstithat the target function will be
smooth on each sé? € D, hence the sets i® are calleddecision setsAt this point, we do not
consider a specific target function.

The collectionPxy is indexed by a margin parameter which denotes the minimum width of
a decision set or separation between the component sumgistt;s The marginy is assigned a
positive sign if there is no overlap between componentgratise it is assigned a negative sign as

illustrated in Figure 2. Formally, fof, k € {1,..., K}, let
diy = : (P)_ (q) o : k d = (1) _ (2) oo
o= min o gl 3K o= llgt” — gt
Then the margin is defined as

vy=o0- min dj, Wwhere o=
k{1, K}

1 ifCNC,=0vj#k
—1 otherwise

This form is a slight generalization of the boundary fragimgass of sets which is used as a common
tool for analysis of learning problems [11]. Boundary fragrsets capture the salient characteristics of more
general decision sets since, locally, the boundaries cfrgésets are like fragments in a certain orientation.



3 Learning Decision Sets

Ideally, we would like to break a given learning task intoage subproblems on eathe D since
the target function is smooth on each decision set. Notethigatnarginal density is also smooth
within each decision set, but exhibits jumps at the bourdasince the component densities are
bounded away from zero. Hence, the collectidran be learnt from unlabeled data as follows:

1) Marginal density estimation— The procedure is based on the sup-norm kernel density atsitim
proposed in [14]. Consider a uniform square grid over theala¥' = [0, 1]¢ with spacing2h.,,
whereh,,, = ko ((logm)?/m)/? andko > 0 is a constant. For any pointc X, let [z] denote the
closest point on the grid. L&t denote the kernel anHl,,, = h,,I, then the estimator gf(x) is

plz) =

2) Decision set estimation- Two pointszy, x5 € X are said to beonnecteddenoted by, « o,

if there exists a sequence of points = z1,29,...,2-1,2; = x2 such thatzs,..., 2,1 € U,
|zj—2j11|| < 2v/dh,,, and for all points that satisfyz; —z; || < ., logm, |p(z:) —p(2;)| < 0 =
(logm)~'/3. Thatis, there exists a sequenceefdh,,,-dense unlabeled data points betwegand

2o such that the marginal density varies smoothly along theessece. All points that are pairwise
connected specify an empirical decision set. This decis&nestimation procedure is similar in
spirit to the semi-supervised learning algorithm propdsdd5]. In practice, these sequences only
need to be evaluated for the test and labeled training points

LS GHZN (X — [a]):

d
mhs, <

The following lemma shows that if the margin is large relativ the average spacing /¢ between
unlabeled data points, then with high probability, two geiare connected if and only if they lie in
the same decision sél € D, provided the points are not too close to the decision boueslarhe
proof sketch of the lemma and all other results are defeo&gttion 7.

Lemmal. LetdD denote the boundary db and define the set of boundary points as

B={z: inf |&—z|<2Vdhn}.
2EUpepdD

If |y| > C,(m/(logm)?)~'/¢, whereC, = 6+/dro, then for allp € Py, all pairs of points
x1,22 € SUpdp) \ B andall D € D, with probability> 1 — 1/m,

r1,29 € D ifandonlyif z; < x4

for large enoughm > mg, wherem, depends only on the fixed parameters of the cRags (7).

4 SSL Performance and the Value of Unlabeled Data

We now state our main result that characterizes the perfocenaf SSL relative to supervised learn-
ing and follows as a corollary to the lemma stated above. R.elenote a risk of interest and

~

E(f) = R(f) — R*, whereR* is the infimum risk over all possible learners.

Corollary 1. Assume that the excess riSks bounded. Suppose there exists a clairvoyant super-
vised learnerfp ,,, with perfect knowledge of the decision sétsfor which the following finite
sample upper bound holds

sup E[E(fpa)] < ea(n).
Pxv (7)

Then there exists a semi-supervised learfigr, such that ifly| > C,(m/(logm)?)~1/4,

N 1 m ~i/d
P;ti%)E[f(fm,n)] < e2(n) + 0 <E +n (W) ) :

This result captures the essence of the relative charzatiem of semi-supervised and supervised
learning for the margin based model distributions. It swgg¢hat if the set® are discernable

using unlabeled data (the margin is large enough comparadei@ge spacing between unlabeled
data points), then there exists a semi-supervised leanaéican perform as well as a supervised

learner with clairvoyant knowledge of the decision seteyvjatedm > n so that(n/ex(n))* =



O(m/(logm)?) implying that the additional term in the performace boundf,q,n is negligible
compared ta2(n). This indicates that itz (n) decays polynomially (exponentially) im, thenm
needs to grow polynomially (exponentially)in

Further, suppose that the following finite sample lower lwblolds for any supervised learner:

inf sup E[E(f)] > a1 (n)
frn Pxy(7)

If e2(n) < e1(n), then there exists a clairvoyant supervised learner witfepeknowledge of the
decision sets that outperforms any supervised learnedteg not have this knowledge. Hence,
Corollary 1 implies that SSL can provide better performathes any supervised learner provided
(i) m > nsothat(n/es (n))d = O(m/(logm)?), and (ii) knowledge of the decision sets simplifies
the supervised learning task, so thafn) < e;(n). In the next section, we provide a concrete
application of this result in the regression setting. Asmapde example in the binary classification
setting, ifp(x) is supported on two disjoint sets andAfY = 1|X = z) is strictly greater than
1/2 on one set and strictly less tha2 on the other, then perfect knowledge of the decision sets
reduces the problem to a hypothesis testing problem fortwhig:) = O(e=¢"), for some constant

¢ > 0. However, ify is small relative to the average spacing'/¢ between labeled data points,
thene; (n) = cn~'/< wherec > 0 is a constant. This lower bound follows from the minimax lowe
bound proofs for regression in the next section. Thus, anmaptial improvementis possible using
semi-supervised learning providedgrows exponentially im.

5 Density-adaptive Regression
Let Y denote a continuous and bounded random variable. Underestjearor loss, the target

function is f(z) = E[Y|X = 1], andE(f) = E[(f(X) — f(X))?]. Recall thatpx(Y|X = z)

is the conditional density on theth component and Iéi;, denote expectation with respect to the
corresponding conditional distribution. The regressionction on each component j&(z) =
E[Y|X = z] and we assume thatfar=1,..., K

1. fi is uniformly bounded|f;| < M.
2. fi is Holder« smooth onC', with Holder constanks.

This implies that the overall regression functigiu:) is piecewise Holderr smooth; i.e., it is
Holder« smooth on eacl € D, except possibly at the component boundarfieSince a Holder
smooth function can be locally well-approximated by a Tayplolynomial, we propose the follow-
ing semi-supervised learner that performs local polynbfitwithin each empirical decision set,
that is, using training data that are connected as per theitit®fiin Section 3. While a spatially
uniform estimator suffices when the decision sets are distée, we use the following spatially
adaptive estimator proposed in Section 4.1 of [12]. Thisuesthat when the decision sets are
indiscernible using unlabeled data, the semi-supervisaahér still achieves an error bound that is,
up to logarithmic factors, no worse than the minimax loweutfor supervised learners.

fm,n,m(') = arg ngé%;(}/; - f/(Xz))zle)Q + per(fl) and fm,n(x) = fm,n,z(x)

Here1l,. x, is the indicator ofz <+ X,; andI' denotes a collection of piecewise polynomials
of degree[a] (the maximal integek «) defined over recursive dyadic partitions of the domain
X = [0,1]% with cells of sidelength betweetr ['os(n/logn)/(2a+d)] gpd2-llog(n/logn)/dl = The
penalty term pefy’) is proportional tolog(>_" ; 1,..x,) #f’, where#f’ denotes the number
of cells in the recursive dyadic partition on whigh is defined. It is shown in [12] that this
estimator yields a finite sample error boundrof?®/(22+4) for Holder« smooth functions, and
max{n 20/ (2a+d) n=1/d} for piecewise Holderr functions, ignoring logarithmic factors.

Using these results from [12] and Corollary 1, we now statiesfisample upper bounds on the semi-
supervised learner (SSL) described above. Also, we deriite Bample minimax lower bounds on
the performance of any supervised learner (SL). Our mauntseare summarized in the following
table, for model distributions characterized by variousi®a of the margin parameter A sketch

2If the component marginal densities and regression funstiave different smoothnesses, sagnd 3,
the same analysis holds except tfigt) is Holdermin(«, 3) smooth on eactb € D.



of the derivations of the results is provided in Section Hg&re we assume that dimensidn>
2a/(2a — 1). If d < 2a/(2a0 — 1), then the supervised learning error due to to not resolving
the decision sets (which behaves like'/4) is smaller than error incurred in estimating the target
function itself (which behaves like2/(2e+d)) Thus, whend < 2a/(2a — 1), the supervised
regression error is dominated by the error in smooth regammsthere appears to be no benefit to
using a semi-supervised learner. In the table, we suppogstants and log factors in the bounds,
and also assume that >> n2? so that(n/e;(n))* = O(m/(logm)?). The constants, andC,
only depend on the fixed parameters of the clags (v) and do not depend on

Margin range

SSL upper bound SL lower bound SSL helps

i €2(n) e1(n)
Y2 n—20/(2a+d) n—20/(20+d) No
v 2 con~1/d n—2a/(2a+d) n—20/(20+d) No
Con_l/d >y 2 CO((]O# n_20¢/(20t+d) n_l/d Yes

m —1/d —1/d y
CO(W) 1/ >~y > —=C, Togm)? n— n-1 No
~Col tropyz) M >y n—20/(20+d) n—1/d Yes
—Y > n—20/(2a+d) n—1/d Yes

If ~ is large relative to the average spacing between labeledptantsn—'/¢, then a supervised
learner can discern the decision sets accurately and SSldpsmno gain. However, if > 0is small
relative ton—1/¢, but large with respect to the spacing between unlabeledmtzntsm /¢, then
the proposed semi-supervised learner provides improved leounds compared tny supervised
learner. If|~| is smaller thann—'/¢, the decision sets are not discernable with unlabeled data a
SSL provides no gain. However, notice that the performatickeosemi-supervised learner is no
worse than the minimax lower bound for supervised learnerthe~y < 0 case, if—~ larger than
m~1/4, then the semi-supervised learner can discern the dedsisnand achieves smaller error
bounds, whereas these sets cannot be as accurately distsria@y supervised learner. For the
overlap casey < 0), supervised learners are always limited by the error ircbidue to averaging
across decision sets (/). In particular, for the collection of distributions with< —-, a faster
rate of error convergence is attained by SSL compared to ®\jgedm > n2?.

6 Conclusions

In this paper, we develop a framework for evaluating the gremince gains possible with semi-

supervised learning under a cluster assumption using faiteple error bounds. The theoretical
characterization we present explains why in certain sanatunlabeled data can help to improve
learning, while in other situations they may not. We dem@tstthat there exist general situations
under which semi-supervised learning can be significanghesor to supervised learning in terms

of achieving smaller finite sample error bounds than anysiged learner, and sometimes in terms
of a better rate of error convergence. Moreover, our resists provide a quantification of the rela-

tive value of unlabeled to labeled data. While we focus orcthster assumption in this paper, we

conjecture that similar techniques can be applied to gfyaifte performance of semi-supervised

learning under the manifold assumption as well. In pardicuie believe that the use of minimax

lower bounding techniques is essential because many ofitteesting distinctions between super-
vised and semi-supervised learning occur only in finite damggimes, and rates of convergence
and asymptotic analyses may not capture the complete gictur

7 Proofs

We sketch the main ideas behind the proofs here, pleasdwogis] for details. Since the component
densities are bounded from below and above, defing := b ming ar, < p(z) < B =: prmax-

7.1 Proof of Lemmal

First, we state two relatively straightforward results atthe proposed kernel density estimator.

Theorem 1 (Sup-norm density estimation of non-boundary poinSpnsider the kernel density
estimatorp(z) proposed in Section 3. If the kernél satisfies sup?) = [-1,1]%, 0 < G <
Gmax < 00, [y jaG(u)du = T and [, ,w/G(u)du = 0for 1 < j < [a], then for all
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p € Px, with probability at least — 1/m,

sup |p<x>—ﬁ<x>|—o<hzin<l=a>+ 1ogm/<mhsln>> e
zGSUppp)\B

Notice thate,,, decreases with increasimg. A detailed proof can be found in [13].

Corollary 2 (Empirical density of unlabeled datalynder the conditions of Theorem 1, for all
p € Px and large enoughn, with probability> 1 — 1/m, for all = € supfp) \ B, 3 X; € U s.t.
1Xi — z|| < Vdhp,.

Proof. From Theorem 1, for alk: € supfp) \ B, p(z) > p(x) — €m > Pmin — €m > 0, for m
sufficiently large. This implie3_"" | G(H,, (X; — x)) > 0, and3X; € U within \/dh,,, of z. O

Using the density estimation results, we now show that|ift> 6v/dh,,, then for allp € Py, all
pairs of pointsey, x2 € supgp)\ B and allD € D, for large enough, with probability> 1—1/m,

we haver,, x5 € D if and only if z; < z5. We establish this in two steps:

1.z € Do & D= x1 ¥4 2o @ Sincexr; andxy belong to different decision sets, all sequences
connectingr; andxs through unlabeled data points pass through a region whibier €i) the density

is zero and since the region is at lepgt> 6+/dh,,, wide, there cannot exist a sequence as defined
in Section 3 such thatz; — zj41| < 2V/dh,,, or (i) the density is positive. In the latter case,
the marginal density(x) jumps by at leasp,,;, One or more times along all sequences connecting
x1 andz,. Suppose the first jump occurs where decision/3etnds and another decision set
D’ # D begins (in the sequence). Then sideis at leasty| > 6v/dh,, wide, by Corollary 2

for all sequences connecting andz, through unlabeled data points, there exist points; in the
sequence that lie i \ B, D’ \ B, respectively, and|z; — z;|| < h,, logm. Since the density on
each decision set is Holdersmooth, we havép(z;) — p(z;)| > pmin — O((hy, logm)™in(a)),
Sincez;, z; ¢ B, using Theorem Up(z;) — p(z;)| > [p(z:) — p(2;)| — 2em > dp, TOr large enough
m. Thus,x; ¢ x».

2. 21,20 € D = 11 < x5 : SinceD has width atleasty| > 6v/dh,,,, there exists a region of width

> 2v/dh,,, contained inD \ B, and Corollary 2 implies that with probability 1 — 1/m, there exist
sequence(s) contained i\ B connectinge; andz, through2v/dh,,,-dense unlabeled data points.
Since the sequence is containedirand the density o® is Holder« smooth, we have for all points
2, zj in the sequence that satisfy; — 2;|| < b logm, [p(z;) — p(2;)| < O((hy, logm)™in(a)),
Sincez;, z; & B, using Theorem Up(z;) — p(z;)| < [p(2:) — p(2;)| + 2€, < dy,, foOr large enough

m. Thus,zy < 2. O

7.2 Proof of Corollary 1

Let ©; denote the event under which Lemma 1 holds. TR&Q{) < 1/m. Let Q. denote the
event that the test poinX’ and training dataX,,..., X, € £ don'tlie in B. ThenP(Q5) <
(n+1)P(B) < (n+ 1)pmaxVol(B) = O(nh,,). The last step follows from the definition of the set
BB and since the boundaries of the support sets are Lipséhiizfinite, and hence voB) = O(h,).

Now observe thatfpm essentially uses the clairvoyant knowledge of the decisiets D to
discern which labeled pointsy,..., X, are in the same decision set &. Condition-
ing on Q,Q,, Lemma 1 implies thatX X, € Diff X « X,;. Thus, we can define a

semi-supervised Iearnq?mn to be the same afpn except that instead of using clairvoyant
knowledge of whethetX, X; € D, fmn is based on whetheX «— X;. It follows that
Supp, () E[E (fm n)|Q1, Q2] = supp, ., 7)IE[ (fp n)], and since the excess risk is bounded:

SuprY(V) E[ (fm n)] < Suppxy (v) E[ (fm n)|Qla 92] + (@) (1/m + nh ) O

7.3 Density adaptive Regression results
1) Semi-Supervised Learning Upper Bound: The clairvoyant counterpart (ﬁn_,n(a:) is given as

p0(@) = fo.n0(@), Wherefp, . () = argminger S0, (Vi — f/(X,))?1,, x,ep+per(f), and
is a standard supervised learner that performs piecewigagmial fit on each decision set, where
the regression function is Holdersmooth. Lethp = % Y1 1x,ep. Itfollows [12] that

E[(f(X) ~ fpu(X))*Lxeplnp] < C (np/lognp) 7% .



Since E[(f(X) — fon(X)?] = Y pepEI(f(X) = fpu(X))*1xep|P(D), taking expecta-
tion overnp ~Binomial(n, P(D)) and summing over all decision sets recalling ti&f is a
finite constant, the overall error ¢fp,, scales ag—2*/(22+4) ignoring logarithmic factors. If
Iv| > C,(m/(logm)?)~1/?, using Corollary 1, the same performance bound holdg/for, pro-
videdm > n??. See [13] for further details. Ify| < C,(m/(logm)?)~/?, the decision sets are
not discernable using unlabeled data. Since the regrefsiation is piecewise Holdes-smooth
on each empirical decision set, Using Theorem 9 in [12] andlai analysis, an upper bound of
max{n~2¢/(etd) n=1/d} follows, which scales as~ /¢ whend > 2a/(2a — 1).

2) Supervised Learning Lower Bound: The formal minimax proof requires construction of a finite
subset of distributions i®xy () that are the hardest cases to distinguish based on a finiteerum
of labeled data, and relies on a Hellinger version of Assouad’s Lemma (Téex2.10 (iii) in [16]).
Complete details are given in [13]. Here we present the snmlition behind the minimax lower
bound ofn=1/¢ wheny < ¢,n='/4. In this case the decision boundaries can only be localized
to an accuracy of.~ /¢, the average spacing between labeled data points. Sindeotimearies
are Lipschitz, the expected volume that is incorrectlygrssil to any decision set is ¢;n =1/,
wherec; > 0 is a constant. Thus, if the expected excess risk at a poinistiacorrectly assigned
to a decision set can be greater than a constant 0, then the overall expected excess risk is
> c1con~ Y/, This is the case for both regression and binary classificatif v > c¢,n~'/¢, the
decision sets can be accurately discerned from the labeliedadone. In this case, it follows that
the minimax lower bound is equal to the minimax lower boundH@lder« smooth regression
functions, which is:n—22/(4+29) 'wherec > 0 is a constant [17].
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