
Synthetic Data Results
Meta-averages over 24 synthetic data sets created by fixing # tasks t=10, # features d=20
and varying r (the rank of       ), # items n, noise level, and observed rate
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Three Birds: Multi-label + Transduction + Imputation

Problem: 

Formally:                                
    
    Goals:   a. Predict missing labels        for               
        b. Impute missing features        for  

Low Rank Assumption for Semi-Supervised Learning

One Stone: Matrix Completion (MC)

How to handle the bias term? Two Formulations

Experimental Setup
• Goal: Evaluate MC as a tool for multi-label transductive classification with missing data

• Baselines (two-step approaches combining an imputation and prediction method): 
1. Imputation: FPC, EM with k-component mixture model, Mean imputation, or Zero imputation 
2. Prediction: Set of independent linear SVMs (one per label/task)

• Procedure: 10 trials with random selection of observed feature and label entries (and synthetic data)

Summary and Conclusions
• First work to simultaneously perform: 1) multi-label prediction, 2) transduction, and 3) feature imputation

• Novel low-rank SSL assumption leads to formulation as a matrix completion problem

• Introduced two algorithms (MC-b and MC-1) that outperform baselines on synthetic and real data

• Future work: Go beyond linear classification by explicit kernelization (e.g., using a polynomial kernel)
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Abstract

We pose transductive classification as a matrix completion problem. By assuming
the underlying matrix has a low rank, our formulation is able to handle three prob-
lems simultaneously: i) multi-label learning, where each item has more than one
label, ii) transduction, where most of these labels are unspecified, and iii) miss-
ing data, where a large number of features are missing. We obtained satisfactory
results on several real-world tasks, suggesting that the low rank assumption may
not be as restrictive as it seems. Our method allows for different loss functions to
apply on the feature and label entries of the matrix. The resulting nuclear norm
minimization problem is solved with a modified fixed-point continuation method
that is guaranteed to find the global optimum.

1 Introduction

Semi-supervised learning methods make assumptions about how unlabeled data can help in the
learning process, such as the manifold assumption (data lies on a low-dimensional manifold) and
the cluster assumption (classes are separated by low density regions) [4, 16]. In this work, we
present two transductive learning methods under the novel assumption that the feature-by-item and
label-by-item matrices are jointly low rank. This assumption effectively couples different label pre-
diction tasks, allowing us to implicitly use observed labels in one task to recover unobserved labels
in others. The same is true for imputing missing features. In fact, our methods learn in the diffi-
cult regime of multi-label transductive learning with missing data that one sometimes encounters in
practice. That is, each item is associated with many class labels, many of the items’ labels may be
unobserved (some items may be completely unlabeled across all labels), and many features may also
be unobserved. Our methods build upon recent advances in matrix completion, with efficient algo-
rithms to handle matrices with mixed real-valued features and discrete labels. We obtain promising
experimental results on a range of synthetic and real-world data.

2 Problem Formulation

Let x1 . . .xn ∈ Rd be feature vectors associated with n items. Let X = [x1 . . .xn] be the d × n
feature matrix whose columns are the items. Let there be t binary classification tasks, y1 . . .yn ∈
{−1, 1}t be the label vectors, andY = [y1 . . .yn] be the t× n label matrix. Entries inX orY can
be missing at random. Let ΩX be the index set of observed features in X, such that (i, j) ∈ ΩX if
and only if xij is observed. Similarly, letΩY be the index set of observed labels inY. Our main goal
is to predict the missing labels yij for (i, j) /∈ ΩY. Of course, this reduces to standard transductive
learning when t = 1, |ΩX| = nd (no missing features), and 1 < |ΩY| < n (some missing labels).
In our more general setting, as a side product we are also interested in imputing the missing features,
and de-noising the observed features, inX.
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ing data, where a large number of features are missing. We obtained satisfactory
results on several real-world tasks, suggesting that the low rank assumption may
not be as restrictive as it seems. Our method allows for different loss functions to
apply on the feature and label entries of the matrix. The resulting nuclear norm
minimization problem is solved with a modified fixed-point continuation method
that is guaranteed to find the global optimum.

1 Introduction

Semi-supervised learning methods make assumptions about how unlabeled data can help in the
learning process, such as the manifold assumption (data lies on a low-dimensional manifold) and
the cluster assumption (classes are separated by low density regions) [4, 16]. In this work, we
present two transductive learning methods under the novel assumption that the feature-by-item and
label-by-item matrices are jointly low rank. This assumption effectively couples different label pre-
diction tasks, allowing us to implicitly use observed labels in one task to recover unobserved labels
in others. The same is true for imputing missing features. In fact, our methods learn in the diffi-
cult regime of multi-label transductive learning with missing data that one sometimes encounters in
practice. That is, each item is associated with many class labels, many of the items’ labels may be
unobserved (some items may be completely unlabeled across all labels), and many features may also
be unobserved. Our methods build upon recent advances in matrix completion, with efficient algo-
rithms to handle matrices with mixed real-valued features and discrete labels. We obtain promising
experimental results on a range of synthetic and real-world data.

2 Problem Formulation

Let x1 . . .xn ∈ Rd be feature vectors associated with n items. Let X = [x1 . . .xn] be the d × n
feature matrix whose columns are the items. Let there be t binary classification tasks, y1 . . .yn ∈
{−1, 1}t be the label vectors, andY = [y1 . . .yn] be the t× n label matrix. Entries inX orY can
be missing at random. Let ΩX be the index set of observed features in X, such that (i, j) ∈ ΩX if
and only if xij is observed. Similarly, letΩY be the index set of observed labels inY. Our main goal
is to predict the missing labels yij for (i, j) /∈ ΩY. Of course, this reduces to standard transductive
learning when t = 1, |ΩX| = nd (no missing features), and 1 < |ΩY| < n (some missing labels).
In our more general setting, as a side product we are also interested in imputing the missing features,
and de-noising the observed features, inX.

1

Observe only the entries 
in index sets 

xij (i, j) /∈ ΩX

(3 birds)

Problem is ill-posed without further assumptions
Novel assumption: Feature-by-item matrix X and label-by-item matrix Y are jointly low rank

• X and Y jointly produced by an underlying low-rank matrix, coupling the tasks and the features

• Can implicitly use observed labels for one task to predict unobserved labels for another

• Similarly, observed features can help predict missing ones due to few underlying factors

Assumption in detail (in words):

1. Low rank pre-feature matrix

2. Soft labels via affine transformation

3. Noisy discrete labels

4. Noisy features 

5. Random masks reveal only:

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume that X and Y are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from a d × n low rank “pre”-feature matrix X0, with rank(X0) " min(d, n). The
actual feature matrixX is obtained by adding iid Gaussian noise to the entries ofX0: X = X0 + ε,

where εij ∼ N(0,σ2
ε ). Meanwhile, the t “soft” labels

(
y0
1j . . . y0

tj

)! ≡ y0
j ∈ Rt of item j are

produced by y0
j = Wx0

j + b, whereW is a t × d weight matrix, and b ∈ Rt is a bias vector. Let

Y0 =
[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined (t + d)× n matrix

[
Y0;X0

]
is low

rank too: rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual label yij ∈ {−1, 1} is generated randomly

via a sigmoid function: P (yij |y0
ij) = 1/

(
1 + exp(−yijy0

ij)
)
. Finally, two random masks ΩX,ΩY

are applied to expose only some of the entries inX andY, and we use ω to denote the percentage of
observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified by X,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then, X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the (t + d) × n stacked matrix
[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here, Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices (i, j) ∈ ΩX are with respect toX, such that i ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrix Z, we need to shift the row index by t
to skip the part forY0, and hence the constraints z(i+t)j = xij . The above formulation assumes that

there is no noise in the generation processes X0 → X and Y0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relax rank() with the convex nuclear norm ‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), where σk’s are the singular values of Z. The relationship between
rank(Z) and ‖Z‖∗ is analogous to that of $0-norm and $1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss function cx(z(i+t)j , xij). We choose the squared loss cx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise from Y0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss function cy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic loss cy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the bias b either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bias b ∈ Rt in addition to

Z ∈ R(t+d)×n, hence the name. Here, Z corresponds to the stacked matrix
[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)

2
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2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume that X and Y are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from a d × n low rank “pre”-feature matrix X0, with rank(X0) " min(d, n). The
actual feature matrixX is obtained by adding iid Gaussian noise to the entries ofX0: X = X0 + ε,

where εij ∼ N(0,σ2
ε ). Meanwhile, the t “soft” labels

(
y0
1j . . . y0

tj

)! ≡ y0
j ∈ Rt of item j are

produced by y0
j = Wx0

j + b, whereW is a t × d weight matrix, and b ∈ Rt is a bias vector. Let

Y0 =
[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined (t + d)× n matrix

[
Y0;X0

]
is low

rank too: rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual label yij ∈ {−1, 1} is generated randomly

via a sigmoid function: P (yij |y0
ij) = 1/

(
1 + exp(−yijy0

ij)
)
. Finally, two random masks ΩX,ΩY

are applied to expose only some of the entries inX andY, and we use ω to denote the percentage of
observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified by X,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then, X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the (t + d) × n stacked matrix
[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here, Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices (i, j) ∈ ΩX are with respect toX, such that i ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrix Z, we need to shift the row index by t
to skip the part forY0, and hence the constraints z(i+t)j = xij . The above formulation assumes that

there is no noise in the generation processes X0 → X and Y0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relax rank() with the convex nuclear norm ‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), where σk’s are the singular values of Z. The relationship between
rank(Z) and ‖Z‖∗ is analogous to that of $0-norm and $1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss function cx(z(i+t)j , xij). We choose the squared loss cx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise from Y0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss function cy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic loss cy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the bias b either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bias b ∈ Rt in addition to

Z ∈ R(t+d)×n, hence the name. Here, Z corresponds to the stacked matrix
[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)
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2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume that X and Y are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from a d × n low rank “pre”-feature matrix X0, with rank(X0) " min(d, n). The
actual feature matrixX is obtained by adding iid Gaussian noise to the entries ofX0: X = X0 + ε,

where εij ∼ N(0,σ2
ε ). Meanwhile, the t “soft” labels

(
y0
1j . . . y0

tj

)! ≡ y0
j ∈ Rt of item j are

produced by y0
j = Wx0

j + b, whereW is a t × d weight matrix, and b ∈ Rt is a bias vector. Let

Y0 =
[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined (t + d)× n matrix

[
Y0;X0

]
is low

rank too: rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual label yij ∈ {−1, 1} is generated randomly

via a sigmoid function: P (yij |y0
ij) = 1/

(
1 + exp(−yijy0

ij)
)
. Finally, two random masks ΩX,ΩY

are applied to expose only some of the entries inX andY, and we use ω to denote the percentage of
observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified by X,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then, X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the (t + d) × n stacked matrix
[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here, Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices (i, j) ∈ ΩX are with respect toX, such that i ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrix Z, we need to shift the row index by t
to skip the part forY0, and hence the constraints z(i+t)j = xij . The above formulation assumes that

there is no noise in the generation processes X0 → X and Y0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relax rank() with the convex nuclear norm ‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), where σk’s are the singular values of Z. The relationship between
rank(Z) and ‖Z‖∗ is analogous to that of $0-norm and $1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss function cx(z(i+t)j , xij). We choose the squared loss cx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise from Y0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss function cy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic loss cy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the bias b either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bias b ∈ Rt in addition to

Z ∈ R(t+d)×n, hence the name. Here, Z corresponds to the stacked matrix
[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)

2

Y0 = WX0 + b1!

Y = Bernoulli(σ(Y0))

X = X0 + ε
xij ⇐⇒ (i, j) ∈ ΩX

yij ⇐⇒ (i, j) ∈ ΩY

εij ∼ N (0, σ2
ε )

Assumption in detail (in pictures):

X0
Y0

rank([Y0;X0]) ≤ rank(X0) + 1

rank([Y0;X0]) ≤ rank(X0) + 1

Combined (noise-free) 
matrix is also low rank
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2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume that X and Y are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from a d × n low rank “pre”-feature matrix X0, with rank(X0) " min(d, n). The
actual feature matrixX is obtained by adding iid Gaussian noise to the entries ofX0: X = X0 + ε,

where εij ∼ N(0,σ2
ε ). Meanwhile, the t “soft” labels

(
y0
1j . . . y0

tj

)! ≡ y0
j ∈ Rt of item j are

produced by y0
j = Wx0

j + b, whereW is a t × d weight matrix, and b ∈ Rt is a bias vector. Let

Y0 =
[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined (t + d)× n matrix

[
Y0;X0

]
is low

rank too: rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual label yij ∈ {−1, 1} is generated randomly

via a sigmoid function: P (yij |y0
ij) = 1/

(
1 + exp(−yijy0

ij)
)
. Finally, two random masks ΩX,ΩY

are applied to expose only some of the entries inX andY, and we use ω to denote the percentage of
observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified by X,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then, X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the (t + d) × n stacked matrix
[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here, Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices (i, j) ∈ ΩX are with respect toX, such that i ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrix Z, we need to shift the row index by t
to skip the part forY0, and hence the constraints z(i+t)j = xij . The above formulation assumes that

there is no noise in the generation processes X0 → X and Y0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relax rank() with the convex nuclear norm ‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), where σk’s are the singular values of Z. The relationship between
rank(Z) and ‖Z‖∗ is analogous to that of $0-norm and $1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss function cx(z(i+t)j , xij). We choose the squared loss cx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise from Y0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss function cy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic loss cy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the bias b either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bias b ∈ Rt in addition to

Z ∈ R(t+d)×n, hence the name. Here, Z corresponds to the stacked matrix
[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)
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2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume that X and Y are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from a d × n low rank “pre”-feature matrix X0, with rank(X0) " min(d, n). The
actual feature matrixX is obtained by adding iid Gaussian noise to the entries ofX0: X = X0 + ε,

where εij ∼ N(0,σ2
ε ). Meanwhile, the t “soft” labels

(
y0
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tj

)! ≡ y0
j ∈ Rt of item j are

produced by y0
j = Wx0

j + b, whereW is a t × d weight matrix, and b ∈ Rt is a bias vector. Let

Y0 =
[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined (t + d)× n matrix

[
Y0;X0

]
is low

rank too: rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual label yij ∈ {−1, 1} is generated randomly

via a sigmoid function: P (yij |y0
ij) = 1/

(
1 + exp(−yijy0

ij)
)
. Finally, two random masks ΩX,ΩY

are applied to expose only some of the entries inX andY, and we use ω to denote the percentage of
observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified by X,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then, X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the (t + d) × n stacked matrix
[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here, Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices (i, j) ∈ ΩX are with respect toX, such that i ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrix Z, we need to shift the row index by t
to skip the part forY0, and hence the constraints z(i+t)j = xij . The above formulation assumes that

there is no noise in the generation processes X0 → X and Y0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relax rank() with the convex nuclear norm ‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), where σk’s are the singular values of Z. The relationship between
rank(Z) and ‖Z‖∗ is analogous to that of $0-norm and $1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss function cx(z(i+t)j , xij). We choose the squared loss cx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise from Y0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss function cy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic loss cy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the bias b either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bias b ∈ Rt in addition to

Z ∈ R(t+d)×n, hence the name. Here, Z corresponds to the stacked matrix
[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)
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2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume that X and Y are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from a d × n low rank “pre”-feature matrix X0, with rank(X0) " min(d, n). The
actual feature matrixX is obtained by adding iid Gaussian noise to the entries ofX0: X = X0 + ε,

where εij ∼ N(0,σ2
ε ). Meanwhile, the t “soft” labels

(
y0
1j . . . y0

tj

)! ≡ y0
j ∈ Rt of item j are

produced by y0
j = Wx0

j + b, whereW is a t × d weight matrix, and b ∈ Rt is a bias vector. Let

Y0 =
[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined (t + d)× n matrix

[
Y0;X0

]
is low

rank too: rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual label yij ∈ {−1, 1} is generated randomly

via a sigmoid function: P (yij |y0
ij) = 1/

(
1 + exp(−yijy0

ij)
)
. Finally, two random masks ΩX,ΩY

are applied to expose only some of the entries inX andY, and we use ω to denote the percentage of
observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified by X,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then, X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the (t + d) × n stacked matrix
[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here, Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices (i, j) ∈ ΩX are with respect toX, such that i ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrix Z, we need to shift the row index by t
to skip the part forY0, and hence the constraints z(i+t)j = xij . The above formulation assumes that

there is no noise in the generation processes X0 → X and Y0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relax rank() with the convex nuclear norm ‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), where σk’s are the singular values of Z. The relationship between
rank(Z) and ‖Z‖∗ is analogous to that of $0-norm and $1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss function cx(z(i+t)j , xij). We choose the squared loss cx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise from Y0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss function cy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic loss cy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the bias b either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bias b ∈ Rt in addition to

Z ∈ R(t+d)×n, hence the name. Here, Z corresponds to the stacked matrix
[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)

2

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume that X and Y are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from a d × n low rank “pre”-feature matrix X0, with rank(X0) " min(d, n). The
actual feature matrixX is obtained by adding iid Gaussian noise to the entries ofX0: X = X0 + ε,
where εij ∼ N(0,σ2

ε ). Meanwhile, the t “soft” labels
(
y0
1j . . . y0

tj

)! ≡ y0
j ∈ Rt of item j are

produced by y0
j = Wx0

j + b, whereW is a t × d weight matrix, and b ∈ Rt is a bias vector. Let
Y0 =

[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined (t + d)× n matrix

[
Y0;X0

]
is low

rank too: rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual label yij ∈ {−1, 1} is generated randomly

via a sigmoid function: P (yij |y0
ij) = 1/

(
1 + exp(−yijy0

ij)
)
. Finally, two random masks ΩX,ΩYare applied to expose only some of the entries inX andY, and we use ω to denote the percentage of

observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified by X,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then, X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.
The key assumption is that the (t + d) × n stacked matrix

[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here, Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices (i, j) ∈ ΩX are with respect toX, such that i ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrix Z, we need to shift the row index by t
to skip the part forY0, and hence the constraints z(i+t)j = xij . The above formulation assumes that
there is no noise in the generation processes X0 → X and Y0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relax rank() with the convex nuclear norm ‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), where σk’s are the singular values of Z. The relationship between
rank(Z) and ‖Z‖∗ is analogous to that of $0-norm and $1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss function cx(z(i+t)j , xij). We choose the squared loss cx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise from Y0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss function cy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic loss cy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the bias b either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bias b ∈ Rt in addition to
Z ∈ R(t+d)×n, hence the name. Here, Z corresponds to the stacked matrix

[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)
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W is a
t × d we

ight
mat
rix,

and
b ∈ Rt is a

bias
vec
tor.

Let

Y
0 =

[ y01 . . .y
0
n

]
be t
he s

oft
labe

l ma
trix
. No

te th
e co

mbi
ned

(t + d)×
n m

atri
x
[ Y

0 ;X
0
]
is lo

w

rank
too:

rank(
[ Y

0 ;X
0
] ) ≤ rank(X

0 ) + 1. Th
e ac

tual
labe

l yij
∈ {−1, 1}

is g
ene
rate
d ra
ndo
mly

via
a si
gmo

id f
unc
tion

: P (yij
|y0ij)

= 1/
( 1 + exp(−yij

y0ij)
)
. Fi
nall
y, tw

o ra
ndo
m m

ask
s ΩX

,ΩY

are
app
lied

to e
xpo
se o

nly
som

e of
the
entr

ies
inX and

Y, an
d w
e us

e ω to
den
ote
the
perc

enta
ge o

f

obs
erve

d en
trie
s. T

his
gen
erat
ive
stor
y m
ay s

eem
rest
rict
ive,

but
our

app
roac

hes
bas
ed o

n it
perf

orm

wel
l on

syn
thet
ic a
nd r

eal
data

sets
, ou
tper

form
ing
seve

ral b
asel

ines
with

line
ar c
lass
ifier

s.

2.2
Ma
trix

Com
plet
ion
for
Het
ero
gen
eou
s M
atri
x E
ntr
ies

Wit
h th

e ab
ove

data
gen
erat
ion

mod
el,
our

task
can

be
defi
ned

as f
ollo
ws.

Giv
en
the

part
ially

obs
erve

d fe
atur

es a
nd l

abe
ls a
s sp

ecifi
ed b

y X,Y,ΩX
,ΩY

, we
wou

ld l
ike
to r
eco
ver

the
inte
rme

-

diat
e lo
w r
ank

mat
rix

[ Y
0 ;X

0
]
. Th

en,
X

0 will
con
tain

the
den
oise

d an
d co

mpl
eted

feat
ures

, an
d

sign(Y
0 ) wil

l co
ntai
n th
e co

mpl
eted

and
corr

ect
labe

ls.

The
key

assu
mpt

ion
is th

at th
e (t + d) ×

n st
ack
ed m

atri
x
[ Y

0 ;X
0
]
is o
f lo
w r
ank
. W

e w
ill s
tart

from
a “h

ard”
form

ulat
ion
that

is il
lust
rativ

e bu
t im

prac
tica
l, th

en r
elax

it.

argm
in

Z∈R(t+
d)×n

rank(Z)

(1)

s.t.
sign(zij

) = yij
, ∀(i

, j) ∈
ΩY

;
z(i+

t)j
= xij

, ∀(i
, j) ∈

ΩX

Her
e, Z

is m
ean
t to

reco
ver

[ Y
0 ;X

0
]
by d

irec
tly
min

imi
zing

the
rank

whi
le o
bey
ing

the
obs
erve

d

feat
ures

and
labe

ls. N
ote
the
indi

ces
(i, j)

∈ ΩX
are
with

resp
ect
toX, su

ch t
hat

i ∈ {1, . .
. , d}.

To

inde
x th
e co

rres
pon
ding

elem
ent
in th

e la
rger

stac
ked

mat
rix

Z, w
e ne

ed t
o sh

ift t
he r
ow
inde

x by
t

to s
kip
the
part

for
Y

0 , an
d he

nce
the
con
stra
ints

z(i+
t)j

= xij
. Th

e ab
ove

form
ulat
ion
assu

mes
that

ther
e is

no n
oise

in t
he g

ene
rati
on p

roce
sses

X
0 → X and

Y
0 → Y. O

f co
urse

, the
re a
re s
eve
ral

issu
es w

ith f
orm

ulat
ion
(1),

and
we
han
dle
them

as f
ollo
ws:

• rank() i
s a

non
-con

vex
fun
ctio
n a
nd
diffi

cult
to o

ptim
ize.

Fol
low
ing

rece
nt w

ork
in

mat
rix

com
plet
ion

[3,
2],

we
rela
x rank() w

ith
the

con
vex

nuc
lear

nor
m ‖Z‖∗

=

∑min(t+
d,n)

k=1

σk(Z
), wh

ere
σk’s

are
the

sing
ular

valu
es o

f Z.
The

rela
tion

ship
betw

een

rank(Z) and
‖Z‖∗

is a
nalo

gou
s to

that
of $

0 -no
rm
and

$1 -n
orm

for
vec
tors
.

• Th
ere
is fe

atur
e no

ise f
rom

X
0 toX. In

stea
d of

the
equ
ality

con
stra
ints

in (1
), w
e m
inim

ize

a lo
ss f
unc
tion

cx(z(i+
t)j

, xij
). W

e ch
oos
e th
e sq

uare
d lo

ss cx(u
, v) =

1
2
(u −

v)
2 in t

his

wor
k, b
ut o
ther

con
vex

loss
fun
ctio
ns a

re p
ossi

ble
too.

• Sim
ilar
ly, t

here
is la

bel
nois

e fr
om

Y
0 to Y. T

he o
bse
rved

labe
ls a
re o

f a
diff
eren

t ty
pe

than
the

obs
erve

d fe
atur

es.
We

ther
efor

e in
trod

uce
ano
ther

loss
fun
ctio
n cy(zij

, yij
) to

acc
oun
t fo
r th
e h
eter
oge
neo
us d

ata.
In t
his

wor
k, w

e u
se t
he
logi

stic
loss

cy(u, v)
=

log(1
+ exp(−uv)).

In a
ddit

ion
to th

ese
cha
nge
s, w

e w
ill m

ode
l the

bias
b eit

her
exp
licit

ly o
r im

plic
itly,

lead
ing

to tw
o

alte
rnat

ive
mat
rix
com

plet
ion
form

ulat
ions

belo
w.

For
mu
lati
on
1 (M

C-b
). In

this
form

ulat
ion,

we
exp
licit

ly o
ptim

ize
the
bias

b ∈ Rt in a
ddit

ion
to

Z ∈ R(t+
d)×n , he

nce
the
nam

e. H
ere,

Z co
rres
pon
ds t
o th

e st
ack
ed m

atri
x
[ WX

0 ;X
0
]
inst
ead

of

[ Y
0 ;X

0
]
, ma

king
it po

tent
ially

low
er r
ank
. Th

e op
tim
izat
ion
pro
blem

is

argm
in

Z,b

µ‖Z‖∗
+

λ

|ΩY
|

∑

(i,j
)∈ΩY

cy(zij
+ bi, yij

) +
1
|ΩX

|

∑

(i,j
)∈ΩX

cx(z(i+
t)j

, xij
),

(2)

2

,
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2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume that X and Y are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from a d × n low rank “pre”-feature matrix X0, with rank(X0) " min(d, n). The
actual feature matrixX is obtained by adding iid Gaussian noise to the entries ofX0: X = X0 + ε,

where εij ∼ N(0,σ2
ε ). Meanwhile, the t “soft” labels

(
y0
1j . . . y0

tj

)! ≡ y0
j ∈ Rt of item j are

produced by y0
j = Wx0

j + b, whereW is a t × d weight matrix, and b ∈ Rt is a bias vector. Let

Y0 =
[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined (t + d)× n matrix

[
Y0;X0

]
is low

rank too: rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual label yij ∈ {−1, 1} is generated randomly

via a sigmoid function: P (yij |y0
ij) = 1/

(
1 + exp(−yijy0

ij)
)
. Finally, two random masks ΩX,ΩY

are applied to expose only some of the entries inX andY, and we use ω to denote the percentage of
observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified by X,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then, X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the (t + d) × n stacked matrix
[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here, Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices (i, j) ∈ ΩX are with respect toX, such that i ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrix Z, we need to shift the row index by t
to skip the part forY0, and hence the constraints z(i+t)j = xij . The above formulation assumes that

there is no noise in the generation processes X0 → X and Y0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relax rank() with the convex nuclear norm ‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), where σk’s are the singular values of Z. The relationship between
rank(Z) and ‖Z‖∗ is analogous to that of $0-norm and $1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss function cx(z(i+t)j , xij). We choose the squared loss cx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise from Y0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss function cy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic loss cy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the bias b either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bias b ∈ Rt in addition to

Z ∈ R(t+d)×n, hence the name. Here, Z corresponds to the stacked matrix
[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)

2

Low rank, too
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2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume that X and Y are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from a d × n low rank “pre”-feature matrix X0, with rank(X0) " min(d, n). The
actual feature matrixX is obtained by adding iid Gaussian noise to the entries ofX0: X = X0 + ε,

where εij ∼ N(0,σ2
ε ). Meanwhile, the t “soft” labels

(
y0
1j . . . y0

tj

)! ≡ y0
j ∈ Rt of item j are

produced by y0
j = Wx0

j + b, whereW is a t × d weight matrix, and b ∈ Rt is a bias vector. Let

Y0 =
[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined (t + d)× n matrix

[
Y0;X0

]
is low

rank too: rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual label yij ∈ {−1, 1} is generated randomly

via a sigmoid function: P (yij |y0
ij) = 1/

(
1 + exp(−yijy0

ij)
)
. Finally, two random masks ΩX,ΩY

are applied to expose only some of the entries inX andY, and we use ω to denote the percentage of
observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified by X,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then, X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the (t + d) × n stacked matrix
[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here, Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices (i, j) ∈ ΩX are with respect toX, such that i ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrix Z, we need to shift the row index by t
to skip the part forY0, and hence the constraints z(i+t)j = xij . The above formulation assumes that

there is no noise in the generation processes X0 → X and Y0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relax rank() with the convex nuclear norm ‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), where σk’s are the singular values of Z. The relationship between
rank(Z) and ‖Z‖∗ is analogous to that of $0-norm and $1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss function cx(z(i+t)j , xij). We choose the squared loss cx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise from Y0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss function cy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic loss cy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the bias b either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bias b ∈ Rt in addition to

Z ∈ R(t+d)×n, hence the name. Here, Z corresponds to the stacked matrix
[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)

2

P (yij | y0
ij) =

1
1 + e−yijy0

ij

σ(·)
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2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume that X and Y are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from a d × n low rank “pre”-feature matrix X0, with rank(X0) " min(d, n). The
actual feature matrixX is obtained by adding iid Gaussian noise to the entries ofX0: X = X0 + ε,

where εij ∼ N(0,σ2
ε ). Meanwhile, the t “soft” labels

(
y0
1j . . . y0

tj

)! ≡ y0
j ∈ Rt of item j are

produced by y0
j = Wx0

j + b, whereW is a t × d weight matrix, and b ∈ Rt is a bias vector. Let

Y0 =
[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined (t + d)× n matrix

[
Y0;X0

]
is low

rank too: rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual label yij ∈ {−1, 1} is generated randomly

via a sigmoid function: P (yij |y0
ij) = 1/

(
1 + exp(−yijy0

ij)
)
. Finally, two random masks ΩX,ΩY

are applied to expose only some of the entries inX andY, and we use ω to denote the percentage of
observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified by X,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then, X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the (t + d) × n stacked matrix
[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here, Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices (i, j) ∈ ΩX are with respect toX, such that i ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrix Z, we need to shift the row index by t
to skip the part forY0, and hence the constraints z(i+t)j = xij . The above formulation assumes that

there is no noise in the generation processes X0 → X and Y0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relax rank() with the convex nuclear norm ‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), where σk’s are the singular values of Z. The relationship between
rank(Z) and ‖Z‖∗ is analogous to that of $0-norm and $1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss function cx(z(i+t)j , xij). We choose the squared loss cx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise from Y0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss function cy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic loss cy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the bias b either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bias b ∈ Rt in addition to

Z ∈ R(t+d)×n, hence the name. Here, Z corresponds to the stacked matrix
[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)

2
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2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume that X and Y are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from a d × n low rank “pre”-feature matrix X0, with rank(X0) " min(d, n). The
actual feature matrixX is obtained by adding iid Gaussian noise to the entries ofX0: X = X0 + ε,

where εij ∼ N(0,σ2
ε ). Meanwhile, the t “soft” labels

(
y0
1j . . . y0

tj

)! ≡ y0
j ∈ Rt of item j are

produced by y0
j = Wx0

j + b, whereW is a t × d weight matrix, and b ∈ Rt is a bias vector. Let

Y0 =
[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined (t + d)× n matrix

[
Y0;X0

]
is low

rank too: rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual label yij ∈ {−1, 1} is generated randomly

via a sigmoid function: P (yij |y0
ij) = 1/

(
1 + exp(−yijy0

ij)
)
. Finally, two random masks ΩX,ΩY

are applied to expose only some of the entries inX andY, and we use ω to denote the percentage of
observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified by X,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then, X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the (t + d) × n stacked matrix
[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here, Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices (i, j) ∈ ΩX are with respect toX, such that i ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrix Z, we need to shift the row index by t
to skip the part forY0, and hence the constraints z(i+t)j = xij . The above formulation assumes that

there is no noise in the generation processes X0 → X and Y0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relax rank() with the convex nuclear norm ‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), where σk’s are the singular values of Z. The relationship between
rank(Z) and ‖Z‖∗ is analogous to that of $0-norm and $1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss function cx(z(i+t)j , xij). We choose the squared loss cx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise from Y0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss function cy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic loss cy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the bias b either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bias b ∈ Rt in addition to

Z ∈ R(t+d)×n, hence the name. Here, Z corresponds to the stacked matrix
[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)

2

xij = x0
ij + εij ∼ N (0, σ2
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Abstract

We pose transductive classification as a matrix completion problem. By assuming
the underlying matrix has a low rank, our formulation is able to handle three prob-
lems simultaneously: i) multi-label learning, where each item has more than one
label, ii) transduction, where most of these labels are unspecified, and iii) miss-
ing data, where a large number of features are missing. We obtained satisfactory
results on several real-world tasks, suggesting that the low rank assumption may
not be as restrictive as it seems. Our method allows for different loss functions to
apply on the feature and label entries of the matrix. The resulting nuclear norm
minimization problem is solved with a modified fixed-point continuation method
that is guaranteed to find the global optimum.

1 Introduction

Semi-supervised learning methods make assumptions about how unlabeled data can help in the
learning process, such as the manifold assumption (data lies on a low-dimensional manifold) and
the cluster assumption (classes are separated by low density regions) [4, 16]. In this work, we
present two transductive learning methods under the novel assumption that the feature-by-item and
label-by-item matrices are jointly low rank. This assumption effectively couples different label pre-
diction tasks, allowing us to implicitly use observed labels in one task to recover unobserved labels
in others. The same is true for imputing missing features. In fact, our methods learn in the diffi-
cult regime of multi-label transductive learning with missing data that one sometimes encounters in
practice. That is, each item is associated with many class labels, many of the items’ labels may be
unobserved (some items may be completely unlabeled across all labels), and many features may also
be unobserved. Our methods build upon recent advances in matrix completion, with efficient algo-
rithms to handle matrices with mixed real-valued features and discrete labels. We obtain promising
experimental results on a range of synthetic and real-world data.

2 Problem Formulation

Let x1 . . .xn ∈ Rd be feature vectors associated with n items. Let X = [x1 . . .xn] be the d × n
feature matrix whose columns are the items. Let there be t binary classification tasks, y1 . . .yn ∈
{−1, 1}t be the label vectors, andY = [y1 . . .yn] be the t× n label matrix. Entries inX orY can
be missing at random. Let ΩX be the index set of observed features in X, such that (i, j) ∈ ΩX if
and only if xij is observed. Similarly, letΩY be the index set of observed labels inY. Our main goal
is to predict the missing labels yij for (i, j) /∈ ΩY. Of course, this reduces to standard transductive
learning when t = 1, |ΩX| = nd (no missing features), and 1 < |ΩY| < n (some missing labels).
In our more general setting, as a side product we are also interested in imputing the missing features,
and de-noising the observed features, inX.
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We pose transductive classification as a matrix completion problem. By assuming
the underlying matrix has a low rank, our formulation is able to handle three prob-
lems simultaneously: i) multi-label learning, where each item has more than one
label, ii) transduction, where most of these labels are unspecified, and iii) miss-
ing data, where a large number of features are missing. We obtained satisfactory
results on several real-world tasks, suggesting that the low rank assumption may
not be as restrictive as it seems. Our method allows for different loss functions to
apply on the feature and label entries of the matrix. The resulting nuclear norm
minimization problem is solved with a modified fixed-point continuation method
that is guaranteed to find the global optimum.

1 Introduction

Semi-supervised learning methods make assumptions about how unlabeled data can help in the
learning process, such as the manifold assumption (data lies on a low-dimensional manifold) and
the cluster assumption (classes are separated by low density regions) [4, 16]. In this work, we
present two transductive learning methods under the novel assumption that the feature-by-item and
label-by-item matrices are jointly low rank. This assumption effectively couples different label pre-
diction tasks, allowing us to implicitly use observed labels in one task to recover unobserved labels
in others. The same is true for imputing missing features. In fact, our methods learn in the diffi-
cult regime of multi-label transductive learning with missing data that one sometimes encounters in
practice. That is, each item is associated with many class labels, many of the items’ labels may be
unobserved (some items may be completely unlabeled across all labels), and many features may also
be unobserved. Our methods build upon recent advances in matrix completion, with efficient algo-
rithms to handle matrices with mixed real-valued features and discrete labels. We obtain promising
experimental results on a range of synthetic and real-world data.

2 Problem Formulation

Let x1 . . .xn ∈ Rd be feature vectors associated with n items. Let X = [x1 . . .xn] be the d × n
feature matrix whose columns are the items. Let there be t binary classification tasks, y1 . . .yn ∈
{−1, 1}t be the label vectors, andY = [y1 . . .yn] be the t× n label matrix. Entries inX orY can
be missing at random. Let ΩX be the index set of observed features in X, such that (i, j) ∈ ΩX if
and only if xij is observed. Similarly, letΩY be the index set of observed labels inY. Our main goal
is to predict the missing labels yij for (i, j) /∈ ΩY. Of course, this reduces to standard transductive
learning when t = 1, |ΩX| = nd (no missing features), and 1 < |ΩY| < n (some missing labels).
In our more general setting, as a side product we are also interested in imputing the missing features,
and de-noising the observed features, inX.
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2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume that X and Y are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from a d × n low rank “pre”-feature matrix X0, with rank(X0) " min(d, n). The
actual feature matrixX is obtained by adding iid Gaussian noise to the entries ofX0: X = X0 + ε,

where εij ∼ N(0,σ2
ε ). Meanwhile, the t “soft” labels

(
y0
1j . . . y0

tj

)! ≡ y0
j ∈ Rt of item j are

produced by y0
j = Wx0

j + b, whereW is a t × d weight matrix, and b ∈ Rt is a bias vector. Let

Y0 =
[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined (t + d)× n matrix

[
Y0;X0

]
is low

rank too: rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual label yij ∈ {−1, 1} is generated randomly

via a sigmoid function: P (yij |y0
ij) = 1/

(
1 + exp(−yijy0

ij)
)
. Finally, two random masks ΩX,ΩY

are applied to expose only some of the entries inX andY, and we use ω to denote the percentage of
observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified by X,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then, X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the (t + d) × n stacked matrix
[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here, Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices (i, j) ∈ ΩX are with respect toX, such that i ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrix Z, we need to shift the row index by t
to skip the part forY0, and hence the constraints z(i+t)j = xij . The above formulation assumes that

there is no noise in the generation processes X0 → X and Y0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relax rank() with the convex nuclear norm ‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), where σk’s are the singular values of Z. The relationship between
rank(Z) and ‖Z‖∗ is analogous to that of $0-norm and $1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss function cx(z(i+t)j , xij). We choose the squared loss cx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise from Y0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss function cy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic loss cy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the bias b either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bias b ∈ Rt in addition to

Z ∈ R(t+d)×n, hence the name. Here, Z corresponds to the stacked matrix
[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)
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2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume that X and Y are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from a d × n low rank “pre”-feature matrix X0, with rank(X0) " min(d, n). The
actual feature matrixX is obtained by adding iid Gaussian noise to the entries ofX0: X = X0 + ε,

where εij ∼ N(0,σ2
ε ). Meanwhile, the t “soft” labels

(
y0
1j . . . y0

tj

)! ≡ y0
j ∈ Rt of item j are

produced by y0
j = Wx0

j + b, whereW is a t × d weight matrix, and b ∈ Rt is a bias vector. Let

Y0 =
[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined (t + d)× n matrix

[
Y0;X0

]
is low

rank too: rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual label yij ∈ {−1, 1} is generated randomly

via a sigmoid function: P (yij |y0
ij) = 1/

(
1 + exp(−yijy0

ij)
)
. Finally, two random masks ΩX,ΩY

are applied to expose only some of the entries inX andY, and we use ω to denote the percentage of
observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified by X,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then, X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the (t + d) × n stacked matrix
[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here, Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices (i, j) ∈ ΩX are with respect toX, such that i ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrix Z, we need to shift the row index by t
to skip the part forY0, and hence the constraints z(i+t)j = xij . The above formulation assumes that

there is no noise in the generation processes X0 → X and Y0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relax rank() with the convex nuclear norm ‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), where σk’s are the singular values of Z. The relationship between
rank(Z) and ‖Z‖∗ is analogous to that of $0-norm and $1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss function cx(z(i+t)j , xij). We choose the squared loss cx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise from Y0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss function cy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic loss cy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the bias b either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bias b ∈ Rt in addition to

Z ∈ R(t+d)×n, hence the name. Here, Z corresponds to the stacked matrix
[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)

2

But rank is non-convex! 
Relax with convex nuclear norm: 

min(t+d,n)∑

k=1

σk(Z)‖Z‖∗ =

But features and labels are noisy! Use loss functions.

Squared loss for features:
Logistic loss for labels:

cx(u, v) =
1
2
(u− v)2

cy(u, v) = log(1 + exp(−uv))
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2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume that X and Y are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from a d × n low rank “pre”-feature matrix X0, with rank(X0) " min(d, n). The
actual feature matrixX is obtained by adding iid Gaussian noise to the entries ofX0: X = X0 + ε,

where εij ∼ N(0,σ2
ε ). Meanwhile, the t “soft” labels

(
y0
1j . . . y0

tj

)! ≡ y0
j ∈ Rt of item j are

produced by y0
j = Wx0

j + b, whereW is a t × d weight matrix, and b ∈ Rt is a bias vector. Let

Y0 =
[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined (t + d)× n matrix

[
Y0;X0

]
is low

rank too: rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual label yij ∈ {−1, 1} is generated randomly

via a sigmoid function: P (yij |y0
ij) = 1/

(
1 + exp(−yijy0

ij)
)
. Finally, two random masks ΩX,ΩY

are applied to expose only some of the entries inX andY, and we use ω to denote the percentage of
observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified by X,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then, X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the (t + d) × n stacked matrix
[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here, Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices (i, j) ∈ ΩX are with respect toX, such that i ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrix Z, we need to shift the row index by t
to skip the part forY0, and hence the constraints z(i+t)j = xij . The above formulation assumes that

there is no noise in the generation processes X0 → X and Y0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relax rank() with the convex nuclear norm ‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), where σk’s are the singular values of Z. The relationship between
rank(Z) and ‖Z‖∗ is analogous to that of $0-norm and $1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss function cx(z(i+t)j , xij). We choose the squared loss cx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise from Y0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss function cy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic loss cy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the bias b either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bias b ∈ Rt in addition to

Z ∈ R(t+d)×n, hence the name. Here, Z corresponds to the stacked matrix
[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)
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2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume that X and Y are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from a d × n low rank “pre”-feature matrix X0, with rank(X0) " min(d, n). The
actual feature matrixX is obtained by adding iid Gaussian noise to the entries ofX0: X = X0 + ε,

where εij ∼ N(0,σ2
ε ). Meanwhile, the t “soft” labels

(
y0
1j . . . y0

tj

)! ≡ y0
j ∈ Rt of item j are

produced by y0
j = Wx0

j + b, whereW is a t × d weight matrix, and b ∈ Rt is a bias vector. Let

Y0 =
[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined (t + d)× n matrix

[
Y0;X0

]
is low

rank too: rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual label yij ∈ {−1, 1} is generated randomly

via a sigmoid function: P (yij |y0
ij) = 1/

(
1 + exp(−yijy0

ij)
)
. Finally, two random masks ΩX,ΩY

are applied to expose only some of the entries inX andY, and we use ω to denote the percentage of
observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified by X,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then, X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the (t + d) × n stacked matrix
[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here, Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices (i, j) ∈ ΩX are with respect toX, such that i ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrix Z, we need to shift the row index by t
to skip the part forY0, and hence the constraints z(i+t)j = xij . The above formulation assumes that

there is no noise in the generation processes X0 → X and Y0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relax rank() with the convex nuclear norm ‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), where σk’s are the singular values of Z. The relationship between
rank(Z) and ‖Z‖∗ is analogous to that of $0-norm and $1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss function cx(z(i+t)j , xij). We choose the squared loss cx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise from Y0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss function cy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic loss cy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the bias b either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bias b ∈ Rt in addition to

Z ∈ R(t+d)×n, hence the name. Here, Z corresponds to the stacked matrix
[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)
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2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume that X and Y are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from a d × n low rank “pre”-feature matrix X0, with rank(X0) " min(d, n). The
actual feature matrixX is obtained by adding iid Gaussian noise to the entries ofX0: X = X0 + ε,

where εij ∼ N(0,σ2
ε ). Meanwhile, the t “soft” labels

(
y0
1j . . . y0

tj

)! ≡ y0
j ∈ Rt of item j are

produced by y0
j = Wx0

j + b, whereW is a t × d weight matrix, and b ∈ Rt is a bias vector. Let

Y0 =
[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined (t + d)× n matrix

[
Y0;X0

]
is low

rank too: rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual label yij ∈ {−1, 1} is generated randomly

via a sigmoid function: P (yij |y0
ij) = 1/

(
1 + exp(−yijy0

ij)
)
. Finally, two random masks ΩX,ΩY

are applied to expose only some of the entries inX andY, and we use ω to denote the percentage of
observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified by X,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then, X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the (t + d) × n stacked matrix
[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here, Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices (i, j) ∈ ΩX are with respect toX, such that i ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrix Z, we need to shift the row index by t
to skip the part forY0, and hence the constraints z(i+t)j = xij . The above formulation assumes that

there is no noise in the generation processes X0 → X and Y0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relax rank() with the convex nuclear norm ‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), where σk’s are the singular values of Z. The relationship between
rank(Z) and ‖Z‖∗ is analogous to that of $0-norm and $1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss function cx(z(i+t)j , xij). We choose the squared loss cx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise from Y0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss function cy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic loss cy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the bias b either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bias b ∈ Rt in addition to

Z ∈ R(t+d)×n, hence the name. Here, Z corresponds to the stacked matrix
[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)
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2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume that X and Y are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from a d × n low rank “pre”-feature matrix X0, with rank(X0) " min(d, n). The
actual feature matrixX is obtained by adding iid Gaussian noise to the entries ofX0: X = X0 + ε,

where εij ∼ N(0,σ2
ε ). Meanwhile, the t “soft” labels

(
y0
1j . . . y0

tj

)! ≡ y0
j ∈ Rt of item j are

produced by y0
j = Wx0

j + b, whereW is a t × d weight matrix, and b ∈ Rt is a bias vector. Let

Y0 =
[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined (t + d)× n matrix

[
Y0;X0

]
is low

rank too: rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual label yij ∈ {−1, 1} is generated randomly

via a sigmoid function: P (yij |y0
ij) = 1/

(
1 + exp(−yijy0

ij)
)
. Finally, two random masks ΩX,ΩY

are applied to expose only some of the entries inX andY, and we use ω to denote the percentage of
observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified by X,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then, X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the (t + d) × n stacked matrix
[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here, Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices (i, j) ∈ ΩX are with respect toX, such that i ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrix Z, we need to shift the row index by t
to skip the part forY0, and hence the constraints z(i+t)j = xij . The above formulation assumes that

there is no noise in the generation processes X0 → X and Y0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relax rank() with the convex nuclear norm ‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), where σk’s are the singular values of Z. The relationship between
rank(Z) and ‖Z‖∗ is analogous to that of $0-norm and $1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss function cx(z(i+t)j , xij). We choose the squared loss cx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise from Y0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss function cy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic loss cy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the bias b either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bias b ∈ Rt in addition to

Z ∈ R(t+d)×n, hence the name. Here, Z corresponds to the stacked matrix
[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)

2

s.t.

Y0 = WX0 + b1!

Y0 = WX0

• Nuclear norm MC assumes that 
rows of labels can be recovered 
as linear combinations of rows of 
features (                        ) 

• Need special handling to account 
for the bias vector b 
(as in                                     )

• Can model b explicitly or implicitly

MC-b (explicit) MC-1 (implicit)
Optimization variables

Z

How to predict 
task-i label of item j

Optimization method Fixed Point Continuation
(gradient + shrinkage)

FPC (gradient + 
shrinkage + projection)

Convergence 
guarantee

Yes, with appropriately 
chosen step size

No, but converges 
in practice
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2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume that X and Y are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from a d × n low rank “pre”-feature matrix X0, with rank(X0) " min(d, n). The
actual feature matrixX is obtained by adding iid Gaussian noise to the entries ofX0: X = X0 + ε,

where εij ∼ N(0,σ2
ε ). Meanwhile, the t “soft” labels

(
y0
1j . . . y0

tj

)! ≡ y0
j ∈ Rt of item j are

produced by y0
j = Wx0

j + b, whereW is a t × d weight matrix, and b ∈ Rt is a bias vector. Let

Y0 =
[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined (t + d)× n matrix

[
Y0;X0

]
is low

rank too: rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual label yij ∈ {−1, 1} is generated randomly

via a sigmoid function: P (yij |y0
ij) = 1/

(
1 + exp(−yijy0

ij)
)
. Finally, two random masks ΩX,ΩY

are applied to expose only some of the entries inX andY, and we use ω to denote the percentage of
observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified by X,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then, X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the (t + d) × n stacked matrix
[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here, Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices (i, j) ∈ ΩX are with respect toX, such that i ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrix Z, we need to shift the row index by t
to skip the part forY0, and hence the constraints z(i+t)j = xij . The above formulation assumes that

there is no noise in the generation processes X0 → X and Y0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relax rank() with the convex nuclear norm ‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), where σk’s are the singular values of Z. The relationship between
rank(Z) and ‖Z‖∗ is analogous to that of $0-norm and $1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss function cx(z(i+t)j , xij). We choose the squared loss cx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise from Y0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss function cy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic loss cy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the bias b either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bias b ∈ Rt in addition to

Z ∈ R(t+d)×n, hence the name. Here, Z corresponds to the stacked matrix
[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)

2

Z ∈ R(t+d)×n,b ∈ Rt
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where µ,λ are positive trade-off weights. Notice the bias b is not regularized. This is a convex
problem, whose optimization procedure will be discussed in section 3. Once the optimal Z,b are
found, we recover the task-i label of item j by sign(zij + bi), and feature k of item j by z(k+t)j .

Formulation 2 (MC-1). In this formulation, the bias is modeled implicitly within Z. Similar to how
bias is commonly handled in linear classifiers, we append an additional feature with constant value
one to each item. The corresponding pre-feature matrix is augmented into

[
X0;1!

]
, where 1 is the

all-1 vector. Under the same label assumption y0
j = Wx0

j + b, the rows of the soft label matrix
Y0 are linear combinations of rows in

[
X0;1!

]
, i.e., rank(

[
Y0;X0;1!

]
) = rank(

[
X0;1!

]
). We

then let Z correspond to the (t + d + 1)×n stacked matrix
[
Y0;X0;1!

]
, by forcing its last row to

be 1! (hence the name):

argmin
Z∈R(t+d+1)×n

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij , yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij) (3)

s.t. z(t+d+1)· = 1!.

This is a constrained convex optimization problem. Once the optimal Z is found, we recover the
task-i label of item j by sign(zij), and feature k of item j by z(k+t)j .

MC-b andMC-1 differ mainly in what is inZ, which leads to different behaviors of the nuclear norm.
Despite the generative story, we do not explicitly recover the weight matrixW in these formulations.
Other formulations are certainly possible. One way is to let Z correspond to

[
Y0;X0

]
directly,

without introducing bias b or the all-1 row, and hope nuclear norm minimization will prevail. This
is inferior in our preliminary experiments, and we do not explore it further in this paper.

3 Optimization Techniques

We solveMC-b andMC-1 using modifications of the Fixed Point Continuation (FPC) method of Ma,
Goldfarb, and Chen [10].1 While nuclear norm minimization can be converted into a semidefinite
programming (SDP) problem [2], current SDP solvers are severely limited in the size of problems
they can solve. Instead, the basic fixed point approach is a computationally efficient alternative,
which provably converges to the globally optimal solution and has been shown to outperform SDP
solvers in terms of matrix recoverability.

3.1 Fixed Point Continuation for MC-b

We first describe our modified FPC method for MC-b. It differs from [10] in the extra bias variables
and multiple loss functions. Our fixed point iterative algorithm to solve the unconstrained problem
of (2) consists of two alternating steps for each iteration k:

1. (gradient step) bk+1 = bk − τbg(bk),Ak = Zk − τZg(Zk)
2. (shrinkage step) Zk+1 = SτZµ(Ak).

In the gradient step, τb and τZ are step sizes whose choice will be discussed next. Overloading
notation a bit, g(bk) is the vector gradient, and g(Zk) is the matrix gradient, respectively, of the two
loss terms in (2) (i.e., excluding the nuclear norm term):

g(bi) =
λ

|ΩY|
∑

j:(i,j)∈ΩY

−yij

1 + exp(yij(zij + bi))
(4)

g(zij) =






λ
|ΩY|

−yij

1+exp(yij(zij+bi))
, i ≤ t and (i, j) ∈ ΩY

1
|ΩX| (zij − x(i−t)j), i > t and (i− t, j) ∈ ΩX

0, otherwise

(5)

Note for g(zij), i > t, we need to shift down (un-stack) the row index by t in order to map the
element in Z back to the item x(i−t)j .

1While the primary method of [10] is Fixed Point Continuation with Approximate Singular Value Decom-
position (FPCA), where the approximate SVD is used to speed up the algorithm, we opt to use an exact SVD
for simplicity and will refer to the method simply as FPC.
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where µ,λ are positive trade-off weights. Notice the bias b is not regularized. This is a convex
problem, whose optimization procedure will be discussed in section 3. Once the optimal Z,b are
found, we recover the task-i label of item j by sign(zij + bi), and feature k of item j by z(k+t)j .

Formulation 2 (MC-1). In this formulation, the bias is modeled implicitly within Z. Similar to how
bias is commonly handled in linear classifiers, we append an additional feature with constant value
one to each item. The corresponding pre-feature matrix is augmented into

[
X0;1!

]
, where 1 is the

all-1 vector. Under the same label assumption y0
j = Wx0

j + b, the rows of the soft label matrix
Y0 are linear combinations of rows in

[
X0;1!

]
, i.e., rank(

[
Y0;X0;1!

]
) = rank(

[
X0;1!

]
). We

then let Z correspond to the (t + d + 1)×n stacked matrix
[
Y0;X0;1!

]
, by forcing its last row to

be 1! (hence the name):

argmin
Z∈R(t+d+1)×n

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij , yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij) (3)

s.t. z(t+d+1)· = 1!.

This is a constrained convex optimization problem. Once the optimal Z is found, we recover the
task-i label of item j by sign(zij), and feature k of item j by z(k+t)j .

MC-b andMC-1 differ mainly in what is inZ, which leads to different behaviors of the nuclear norm.
Despite the generative story, we do not explicitly recover the weight matrixW in these formulations.
Other formulations are certainly possible. One way is to let Z correspond to

[
Y0;X0

]
directly,

without introducing bias b or the all-1 row, and hope nuclear norm minimization will prevail. This
is inferior in our preliminary experiments, and we do not explore it further in this paper.

3 Optimization Techniques

We solveMC-b andMC-1 using modifications of the Fixed Point Continuation (FPC) method of Ma,
Goldfarb, and Chen [10].1 While nuclear norm minimization can be converted into a semidefinite
programming (SDP) problem [2], current SDP solvers are severely limited in the size of problems
they can solve. Instead, the basic fixed point approach is a computationally efficient alternative,
which provably converges to the globally optimal solution and has been shown to outperform SDP
solvers in terms of matrix recoverability.

3.1 Fixed Point Continuation for MC-b

We first describe our modified FPC method for MC-b. It differs from [10] in the extra bias variables
and multiple loss functions. Our fixed point iterative algorithm to solve the unconstrained problem
of (2) consists of two alternating steps for each iteration k:

1. (gradient step) bk+1 = bk − τbg(bk),Ak = Zk − τZg(Zk)
2. (shrinkage step) Zk+1 = SτZµ(Ak).

In the gradient step, τb and τZ are step sizes whose choice will be discussed next. Overloading
notation a bit, g(bk) is the vector gradient, and g(Zk) is the matrix gradient, respectively, of the two
loss terms in (2) (i.e., excluding the nuclear norm term):

g(bi) =
λ

|ΩY|
∑

j:(i,j)∈ΩY

−yij

1 + exp(yij(zij + bi))
(4)

g(zij) =






λ
|ΩY|

−yij

1+exp(yij(zij+bi))
, i ≤ t and (i, j) ∈ ΩY

1
|ΩX| (zij − x(i−t)j), i > t and (i− t, j) ∈ ΩX

0, otherwise

(5)

Note for g(zij), i > t, we need to shift down (un-stack) the row index by t in order to map the
element in Z back to the item x(i−t)j .

1While the primary method of [10] is Fixed Point Continuation with Approximate Singular Value Decom-
position (FPCA), where the approximate SVD is used to speed up the algorithm, we opt to use an exact SVD
for simplicity and will refer to the method simply as FPC.
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where µ,λ are positive trade-off weights. Notice the bias b is not regularized. This is a convex
problem, whose optimization procedure will be discussed in section 3. Once the optimal Z,b are
found, we recover the task-i label of item j by sign(zij + bi), and feature k of item j by z(k+t)j .

Formulation 2 (MC-1). In this formulation, the bias is modeled implicitly within Z. Similar to how
bias is commonly handled in linear classifiers, we append an additional feature with constant value
one to each item. The corresponding pre-feature matrix is augmented into

[
X0;1!

]
, where 1 is the

all-1 vector. Under the same label assumption y0
j = Wx0

j + b, the rows of the soft label matrix
Y0 are linear combinations of rows in

[
X0;1!

]
, i.e., rank(

[
Y0;X0;1!

]
) = rank(

[
X0;1!

]
). We

then let Z correspond to the (t + d + 1)×n stacked matrix
[
Y0;X0;1!

]
, by forcing its last row to

be 1! (hence the name):

argmin
Z∈R(t+d+1)×n

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij , yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij) (3)

s.t. z(t+d+1)· = 1!.

This is a constrained convex optimization problem. Once the optimal Z is found, we recover the
task-i label of item j by sign(zij), and feature k of item j by z(k+t)j .

MC-b andMC-1 differ mainly in what is inZ, which leads to different behaviors of the nuclear norm.
Despite the generative story, we do not explicitly recover the weight matrixW in these formulations.
Other formulations are certainly possible. One way is to let Z correspond to

[
Y0;X0

]
directly,

without introducing bias b or the all-1 row, and hope nuclear norm minimization will prevail. This
is inferior in our preliminary experiments, and we do not explore it further in this paper.

3 Optimization Techniques

We solveMC-b andMC-1 using modifications of the Fixed Point Continuation (FPC) method of Ma,
Goldfarb, and Chen [10].1 While nuclear norm minimization can be converted into a semidefinite
programming (SDP) problem [2], current SDP solvers are severely limited in the size of problems
they can solve. Instead, the basic fixed point approach is a computationally efficient alternative,
which provably converges to the globally optimal solution and has been shown to outperform SDP
solvers in terms of matrix recoverability.

3.1 Fixed Point Continuation for MC-b

We first describe our modified FPC method for MC-b. It differs from [10] in the extra bias variables
and multiple loss functions. Our fixed point iterative algorithm to solve the unconstrained problem
of (2) consists of two alternating steps for each iteration k:

1. (gradient step) bk+1 = bk − τbg(bk),Ak = Zk − τZg(Zk)
2. (shrinkage step) Zk+1 = SτZµ(Ak).

In the gradient step, τb and τZ are step sizes whose choice will be discussed next. Overloading
notation a bit, g(bk) is the vector gradient, and g(Zk) is the matrix gradient, respectively, of the two
loss terms in (2) (i.e., excluding the nuclear norm term):

g(bi) =
λ

|ΩY|
∑

j:(i,j)∈ΩY

−yij

1 + exp(yij(zij + bi))
(4)

g(zij) =






λ
|ΩY|

−yij

1+exp(yij(zij+bi))
, i ≤ t and (i, j) ∈ ΩY

1
|ΩX| (zij − x(i−t)j), i > t and (i− t, j) ∈ ΩX

0, otherwise

(5)

Note for g(zij), i > t, we need to shift down (un-stack) the row index by t in order to map the
element in Z back to the item x(i−t)j .

1While the primary method of [10] is Fixed Point Continuation with Approximate Singular Value Decom-
position (FPCA), where the approximate SVD is used to speed up the algorithm, we opt to use an exact SVD
for simplicity and will refer to the method simply as FPC.
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2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume that X and Y are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from a d × n low rank “pre”-feature matrix X0, with rank(X0) " min(d, n). The
actual feature matrixX is obtained by adding iid Gaussian noise to the entries ofX0: X = X0 + ε,

where εij ∼ N(0,σ2
ε ). Meanwhile, the t “soft” labels

(
y0
1j . . . y0

tj

)! ≡ y0
j ∈ Rt of item j are

produced by y0
j = Wx0

j + b, whereW is a t × d weight matrix, and b ∈ Rt is a bias vector. Let

Y0 =
[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined (t + d)× n matrix

[
Y0;X0

]
is low

rank too: rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual label yij ∈ {−1, 1} is generated randomly

via a sigmoid function: P (yij |y0
ij) = 1/

(
1 + exp(−yijy0

ij)
)
. Finally, two random masks ΩX,ΩY

are applied to expose only some of the entries inX andY, and we use ω to denote the percentage of
observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified by X,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then, X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the (t + d) × n stacked matrix
[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here, Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices (i, j) ∈ ΩX are with respect toX, such that i ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrix Z, we need to shift the row index by t
to skip the part forY0, and hence the constraints z(i+t)j = xij . The above formulation assumes that

there is no noise in the generation processes X0 → X and Y0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relax rank() with the convex nuclear norm ‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), where σk’s are the singular values of Z. The relationship between
rank(Z) and ‖Z‖∗ is analogous to that of $0-norm and $1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss function cx(z(i+t)j , xij). We choose the squared loss cx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise from Y0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss function cy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic loss cy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the bias b either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bias b ∈ Rt in addition to

Z ∈ R(t+d)×n, hence the name. Here, Z corresponds to the stacked matrix
[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)
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2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume that X and Y are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from a d × n low rank “pre”-feature matrix X0, with rank(X0) " min(d, n). The
actual feature matrixX is obtained by adding iid Gaussian noise to the entries ofX0: X = X0 + ε,

where εij ∼ N(0,σ2
ε ). Meanwhile, the t “soft” labels

(
y0
1j . . . y0

tj

)! ≡ y0
j ∈ Rt of item j are

produced by y0
j = Wx0

j + b, whereW is a t × d weight matrix, and b ∈ Rt is a bias vector. Let

Y0 =
[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined (t + d)× n matrix

[
Y0;X0

]
is low

rank too: rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual label yij ∈ {−1, 1} is generated randomly

via a sigmoid function: P (yij |y0
ij) = 1/

(
1 + exp(−yijy0

ij)
)
. Finally, two random masks ΩX,ΩY

are applied to expose only some of the entries inX andY, and we use ω to denote the percentage of
observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified by X,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then, X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the (t + d) × n stacked matrix
[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here, Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices (i, j) ∈ ΩX are with respect toX, such that i ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrix Z, we need to shift the row index by t
to skip the part forY0, and hence the constraints z(i+t)j = xij . The above formulation assumes that

there is no noise in the generation processes X0 → X and Y0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relax rank() with the convex nuclear norm ‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), where σk’s are the singular values of Z. The relationship between
rank(Z) and ‖Z‖∗ is analogous to that of $0-norm and $1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss function cx(z(i+t)j , xij). We choose the squared loss cx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise from Y0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss function cy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic loss cy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the bias b either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bias b ∈ Rt in addition to

Z ∈ R(t+d)×n, hence the name. Here, Z corresponds to the stacked matrix
[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)

2
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where µ,λ are positive trade-off weights. Notice the bias b is not regularized. This is a convex
problem, whose optimization procedure will be discussed in section 3. Once the optimal Z,b are
found, we recover the task-i label of item j by sign(zij + bi), and feature k of item j by z(k+t)j .

Formulation 2 (MC-1). In this formulation, the bias is modeled implicitly within Z. Similar to how
bias is commonly handled in linear classifiers, we append an additional feature with constant value
one to each item. The corresponding pre-feature matrix is augmented into

[
X0;1!

]
, where 1 is the

all-1 vector. Under the same label assumption y0
j = Wx0

j + b, the rows of the soft label matrix
Y0 are linear combinations of rows in

[
X0;1!

]
, i.e., rank(

[
Y0;X0;1!

]
) = rank(

[
X0;1!

]
). We

then let Z correspond to the (t + d + 1)×n stacked matrix
[
Y0;X0;1!

]
, by forcing its last row to

be 1! (hence the name):

argmin
Z∈R(t+d+1)×n

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij , yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij) (3)

s.t. z(t+d+1)· = 1!.

This is a constrained convex optimization problem. Once the optimal Z is found, we recover the
task-i label of item j by sign(zij), and feature k of item j by z(k+t)j .

MC-b andMC-1 differ mainly in what is inZ, which leads to different behaviors of the nuclear norm.
Despite the generative story, we do not explicitly recover the weight matrixW in these formulations.
Other formulations are certainly possible. One way is to let Z correspond to

[
Y0;X0

]
directly,

without introducing bias b or the all-1 row, and hope nuclear norm minimization will prevail. This
is inferior in our preliminary experiments, and we do not explore it further in this paper.

3 Optimization Techniques

We solveMC-b andMC-1 using modifications of the Fixed Point Continuation (FPC) method of Ma,
Goldfarb, and Chen [10].1 While nuclear norm minimization can be converted into a semidefinite
programming (SDP) problem [2], current SDP solvers are severely limited in the size of problems
they can solve. Instead, the basic fixed point approach is a computationally efficient alternative,
which provably converges to the globally optimal solution and has been shown to outperform SDP
solvers in terms of matrix recoverability.

3.1 Fixed Point Continuation for MC-b

We first describe our modified FPC method for MC-b. It differs from [10] in the extra bias variables
and multiple loss functions. Our fixed point iterative algorithm to solve the unconstrained problem
of (2) consists of two alternating steps for each iteration k:

1. (gradient step) bk+1 = bk − τbg(bk),Ak = Zk − τZg(Zk)
2. (shrinkage step) Zk+1 = SτZµ(Ak).

In the gradient step, τb and τZ are step sizes whose choice will be discussed next. Overloading
notation a bit, g(bk) is the vector gradient, and g(Zk) is the matrix gradient, respectively, of the two
loss terms in (2) (i.e., excluding the nuclear norm term):

g(bi) =
λ

|ΩY|
∑

j:(i,j)∈ΩY

−yij

1 + exp(yij(zij + bi))
(4)

g(zij) =






λ
|ΩY|

−yij

1+exp(yij(zij+bi))
, i ≤ t and (i, j) ∈ ΩY

1
|ΩX| (zij − x(i−t)j), i > t and (i− t, j) ∈ ΩX

0, otherwise

(5)

Note for g(zij), i > t, we need to shift down (un-stack) the row index by t in order to map the
element in Z back to the item x(i−t)j .

1While the primary method of [10] is Fixed Point Continuation with Approximate Singular Value Decom-
position (FPCA), where the approximate SVD is used to speed up the algorithm, we opt to use an exact SVD
for simplicity and will refer to the method simply as FPC.
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where µ,λ are positive trade-off weights. Notice the bias b is not regularized. This is a convex
problem, whose optimization procedure will be discussed in section 3. Once the optimal Z,b are
found, we recover the task-i label of item j by sign(zij + bi), and feature k of item j by z(k+t)j .

Formulation 2 (MC-1). In this formulation, the bias is modeled implicitly within Z. Similar to how
bias is commonly handled in linear classifiers, we append an additional feature with constant value
one to each item. The corresponding pre-feature matrix is augmented into

[
X0;1!

]
, where 1 is the

all-1 vector. Under the same label assumption y0
j = Wx0

j + b, the rows of the soft label matrix
Y0 are linear combinations of rows in

[
X0;1!

]
, i.e., rank(

[
Y0;X0;1!

]
) = rank(

[
X0;1!

]
). We

then let Z correspond to the (t + d + 1)×n stacked matrix
[
Y0;X0;1!

]
, by forcing its last row to

be 1! (hence the name):

argmin
Z∈R(t+d+1)×n

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij , yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij) (3)

s.t. z(t+d+1)· = 1!.

This is a constrained convex optimization problem. Once the optimal Z is found, we recover the
task-i label of item j by sign(zij), and feature k of item j by z(k+t)j .

MC-b andMC-1 differ mainly in what is inZ, which leads to different behaviors of the nuclear norm.
Despite the generative story, we do not explicitly recover the weight matrixW in these formulations.
Other formulations are certainly possible. One way is to let Z correspond to

[
Y0;X0

]
directly,

without introducing bias b or the all-1 row, and hope nuclear norm minimization will prevail. This
is inferior in our preliminary experiments, and we do not explore it further in this paper.

3 Optimization Techniques

We solveMC-b andMC-1 using modifications of the Fixed Point Continuation (FPC) method of Ma,
Goldfarb, and Chen [10].1 While nuclear norm minimization can be converted into a semidefinite
programming (SDP) problem [2], current SDP solvers are severely limited in the size of problems
they can solve. Instead, the basic fixed point approach is a computationally efficient alternative,
which provably converges to the globally optimal solution and has been shown to outperform SDP
solvers in terms of matrix recoverability.

3.1 Fixed Point Continuation for MC-b

We first describe our modified FPC method for MC-b. It differs from [10] in the extra bias variables
and multiple loss functions. Our fixed point iterative algorithm to solve the unconstrained problem
of (2) consists of two alternating steps for each iteration k:

1. (gradient step) bk+1 = bk − τbg(bk),Ak = Zk − τZg(Zk)
2. (shrinkage step) Zk+1 = SτZµ(Ak).

In the gradient step, τb and τZ are step sizes whose choice will be discussed next. Overloading
notation a bit, g(bk) is the vector gradient, and g(Zk) is the matrix gradient, respectively, of the two
loss terms in (2) (i.e., excluding the nuclear norm term):

g(bi) =
λ

|ΩY|
∑

j:(i,j)∈ΩY

−yij

1 + exp(yij(zij + bi))
(4)

g(zij) =






λ
|ΩY|

−yij

1+exp(yij(zij+bi))
, i ≤ t and (i, j) ∈ ΩY

1
|ΩX| (zij − x(i−t)j), i > t and (i− t, j) ∈ ΩX

0, otherwise

(5)

Note for g(zij), i > t, we need to shift down (un-stack) the row index by t in order to map the
element in Z back to the item x(i−t)j .

1While the primary method of [10] is Fixed Point Continuation with Approximate Singular Value Decom-
position (FPCA), where the approximate SVD is used to speed up the algorithm, we opt to use an exact SVD
for simplicity and will refer to the method simply as FPC.
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where µ,λ are positive trade-off weights. Notice the bias b is not regularized. This is a convex
problem, whose optimization procedure will be discussed in section 3. Once the optimal Z,b are
found, we recover the task-i label of item j by sign(zij + bi), and feature k of item j by z(k+t)j .

Formulation 2 (MC-1). In this formulation, the bias is modeled implicitly within Z. Similar to how
bias is commonly handled in linear classifiers, we append an additional feature with constant value
one to each item. The corresponding pre-feature matrix is augmented into

[
X0;1!

]
, where 1 is the

all-1 vector. Under the same label assumption y0
j = Wx0

j + b, the rows of the soft label matrix
Y0 are linear combinations of rows in

[
X0;1!

]
, i.e., rank(

[
Y0;X0;1!

]
) = rank(

[
X0;1!

]
). We

then let Z correspond to the (t + d + 1)×n stacked matrix
[
Y0;X0;1!

]
, by forcing its last row to

be 1! (hence the name):

argmin
Z∈R(t+d+1)×n

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij , yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij) (3)

s.t. z(t+d+1)· = 1!.

This is a constrained convex optimization problem. Once the optimal Z is found, we recover the
task-i label of item j by sign(zij), and feature k of item j by z(k+t)j .

MC-b andMC-1 differ mainly in what is inZ, which leads to different behaviors of the nuclear norm.
Despite the generative story, we do not explicitly recover the weight matrixW in these formulations.
Other formulations are certainly possible. One way is to let Z correspond to

[
Y0;X0

]
directly,

without introducing bias b or the all-1 row, and hope nuclear norm minimization will prevail. This
is inferior in our preliminary experiments, and we do not explore it further in this paper.

3 Optimization Techniques

We solveMC-b andMC-1 using modifications of the Fixed Point Continuation (FPC) method of Ma,
Goldfarb, and Chen [10].1 While nuclear norm minimization can be converted into a semidefinite
programming (SDP) problem [2], current SDP solvers are severely limited in the size of problems
they can solve. Instead, the basic fixed point approach is a computationally efficient alternative,
which provably converges to the globally optimal solution and has been shown to outperform SDP
solvers in terms of matrix recoverability.

3.1 Fixed Point Continuation for MC-b

We first describe our modified FPC method for MC-b. It differs from [10] in the extra bias variables
and multiple loss functions. Our fixed point iterative algorithm to solve the unconstrained problem
of (2) consists of two alternating steps for each iteration k:

1. (gradient step) bk+1 = bk − τbg(bk),Ak = Zk − τZg(Zk)
2. (shrinkage step) Zk+1 = SτZµ(Ak).

In the gradient step, τb and τZ are step sizes whose choice will be discussed next. Overloading
notation a bit, g(bk) is the vector gradient, and g(Zk) is the matrix gradient, respectively, of the two
loss terms in (2) (i.e., excluding the nuclear norm term):

g(bi) =
λ

|ΩY|
∑

j:(i,j)∈ΩY

−yij

1 + exp(yij(zij + bi))
(4)

g(zij) =






λ
|ΩY|

−yij

1+exp(yij(zij+bi))
, i ≤ t and (i, j) ∈ ΩY

1
|ΩX| (zij − x(i−t)j), i > t and (i− t, j) ∈ ΩX

0, otherwise

(5)

Note for g(zij), i > t, we need to shift down (un-stack) the row index by t in order to map the
element in Z back to the item x(i−t)j .

1While the primary method of [10] is Fixed Point Continuation with Approximate Singular Value Decom-
position (FPCA), where the approximate SVD is used to speed up the algorithm, we opt to use an exact SVD
for simplicity and will refer to the method simply as FPC.
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where µ,λ are positive trade-off weights. Notice the bias b is not regularized. This is a convex
problem, whose optimization procedure will be discussed in section 3. Once the optimal Z,b are
found, we recover the task-i label of item j by sign(zij + bi), and feature k of item j by z(k+t)j .
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bias is commonly handled in linear classifiers, we append an additional feature with constant value
one to each item. The corresponding pre-feature matrix is augmented into
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X0;1!

]
, where 1 is the

all-1 vector. Under the same label assumption y0
j = Wx0

j + b, the rows of the soft label matrix
Y0 are linear combinations of rows in

[
X0;1!

]
, i.e., rank(

[
Y0;X0;1!

]
) = rank(

[
X0;1!

]
). We

then let Z correspond to the (t + d + 1)×n stacked matrix
[
Y0;X0;1!

]
, by forcing its last row to

be 1! (hence the name):

argmin
Z∈R(t+d+1)×n

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij , yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij) (3)

s.t. z(t+d+1)· = 1!.

This is a constrained convex optimization problem. Once the optimal Z is found, we recover the
task-i label of item j by sign(zij), and feature k of item j by z(k+t)j .

MC-b andMC-1 differ mainly in what is inZ, which leads to different behaviors of the nuclear norm.
Despite the generative story, we do not explicitly recover the weight matrixW in these formulations.
Other formulations are certainly possible. One way is to let Z correspond to

[
Y0;X0

]
directly,

without introducing bias b or the all-1 row, and hope nuclear norm minimization will prevail. This
is inferior in our preliminary experiments, and we do not explore it further in this paper.

3 Optimization Techniques

We solveMC-b andMC-1 using modifications of the Fixed Point Continuation (FPC) method of Ma,
Goldfarb, and Chen [10].1 While nuclear norm minimization can be converted into a semidefinite
programming (SDP) problem [2], current SDP solvers are severely limited in the size of problems
they can solve. Instead, the basic fixed point approach is a computationally efficient alternative,
which provably converges to the globally optimal solution and has been shown to outperform SDP
solvers in terms of matrix recoverability.

3.1 Fixed Point Continuation for MC-b

We first describe our modified FPC method for MC-b. It differs from [10] in the extra bias variables
and multiple loss functions. Our fixed point iterative algorithm to solve the unconstrained problem
of (2) consists of two alternating steps for each iteration k:

1. (gradient step) bk+1 = bk − τbg(bk),Ak = Zk − τZg(Zk)
2. (shrinkage step) Zk+1 = SτZµ(Ak).

In the gradient step, τb and τZ are step sizes whose choice will be discussed next. Overloading
notation a bit, g(bk) is the vector gradient, and g(Zk) is the matrix gradient, respectively, of the two
loss terms in (2) (i.e., excluding the nuclear norm term):

g(bi) =
λ

|ΩY|
∑

j:(i,j)∈ΩY

−yij

1 + exp(yij(zij + bi))
(4)

g(zij) =






λ
|ΩY|

−yij

1+exp(yij(zij+bi))
, i ≤ t and (i, j) ∈ ΩY

1
|ΩX| (zij − x(i−t)j), i > t and (i− t, j) ∈ ΩX

0, otherwise

(5)

Note for g(zij), i > t, we need to shift down (un-stack) the row index by t in order to map the
element in Z back to the item x(i−t)j .

1While the primary method of [10] is Fixed Point Continuation with Approximate Singular Value Decom-
position (FPCA), where the approximate SVD is used to speed up the algorithm, we opt to use an exact SVD
for simplicity and will refer to the method simply as FPC.
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Input: Initial matrix Z0, bias b0,
parameters µ, λ, Step sizes τb, τZ

Determine µ1 > µ2 > · · · > µL = µ > 0.
Set Z = Z0,b = b0.
foreach µ = µ1, µ2, . . . , µL do

while Not converged do
Compute b = b− τbg(b),A = Z− τZg(Z)
Compute SVD ofA = UΛV!

Compute Z = Umax(Λ− τZµ, 0)V!

end

end
Output: Recovered matrix Z, bias b

Algorithm 1: FPC algorithm for MC-b.

Input: Initial matrix Z0,
parameters µ, λ, Step sizes τZ

Determine µ1 > µ2 > · · · > µL = µ > 0.
Set Z = Z0.
foreach µ = µ1, µ2, . . . , µL do

while Not converged do
ComputeA = Z− τZg(Z)
Compute SVD ofA = UΛV!

Compute Z = Umax(Λ− τZµ, 0)V!

Project Z to feasible region z(t+d+1)· = 1!

end

end
Output: Recovered matrix Z

Algorithm 2: FPC algorithm for MC-1.

In the shrinkage step, SτZµ(·) is a matrix shrinkage operator. Let Ak = UΛV! be the SVD of

Ak. Then SτZµ(Ak) = Umax(Λ− τZµ, 0)V!, wheremax is elementwise. That is, the shrinkage
operator shifts the singular values down, and truncates any negative values to zero. This step reduces
the nuclear norm.

Even though the problem is convex, convergence can be slow. We follow [10] and use a con-
tinuation or homotopy method to improve the speed. This involves beginning with a large value
µ1 > µ and solving a sequence of subproblems, each with a decreasing value and using the pre-
vious solution as its initial point. The sequence of values is determined by a decay parameter ηµ:
µk+1 = max{µkηµ, µ}, k = 1, . . . , L− 1, where µ is the final value to use, and L is the number
of rounds of continuation. The complete FPC algorithm for MC-b is listed in Algorithm 1.

A minor modification of the argument in [10] reveals that as long as we choose non-negative step
sizes satisfying τb < 4|ΩY|/(λn) and τZ < min {4|ΩY|/λ, |ΩX|}, the algorithms MC-b will be
guaranteed to converge to a global optimum. Indeed, to guarantee convergence, we only need that
the gradient step is non-expansive in the sense that

‖b1−τbg(b1)−b2+τbg(b2)‖2+‖Z1−τZg(Z1)−Z2+τZg(Z2)‖2F ≤ ‖b1−b2‖2+‖Z1−Z2‖2F
for all b1, b2, Z1, and Z2. Our choice of τb and τZ guarantee such non-expansiveness. Once this
non-expansiveness is satisfied, the remainder of the convergence analysis is the same as in [10].

3.2 Fixed Point Continuation for MC-1

Our modified FPC method for MC-1 is similar except for two differences. First, there is no bias
variable b. Second, the shrinkage step will in general not satisfy the all-1-row constraints in (3).
Thus, we add a third projection step at the end of each iteration to project Zk+1 back to the feasible
region, by simply setting its last row to all 1’s. The complete algorithm for MC-1 is given in Algo-
rithm 2. We were unable to prove convergence for this gradient + shrinkage + projection algorithm.
Nonetheless, in our empirical experiments, Algorithm 2 always converges and tends to outperform
MC-b. The two algorithms have about the same convergence speed.

4 Experiments

We now empirically study the ability of matrix completion to perform multi-class transductive clas-
sification when there is missing data. We first present a family of 24 experiments on a synthetic
task by systematically varying different aspects of the task, including the rank of the problem, noise
level, number of items, and observed label and feature percentage. We then present experiments on
two real-world datasets: music emotions and yeast microarray. In each experiments, we compare
MC-b and MC-1 against four other baseline algorithms. Our results show that MC-1 consistently
outperforms other methods, and MC-b follows closely.

Parameter Tuning and Other Settings for MC-b and MC-1: To tune the parameters µ and λ,
we use 5-fold cross validation (CV) separately for each experiment. Specifically, we randomly
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Input: Initial matrix Z0, bias b0,
parameters µ, λ, Step sizes τb, τZ

Determine µ1 > µ2 > · · · > µL = µ > 0.
Set Z = Z0,b = b0.
foreach µ = µ1, µ2, . . . , µL do

while Not converged do
Compute b = b− τbg(b),A = Z− τZg(Z)
Compute SVD ofA = UΛV!

Compute Z = Umax(Λ− τZµ, 0)V!

end

end
Output: Recovered matrix Z, bias b

Algorithm 1: FPC algorithm for MC-b.

Input: Initial matrix Z0,
parameters µ, λ, Step sizes τZ

Determine µ1 > µ2 > · · · > µL = µ > 0.
Set Z = Z0.
foreach µ = µ1, µ2, . . . , µL do

while Not converged do
ComputeA = Z− τZg(Z)
Compute SVD ofA = UΛV!

Compute Z = Umax(Λ− τZµ, 0)V!

Project Z to feasible region z(t+d+1)· = 1!

end

end
Output: Recovered matrix Z

Algorithm 2: FPC algorithm for MC-1.

In the shrinkage step, SτZµ(·) is a matrix shrinkage operator. Let Ak = UΛV! be the SVD of

Ak. Then SτZµ(Ak) = Umax(Λ− τZµ, 0)V!, wheremax is elementwise. That is, the shrinkage
operator shifts the singular values down, and truncates any negative values to zero. This step reduces
the nuclear norm.

Even though the problem is convex, convergence can be slow. We follow [10] and use a con-
tinuation or homotopy method to improve the speed. This involves beginning with a large value
µ1 > µ and solving a sequence of subproblems, each with a decreasing value and using the pre-
vious solution as its initial point. The sequence of values is determined by a decay parameter ηµ:
µk+1 = max{µkηµ, µ}, k = 1, . . . , L− 1, where µ is the final value to use, and L is the number
of rounds of continuation. The complete FPC algorithm for MC-b is listed in Algorithm 1.

A minor modification of the argument in [10] reveals that as long as we choose non-negative step
sizes satisfying τb < 4|ΩY|/(λn) and τZ < min {4|ΩY|/λ, |ΩX|}, the algorithms MC-b will be
guaranteed to converge to a global optimum. Indeed, to guarantee convergence, we only need that
the gradient step is non-expansive in the sense that

‖b1−τbg(b1)−b2+τbg(b2)‖2+‖Z1−τZg(Z1)−Z2+τZg(Z2)‖2F ≤ ‖b1−b2‖2+‖Z1−Z2‖2F
for all b1, b2, Z1, and Z2. Our choice of τb and τZ guarantee such non-expansiveness. Once this
non-expansiveness is satisfied, the remainder of the convergence analysis is the same as in [10].

3.2 Fixed Point Continuation for MC-1

Our modified FPC method for MC-1 is similar except for two differences. First, there is no bias
variable b. Second, the shrinkage step will in general not satisfy the all-1-row constraints in (3).
Thus, we add a third projection step at the end of each iteration to project Zk+1 back to the feasible
region, by simply setting its last row to all 1’s. The complete algorithm for MC-1 is given in Algo-
rithm 2. We were unable to prove convergence for this gradient + shrinkage + projection algorithm.
Nonetheless, in our empirical experiments, Algorithm 2 always converges and tends to outperform
MC-b. The two algorithms have about the same convergence speed.

4 Experiments

We now empirically study the ability of matrix completion to perform multi-class transductive clas-
sification when there is missing data. We first present a family of 24 experiments on a synthetic
task by systematically varying different aspects of the task, including the rank of the problem, noise
level, number of items, and observed label and feature percentage. We then present experiments on
two real-world datasets: music emotions and yeast microarray. In each experiments, we compare
MC-b and MC-1 against four other baseline algorithms. Our results show that MC-1 consistently
outperforms other methods, and MC-b follows closely.

Parameter Tuning and Other Settings for MC-b and MC-1: To tune the parameters µ and λ,
we use 5-fold cross validation (CV) separately for each experiment. Specifically, we randomly
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Input: Initial matrix Z0, bias b0,
parameters µ, λ, Step sizes τb, τZ

Determine µ1 > µ2 > · · · > µL = µ > 0.
Set Z = Z0,b = b0.
foreach µ = µ1, µ2, . . . , µL do

while Not converged do
Compute b = b− τbg(b),A = Z− τZg(Z)
Compute SVD ofA = UΛV!

Compute Z = Umax(Λ− τZµ, 0)V!

end

end
Output: Recovered matrix Z, bias b

Algorithm 1: FPC algorithm for MC-b.

Input: Initial matrix Z0,
parameters µ, λ, Step sizes τZ

Determine µ1 > µ2 > · · · > µL = µ > 0.
Set Z = Z0.
foreach µ = µ1, µ2, . . . , µL do

while Not converged do
ComputeA = Z− τZg(Z)
Compute SVD ofA = UΛV!

Compute Z = Umax(Λ− τZµ, 0)V!

Project Z to feasible region z(t+d+1)· = 1!

end

end
Output: Recovered matrix Z

Algorithm 2: FPC algorithm for MC-1.

In the shrinkage step, SτZµ(·) is a matrix shrinkage operator. Let Ak = UΛV! be the SVD of

Ak. Then SτZµ(Ak) = Umax(Λ− τZµ, 0)V!, wheremax is elementwise. That is, the shrinkage
operator shifts the singular values down, and truncates any negative values to zero. This step reduces
the nuclear norm.

Even though the problem is convex, convergence can be slow. We follow [10] and use a con-
tinuation or homotopy method to improve the speed. This involves beginning with a large value
µ1 > µ and solving a sequence of subproblems, each with a decreasing value and using the pre-
vious solution as its initial point. The sequence of values is determined by a decay parameter ηµ:
µk+1 = max{µkηµ, µ}, k = 1, . . . , L− 1, where µ is the final value to use, and L is the number
of rounds of continuation. The complete FPC algorithm for MC-b is listed in Algorithm 1.

A minor modification of the argument in [10] reveals that as long as we choose non-negative step
sizes satisfying τb < 4|ΩY|/(λn) and τZ < min {4|ΩY|/λ, |ΩX|}, the algorithms MC-b will be
guaranteed to converge to a global optimum. Indeed, to guarantee convergence, we only need that
the gradient step is non-expansive in the sense that

‖b1−τbg(b1)−b2+τbg(b2)‖2+‖Z1−τZg(Z1)−Z2+τZg(Z2)‖2F ≤ ‖b1−b2‖2+‖Z1−Z2‖2F
for all b1, b2, Z1, and Z2. Our choice of τb and τZ guarantee such non-expansiveness. Once this
non-expansiveness is satisfied, the remainder of the convergence analysis is the same as in [10].

3.2 Fixed Point Continuation for MC-1

Our modified FPC method for MC-1 is similar except for two differences. First, there is no bias
variable b. Second, the shrinkage step will in general not satisfy the all-1-row constraints in (3).
Thus, we add a third projection step at the end of each iteration to project Zk+1 back to the feasible
region, by simply setting its last row to all 1’s. The complete algorithm for MC-1 is given in Algo-
rithm 2. We were unable to prove convergence for this gradient + shrinkage + projection algorithm.
Nonetheless, in our empirical experiments, Algorithm 2 always converges and tends to outperform
MC-b. The two algorithms have about the same convergence speed.

4 Experiments

We now empirically study the ability of matrix completion to perform multi-class transductive clas-
sification when there is missing data. We first present a family of 24 experiments on a synthetic
task by systematically varying different aspects of the task, including the rank of the problem, noise
level, number of items, and observed label and feature percentage. We then present experiments on
two real-world datasets: music emotions and yeast microarray. In each experiments, we compare
MC-b and MC-1 against four other baseline algorithms. Our results show that MC-1 consistently
outperforms other methods, and MC-b follows closely.

Parameter Tuning and Other Settings for MC-b and MC-1: To tune the parameters µ and λ,
we use 5-fold cross validation (CV) separately for each experiment. Specifically, we randomly
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Input: Initial matrix Z0, bias b0,
parameters µ, λ, Step sizes τb, τZ

Determine µ1 > µ2 > · · · > µL = µ > 0.
Set Z = Z0,b = b0.
foreach µ = µ1, µ2, . . . , µL do

while Not converged do
Compute b = b− τbg(b),A = Z− τZg(Z)
Compute SVD ofA = UΛV!

Compute Z = Umax(Λ− τZµ, 0)V!

end

end
Output: Recovered matrix Z, bias b

Algorithm 1: FPC algorithm for MC-b.

Input: Initial matrix Z0,
parameters µ, λ, Step sizes τZ

Determine µ1 > µ2 > · · · > µL = µ > 0.
Set Z = Z0.
foreach µ = µ1, µ2, . . . , µL do

while Not converged do
ComputeA = Z− τZg(Z)
Compute SVD ofA = UΛV!

Compute Z = Umax(Λ− τZµ, 0)V!

Project Z to feasible region z(t+d+1)· = 1!

end

end
Output: Recovered matrix Z

Algorithm 2: FPC algorithm for MC-1.

In the shrinkage step, SτZµ(·) is a matrix shrinkage operator. Let Ak = UΛV! be the SVD of

Ak. Then SτZµ(Ak) = Umax(Λ− τZµ, 0)V!, wheremax is elementwise. That is, the shrinkage
operator shifts the singular values down, and truncates any negative values to zero. This step reduces
the nuclear norm.

Even though the problem is convex, convergence can be slow. We follow [10] and use a con-
tinuation or homotopy method to improve the speed. This involves beginning with a large value
µ1 > µ and solving a sequence of subproblems, each with a decreasing value and using the pre-
vious solution as its initial point. The sequence of values is determined by a decay parameter ηµ:
µk+1 = max{µkηµ, µ}, k = 1, . . . , L− 1, where µ is the final value to use, and L is the number
of rounds of continuation. The complete FPC algorithm for MC-b is listed in Algorithm 1.

A minor modification of the argument in [10] reveals that as long as we choose non-negative step
sizes satisfying τb < 4|ΩY|/(λn) and τZ < min {4|ΩY|/λ, |ΩX|}, the algorithms MC-b will be
guaranteed to converge to a global optimum. Indeed, to guarantee convergence, we only need that
the gradient step is non-expansive in the sense that

‖b1−τbg(b1)−b2+τbg(b2)‖2+‖Z1−τZg(Z1)−Z2+τZg(Z2)‖2F ≤ ‖b1−b2‖2+‖Z1−Z2‖2F
for all b1, b2, Z1, and Z2. Our choice of τb and τZ guarantee such non-expansiveness. Once this
non-expansiveness is satisfied, the remainder of the convergence analysis is the same as in [10].

3.2 Fixed Point Continuation for MC-1

Our modified FPC method for MC-1 is similar except for two differences. First, there is no bias
variable b. Second, the shrinkage step will in general not satisfy the all-1-row constraints in (3).
Thus, we add a third projection step at the end of each iteration to project Zk+1 back to the feasible
region, by simply setting its last row to all 1’s. The complete algorithm for MC-1 is given in Algo-
rithm 2. We were unable to prove convergence for this gradient + shrinkage + projection algorithm.
Nonetheless, in our empirical experiments, Algorithm 2 always converges and tends to outperform
MC-b. The two algorithms have about the same convergence speed.

4 Experiments

We now empirically study the ability of matrix completion to perform multi-class transductive clas-
sification when there is missing data. We first present a family of 24 experiments on a synthetic
task by systematically varying different aspects of the task, including the rank of the problem, noise
level, number of items, and observed label and feature percentage. We then present experiments on
two real-world datasets: music emotions and yeast microarray. In each experiments, we compare
MC-b and MC-1 against four other baseline algorithms. Our results show that MC-1 consistently
outperforms other methods, and MC-b follows closely.

Parameter Tuning and Other Settings for MC-b and MC-1: To tune the parameters µ and λ,
we use 5-fold cross validation (CV) separately for each experiment. Specifically, we randomly
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Input: Initial matrix Z0, bias b0,
parameters µ, λ, Step sizes τb, τZ

Determine µ1 > µ2 > · · · > µL = µ > 0.
Set Z = Z0,b = b0.
foreach µ = µ1, µ2, . . . , µL do

while Not converged do
Compute b = b− τbg(b),A = Z− τZg(Z)
Compute SVD ofA = UΛV!

Compute Z = Umax(Λ− τZµ, 0)V!

end

end
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Algorithm 2: FPC algorithm for MC-1.

In the shrinkage step, SτZµ(·) is a matrix shrinkage operator. Let Ak = UΛV! be the SVD of

Ak. Then SτZµ(Ak) = Umax(Λ− τZµ, 0)V!, wheremax is elementwise. That is, the shrinkage
operator shifts the singular values down, and truncates any negative values to zero. This step reduces
the nuclear norm.

Even though the problem is convex, convergence can be slow. We follow [10] and use a con-
tinuation or homotopy method to improve the speed. This involves beginning with a large value
µ1 > µ and solving a sequence of subproblems, each with a decreasing value and using the pre-
vious solution as its initial point. The sequence of values is determined by a decay parameter ηµ:
µk+1 = max{µkηµ, µ}, k = 1, . . . , L− 1, where µ is the final value to use, and L is the number
of rounds of continuation. The complete FPC algorithm for MC-b is listed in Algorithm 1.

A minor modification of the argument in [10] reveals that as long as we choose non-negative step
sizes satisfying τb < 4|ΩY|/(λn) and τZ < min {4|ΩY|/λ, |ΩX|}, the algorithms MC-b will be
guaranteed to converge to a global optimum. Indeed, to guarantee convergence, we only need that
the gradient step is non-expansive in the sense that

‖b1−τbg(b1)−b2+τbg(b2)‖2+‖Z1−τZg(Z1)−Z2+τZg(Z2)‖2F ≤ ‖b1−b2‖2+‖Z1−Z2‖2F
for all b1, b2, Z1, and Z2. Our choice of τb and τZ guarantee such non-expansiveness. Once this
non-expansiveness is satisfied, the remainder of the convergence analysis is the same as in [10].

3.2 Fixed Point Continuation for MC-1

Our modified FPC method for MC-1 is similar except for two differences. First, there is no bias
variable b. Second, the shrinkage step will in general not satisfy the all-1-row constraints in (3).
Thus, we add a third projection step at the end of each iteration to project Zk+1 back to the feasible
region, by simply setting its last row to all 1’s. The complete algorithm for MC-1 is given in Algo-
rithm 2. We were unable to prove convergence for this gradient + shrinkage + projection algorithm.
Nonetheless, in our empirical experiments, Algorithm 2 always converges and tends to outperform
MC-b. The two algorithms have about the same convergence speed.

4 Experiments

We now empirically study the ability of matrix completion to perform multi-class transductive clas-
sification when there is missing data. We first present a family of 24 experiments on a synthetic
task by systematically varying different aspects of the task, including the rank of the problem, noise
level, number of items, and observed label and feature percentage. We then present experiments on
two real-world datasets: music emotions and yeast microarray. In each experiments, we compare
MC-b and MC-1 against four other baseline algorithms. Our results show that MC-1 consistently
outperforms other methods, and MC-b follows closely.

Parameter Tuning and Other Settings for MC-b and MC-1: To tune the parameters µ and λ,
we use 5-fold cross validation (CV) separately for each experiment. Specifically, we randomly

4

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

Input: Initial matrix Z0, bias b0,
parameters µ, λ, Step sizes τb, τZ

Determine µ1 > µ2 > · · · > µL = µ > 0.
Set Z = Z0,b = b0.
foreach µ = µ1, µ2, . . . , µL do

while Not converged do
Compute b = b− τbg(b),A = Z− τZg(Z)
Compute SVD ofA = UΛV!

Compute Z = Umax(Λ− τZµ, 0)V!

end

end
Output: Recovered matrix Z, bias b

Algorithm 1: FPC algorithm for MC-b.

Input: Initial matrix Z0,
parameters µ, λ, Step sizes τZ

Determine µ1 > µ2 > · · · > µL = µ > 0.
Set Z = Z0.
foreach µ = µ1, µ2, . . . , µL do

while Not converged do
ComputeA = Z− τZg(Z)
Compute SVD ofA = UΛV!

Compute Z = Umax(Λ− τZµ, 0)V!

Project Z to feasible region z(t+d+1)· = 1!

end

end
Output: Recovered matrix Z

Algorithm 2: FPC algorithm for MC-1.

In the shrinkage step, SτZµ(·) is a matrix shrinkage operator. Let Ak = UΛV! be the SVD of

Ak. Then SτZµ(Ak) = Umax(Λ− τZµ, 0)V!, wheremax is elementwise. That is, the shrinkage
operator shifts the singular values down, and truncates any negative values to zero. This step reduces
the nuclear norm.

Even though the problem is convex, convergence can be slow. We follow [10] and use a con-
tinuation or homotopy method to improve the speed. This involves beginning with a large value
µ1 > µ and solving a sequence of subproblems, each with a decreasing value and using the pre-
vious solution as its initial point. The sequence of values is determined by a decay parameter ηµ:
µk+1 = max{µkηµ, µ}, k = 1, . . . , L− 1, where µ is the final value to use, and L is the number
of rounds of continuation. The complete FPC algorithm for MC-b is listed in Algorithm 1.

A minor modification of the argument in [10] reveals that as long as we choose non-negative step
sizes satisfying τb < 4|ΩY|/(λn) and τZ < min {4|ΩY|/λ, |ΩX|}, the algorithms MC-b will be
guaranteed to converge to a global optimum. Indeed, to guarantee convergence, we only need that
the gradient step is non-expansive in the sense that

‖b1−τbg(b1)−b2+τbg(b2)‖2+‖Z1−τZg(Z1)−Z2+τZg(Z2)‖2F ≤ ‖b1−b2‖2+‖Z1−Z2‖2F
for all b1, b2, Z1, and Z2. Our choice of τb and τZ guarantee such non-expansiveness. Once this
non-expansiveness is satisfied, the remainder of the convergence analysis is the same as in [10].

3.2 Fixed Point Continuation for MC-1

Our modified FPC method for MC-1 is similar except for two differences. First, there is no bias
variable b. Second, the shrinkage step will in general not satisfy the all-1-row constraints in (3).
Thus, we add a third projection step at the end of each iteration to project Zk+1 back to the feasible
region, by simply setting its last row to all 1’s. The complete algorithm for MC-1 is given in Algo-
rithm 2. We were unable to prove convergence for this gradient + shrinkage + projection algorithm.
Nonetheless, in our empirical experiments, Algorithm 2 always converges and tends to outperform
MC-b. The two algorithms have about the same convergence speed.

4 Experiments

We now empirically study the ability of matrix completion to perform multi-class transductive clas-
sification when there is missing data. We first present a family of 24 experiments on a synthetic
task by systematically varying different aspects of the task, including the rank of the problem, noise
level, number of items, and observed label and feature percentage. We then present experiments on
two real-world datasets: music emotions and yeast microarray. In each experiments, we compare
MC-b and MC-1 against four other baseline algorithms. Our results show that MC-1 consistently
outperforms other methods, and MC-b follows closely.

Parameter Tuning and Other Settings for MC-b and MC-1: To tune the parameters µ and λ,
we use 5-fold cross validation (CV) separately for each experiment. Specifically, we randomly

4

Projection step

Ideally want to solve:

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

divide ΩX and ΩY into five disjoint subsets each. We then run our matrix completion algorithms
using 4

5 of the observed entries, measure its performance on the remaining
1
5 , and average over

the five folds. Since our main goal is to predict unobserved labels, we use label error as the CV
performance criterion to select parameters. Note that tuning µ is quite efficient since all values
under consideration can be evaluated in one run of the continuation method. We set ηµ = 0.25 and,
as in [10], consider µ values starting at σ1ηµ, where σ1 is the largest singular value of the matrix

of observed entries in [Y;X] (with the unobserved entries set to 0), and decrease µ until 10−5.
The range of λ values considered was {10−3, 10−2, 10−1, 1}. We initialized b0 to be all zero and
Z0 to be the rank-1 approximation of the matrix of observed entries in [Y;X] (with unobserved
entries set to 0) obtained by performing an SVD and reconstructing the matrix using only the largest
singular value and corresponding left and right singular vectors. The step sizes were set as follows:

τZ = min(3.8|ΩY|
λ , |ΩX|), τb = 3.8|ΩY|

λn . Convergence was defined as relative change in objective

functions (2)(3) smaller than 10−5.

Baselines: We compare to the following baselines, each consisting of some missing feature impu-
tation step on X first, then using a standard SVM to predict the labels: [FPC+SVM] Matrix com-
pletion onX alone using FPC [10]. [EM(k)+SVM] Expectation Maximization algorithm to impute
missing X entries using a mixture of k Gaussian components. As in [9], missing features, mixing
component parameters, and the assignments of items to components are treated as hidden variables,
which are estimated in an iterative manner to maximize the likelihood of the data. [Mean+SVM]
Impute each missing feature by the mean of the observed entries for that feature. [Zero+SVM]
Impute missing features by filling in zeros.

After imputation, an SVM is trained using the available (noisy) labels in ΩY for that task, and
predictions are made for the rest of the labels. All SVMs are linear, trained using SVMlin2, and the
regularization parameter is tuned using 5-fold cross validation separately for each task. The range
of parameter values considered was {10−8, 10−7, . . . , 107, 108}.
EvaluationMethod: To evaluate performance, we consider two measures: transductive label error,
i.e., the percentage of unobserved labels predicted incorrectly; and relative feature imputation error(∑

ij /∈ΩX
(xij − x̂ij)2

)
/
∑

ij /∈ΩX
x2

ij , where x̂ is the predicted feature value. In the tables below,

for each parameter setting, we report the mean performance (and standard deviation in parenthesis)
of different algorithms over 10 random trials. The best algorithm within each parameter setting,
as well as any statistically indistinguishable algorithms via a two-tailed paired t-test at significance
level α = 0.05, are marked in bold.

4.1 Synthetic Data Experiments

Synthetic Data Generation: We generate a family of synthetic datasets to systematically explore
the performance of the algorithms. We first create a rank-r matrix X0 = LR#, where L ∈ Rd×r

and R ∈ Rn×r with entries drawn iid from N (0, 1). We then normalize X0 such that its entries
have variance 1. Next, we create a weight matrixW ∈ Rt×d and bias vector b ∈ Rt, with all entries
drawn iid fromN (0, 10). We then produceX,Y0,Y according to section 2.1. Finally, we produce
the random ΩX,ΩY masks with ω percent observed entries.

Using the above procedure, we vary ω = 10%, 20%, 40%, n = 100, 400, r = 2, 4, and σ2
ε =

0.01, 0.1, while fixing t = 10, d = 20, to produce 24 different parameter settings. For each setting,
we generate 10 trials, where the randomness is in the data and mask.

Synthetic experiment results: Table 1 shows the transductive label errors, and Table 2 shows the
relative feature imputation errors, on the synthetic datasets. We make several observations.

Observation 1: MC-b and MC-1 are the best for feature imputation, as Table 2 shows. However,
the imputations are not perfect, because in these particular parameter settings the ratio between the
number of observed entries over the degrees of freedom needed to describe the feature matrix (i.e.,
r(d + n− r)) is below the necessary condition for perfect matrix completion [2], and because there
is some feature noise. Furthermore, our CV tuning procedure selects parameters µ,λ to optimize
label error, which often leads to suboptimal imputation performance. In a separate experiment (not
reported here) when we made the ratio sufficiently large and without noise, and specifically tuned for

2http://vikas.sindhwani.org/svmlin.html
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functions (2)(3) smaller than 10−5.
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2.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume that X and Y are jointly produced by an underlying
low rank matrix. We then take advantage of the sparsity to fill in the missing labels and features
using a modified method of matrix completion. Specifically, we assume the following generative
story. It starts from a d × n low rank “pre”-feature matrix X0, with rank(X0) " min(d, n). The
actual feature matrixX is obtained by adding iid Gaussian noise to the entries ofX0: X = X0 + ε,

where εij ∼ N(0,σ2
ε ). Meanwhile, the t “soft” labels

(
y0
1j . . . y0

tj

)! ≡ y0
j ∈ Rt of item j are

produced by y0
j = Wx0

j + b, whereW is a t × d weight matrix, and b ∈ Rt is a bias vector. Let

Y0 =
[
y0

1 . . .y0
n

]
be the soft label matrix. Note the combined (t + d)× n matrix

[
Y0;X0

]
is low

rank too: rank(
[
Y0;X0

]
) ≤ rank(X0) + 1. The actual label yij ∈ {−1, 1} is generated randomly

via a sigmoid function: P (yij |y0
ij) = 1/

(
1 + exp(−yijy0

ij)
)
. Finally, two random masks ΩX,ΩY

are applied to expose only some of the entries inX andY, and we use ω to denote the percentage of
observed entries. This generative story may seem restrictive, but our approaches based on it perform
well on synthetic and real datasets, outperforming several baselines with linear classifiers.

2.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specified by X,Y,ΩX,ΩY, we would like to recover the interme-
diate low rank matrix

[
Y0;X0

]
. Then, X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the (t + d) × n stacked matrix
[
Y0;X0

]
is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (1)

s.t. sign(zij) = yij , ∀(i, j) ∈ ΩY; z(i+t)j = xij , ∀(i, j) ∈ ΩX

Here, Z is meant to recover
[
Y0;X0

]
by directly minimizing the rank while obeying the observed

features and labels. Note the indices (i, j) ∈ ΩX are with respect toX, such that i ∈ {1, . . . , d}. To
index the corresponding element in the larger stacked matrix Z, we need to shift the row index by t
to skip the part forY0, and hence the constraints z(i+t)j = xij . The above formulation assumes that

there is no noise in the generation processes X0 → X and Y0 → Y. Of course, there are several
issues with formulation (1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in
matrix completion [3, 2], we relax rank() with the convex nuclear norm ‖Z‖∗ =∑min(t+d,n)

k=1 σk(Z), where σk’s are the singular values of Z. The relationship between
rank(Z) and ‖Z‖∗ is analogous to that of $0-norm and $1-norm for vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (1), we minimize
a loss function cx(z(i+t)j , xij). We choose the squared loss cx(u, v) = 1

2 (u − v)2 in this
work, but other convex loss functions are possible too.

• Similarly, there is label noise from Y0 to Y. The observed labels are of a different type
than the observed features. We therefore introduce another loss function cy(zij , yij) to
account for the heterogeneous data. In this work, we use the logistic loss cy(u, v) =
log(1 + exp(−uv)).

In addition to these changes, we will model the bias b either explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bias b ∈ Rt in addition to

Z ∈ R(t+d)×n, hence the name. Here, Z corresponds to the stacked matrix
[
WX0;X0

]
instead of[

Y0;X0
]
, making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j , xij), (2)

2

MC-b MC-1 FPC+SVM EM1+SVM Mean+SVM Zero+SVM

Transductive Label Error
(% of missing labels predicted incorrectly) 25.6 21.4 22.6 24.1 28.6 28.0

Relative Feature Imputation Error
0.66 0.66 0.68 0.78 1.02 1.00
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divide ΩX and ΩY into five disjoint subsets each. We then run our matrix completion algorithms
using 4

5 of the observed entries, measure its performance on the remaining
1
5 , and average over

the five folds. Since our main goal is to predict unobserved labels, we use label error as the CV
performance criterion to select parameters. Note that tuning µ is quite efficient since all values
under consideration can be evaluated in one run of the continuation method. We set ηµ = 0.25 and,
as in [10], consider µ values starting at σ1ηµ, where σ1 is the largest singular value of the matrix

of observed entries in [Y;X] (with the unobserved entries set to 0), and decrease µ until 10−5.
The range of λ values considered was {10−3, 10−2, 10−1, 1}. We initialized b0 to be all zero and
Z0 to be the rank-1 approximation of the matrix of observed entries in [Y;X] (with unobserved
entries set to 0) obtained by performing an SVD and reconstructing the matrix using only the largest
singular value and corresponding left and right singular vectors. The step sizes were set as follows:

τZ = min(3.8|ΩY|
λ , |ΩX|), τb = 3.8|ΩY|

λn . Convergence was defined as relative change in objective

functions (2)(3) smaller than 10−5.

Baselines: We compare to the following baselines, each consisting of some missing feature impu-
tation step on X first, then using a standard SVM to predict the labels: [FPC+SVM] Matrix com-
pletion onX alone using FPC [10]. [EM(k)+SVM] Expectation Maximization algorithm to impute
missing X entries using a mixture of k Gaussian components. As in [9], missing features, mixing
component parameters, and the assignments of items to components are treated as hidden variables,
which are estimated in an iterative manner to maximize the likelihood of the data. [Mean+SVM]
Impute each missing feature by the mean of the observed entries for that feature. [Zero+SVM]
Impute missing features by filling in zeros.

After imputation, an SVM is trained using the available (noisy) labels in ΩY for that task, and
predictions are made for the rest of the labels. All SVMs are linear, trained using SVMlin2, and the
regularization parameter is tuned using 5-fold cross validation separately for each task. The range
of parameter values considered was {10−8, 10−7, . . . , 107, 108}.
EvaluationMethod: To evaluate performance, we consider two measures: transductive label error,
i.e., the percentage of unobserved labels predicted incorrectly; and relative feature imputation error(∑

ij /∈ΩX
(xij − x̂ij)2

)
/
∑

ij /∈ΩX
x2

ij , where x̂ is the predicted feature value. In the tables below,

for each parameter setting, we report the mean performance (and standard deviation in parenthesis)
of different algorithms over 10 random trials. The best algorithm within each parameter setting,
as well as any statistically indistinguishable algorithms via a two-tailed paired t-test at significance
level α = 0.05, are marked in bold.

4.1 Synthetic Data Experiments

Synthetic Data Generation: We generate a family of synthetic datasets to systematically explore
the performance of the algorithms. We first create a rank-r matrix X0 = LR#, where L ∈ Rd×r

and R ∈ Rn×r with entries drawn iid from N (0, 1). We then normalize X0 such that its entries
have variance 1. Next, we create a weight matrixW ∈ Rt×d and bias vector b ∈ Rt, with all entries
drawn iid fromN (0, 10). We then produceX,Y0,Y according to section 2.1. Finally, we produce
the random ΩX,ΩY masks with ω percent observed entries.

Using the above procedure, we vary ω = 10%, 20%, 40%, n = 100, 400, r = 2, 4, and σ2
ε =

0.01, 0.1, while fixing t = 10, d = 20, to produce 24 different parameter settings. For each setting,
we generate 10 trials, where the randomness is in the data and mask.

Synthetic experiment results: Table 1 shows the transductive label errors, and Table 2 shows the
relative feature imputation errors, on the synthetic datasets. We make several observations.

Observation 1: MC-b and MC-1 are the best for feature imputation, as Table 2 shows. However,
the imputations are not perfect, because in these particular parameter settings the ratio between the
number of observed entries over the degrees of freedom needed to describe the feature matrix (i.e.,
r(d + n− r)) is below the necessary condition for perfect matrix completion [2], and because there
is some feature noise. Furthermore, our CV tuning procedure selects parameters µ,λ to optimize
label error, which often leads to suboptimal imputation performance. In a separate experiment (not
reported here) when we made the ratio sufficiently large and without noise, and specifically tuned for

2http://vikas.sindhwani.org/svmlin.html
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Obs. 1: MC-b and MC-1 best at imputation and better than FPC+SVM, suggesting Y helps to impute X.

Obs. 2: MC-1 is best for label transduction. Surprisingly, MC-bʼs imputation does not translate to classification.
Obs. 3: Other results (in paper) show that MC-b and MC-1 improve more as the number of tasks increases. 

Real Data Results
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Table 2: Relative feature imputation error on the synthetic datasets. The algorithm Zero+SVM is
not shown because it by definition has relative feature imputation error 1.

σ2
ε r n ω MC-b MC-1 FPC+SVM EM1+SVM Mean+SVM

0.01 2 100 10% 0.84(0.04) 0.87(0.06) 0.88(0.06) 1.01(0.12) 1.06(0.02)
20% 0.54(0.08) 0.57(0.06) 0.57(0.07) 0.67(0.13) 1.03(0.02)
40% 0.29(0.06) 0.27(0.06) 0.27(0.06) 0.34(0.03) 1.01(0.01)

400 10% 0.73(0.03) 0.72(0.04) 0.76(0.03) 0.79(0.07) 1.02(0.01)
20% 0.43(0.04) 0.46(0.05) 0.50(0.04) 0.45(0.04) 1.01(0.00)
40% 0.30(0.10) 0.22(0.04) 0.24(0.05) 0.21(0.04) 1.00(0.00)

4 100 10% 0.99(0.04) 0.96(0.03) 0.96(0.03) 1.22(0.11) 1.05(0.01)
20% 0.77(0.05) 0.78(0.05) 0.77(0.04) 0.92(0.07) 1.02(0.01)
40% 0.42(0.07) 0.40(0.03) 0.42(0.04) 0.49(0.04) 1.01(0.01)

400 10% 0.87(0.04) 0.88(0.03) 0.89(0.01) 1.00(0.08) 1.01(0.00)
20% 0.69(0.07) 0.67(0.04) 0.69(0.03) 0.66(0.03) 1.01(0.00)
40% 0.34(0.05) 0.34(0.03) 0.38(0.03) 0.29(0.02) 1.00(0.00)

0.1 2 100 10% 0.92(0.05) 0.93(0.04) 0.93(0.05) 1.18(0.10) 1.06(0.02)
20% 0.69(0.07) 0.72(0.06) 0.74(0.06) 0.94(0.07) 1.03(0.02)
40% 0.51(0.05) 0.52(0.05) 0.53(0.05) 0.67(0.08) 1.02(0.01)

400 10% 0.79(0.03) 0.80(0.03) 0.84(0.03) 0.96(0.07) 1.02(0.01)
20% 0.64(0.06) 0.64(0.06) 0.67(0.04) 0.73(0.07) 1.01(0.00)
40% 0.48(0.04) 0.45(0.05) 0.49(0.05) 0.57(0.07) 1.00(0.00)

4 100 10% 1.01(0.04) 0.97(0.03) 0.97(0.03) 1.25(0.05) 1.05(0.02)
20% 0.84(0.03) 0.85(0.03) 0.85(0.03) 1.07(0.06) 1.02(0.01)
40% 0.59(0.03) 0.61(0.04) 0.63(0.04) 0.80(0.09) 1.01(0.01)

400 10% 0.90(0.02) 0.92(0.02) 0.92(0.01) 1.08(0.07) 1.01(0.01)
20% 0.75(0.04) 0.77(0.02) 0.79(0.03) 0.86(0.05) 1.01(0.00)
40% 0.56(0.03) 0.55(0.04) 0.59(0.04) 0.66(0.06) 1.00(0.00)

meta-average 0.66 0.66 0.68 0.78 1.02

Table 3: More tasks help matrix completion (ω = 10%, n = 400, r = 2, d = 20, σ2
ε = 0.01).

t MC-b MC-1 FPC+SVM MC-b MC-1 FPC+SVM

2 30.1(2.8) 22.9(2.2) 20.5(2.5) 0.78(0.07) 0.78(0.04) 0.76(0.03)
10 26.5(2.0) 19.9(1.7) 23.7(1.7) 0.73(0.03) 0.72(0.04) 0.76(0.03)

transductive label error relative feature imputation error

Table 4: Performance on the music emotions data.
ω =40% 60% 80% Algorithm ω =40% 60% 80%

28.0(1.2) 25.2(1.0) 22.2(1.6) MC-b 0.69(0.05) 0.54(0.10) 0.41(0.02)
27.4(0.8) 23.7(1.6) 19.8(2.4) MC-1 0.60(0.05) 0.46(0.12) 0.25(0.03)
26.9(0.7) 25.2(1.6) 24.4(2.0) FPC+SVM 0.64(0.01) 0.46(0.02) 0.31(0.03)
26.0(1.1) 23.6(1.1) 21.2(2.3) EM1+SVM 0.46(0.09) 0.23(0.04) 0.13(0.01)

26.2(0.9) 23.1(1.2) 21.6(1.6) EM4+SVM 0.49(0.10) 0.27(0.04) 0.15(0.02)
26.3(0.8) 24.2(1.0) 22.6(1.3) Mean+SVM 0.18(0.00) 0.19(0.00) 0.20(0.01)
30.3(0.6) 28.9(1.1) 25.7(1.4) Zero+SVM 1.00(0.00) 1.00(0.00) 1.00(0.00)

transductive label error relative feature imputation error

We vary the percentage of observed entries ω = 40%, 60%, 80%. For each ω, we run 10 random
trials with different masks ΩX,ΩY. For this dataset, we tuned only µ with CV, and set λ = 1.

The results are in Table 4. Most importantly, these results show that MC-1 is useful for this real-
world multi-label classification problem, leading to the best (or statistically indistinguishable from
the best) transductive error performance with 60% and 80% of the data available, and close to the
best with only 40%.

We also compared these algorithms against an “oracle baseline” (not shown in the table). In this
baseline, we give 100% features (i.e., no indices are missing from ΩX) and the training labels
in ΩY to a standard SVM, and let it predict the unspecified labels. On the same random tri-
als, for observed percentage ω = 40%, 60%, 80%, the oracle baseline achieved label error rate
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Music emotions: predict emotions evoked by songs (n=593, t=6, d=72)

Yeast microarray: predict gene functional classes (n=2417, t=14, d=103)
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22.1(0.8), 21.3(0.8), 20.5(1.8) respectively. Interestingly, MC-1 with ω = 80% (19.8) is statisti-
cally indistinguishable from the oracle baseline.

4.3 Yeast Microarray Data Experiments

This dataset comes from a biological domain and involves the problem of Yeast gene functional
classification. We use the data studied by Elisseeff and Weston [5], which contains n = 2417
examples (Yeast genes) with d = 103 input features (results from microarray experiments).4 We
follow the approach of [5] and predict each gene’s membership in t = 14 functional classes. For
this larger dataset, we omitted the computationally expensive EM4+SVM methods, and tuned only
µ for matrix completion while fixing λ = 1.

Table 5 reveals that MC-b leads to statistically significantly lower transductive label error for this bi-
ological dataset. Although not highlighted in the table, MC-1 is also statistically better than the SVM
methods in label error. In terms of feature imputation performance, the MCmethods are weaker than
FPC+SVM. However, it seems simultaneously predicting the missing labels and features appears to
provide a large advantage to the MC methods. It should be pointed out that all algorithms except
Zero+SVM in fact have small but non-zero standard deviation on imputation error, despite what the
fixed-point formatting in the table suggests. For instance, with ω = 40%, the standard deviation is
0.0009 for MC-1, 0.0011 for FPC+SVM, and 0.0001 for Mean+SVM.

Again, we compared these algorithms to an oracle SVM baseline with 100% observed entries inΩX.
The oracle SVM approach achieves label error of 20.9(0.1), 20.4(0.2), and 20.1(0.3) for ω =40%,
60%, and 80% observed labels, respectively. Both MC-b and MC-1 significantly outperform this
oracle under paired t-tests at significance level 0.05. We attribute this advantage to a combination
of multi-label learning and transduction that is intrinsic to our matrix completion methods.

Table 5: Performance on the yeast data.
ω =40% 60% 80% Algorithm ω =40% 60% 80%

16.1(0.3) 12.2(0.3) 8.7(0.4) MC-b 0.83(0.02) 0.76(0.00) 0.73(0.02)
16.7(0.3) 13.0(0.2) 8.5(0.4) MC-1 0.86(0.00) 0.92(0.00) 0.74(0.00)
21.5(0.3) 20.8(0.3) 20.3(0.3) FPC+SVM 0.81(0.00) 0.76(0.00) 0.72(0.00)
22.0(0.2) 21.2(0.2) 20.4(0.2) EM1+SVM 1.15(0.02) 1.04(0.02) 0.77(0.01)
21.7(0.2) 21.1(0.2) 20.5(0.4) Mean+SVM 1.00(0.00) 1.00(0.00) 1.00(0.00)
21.6(0.2) 21.1(0.2) 20.5(0.4) Zero+SVM 1.00(0.00) 1.00(0.00) 1.00(0.00)

transductive label error relative feature imputation error

5 Discussions and Future Work

We have introduced two matrix completion methods for multi-label transductive learning with miss-
ing features, which outperformed several baselines. In terms of problem formulation, our methods
differ considerably from sparse multi-task learning [11, 1, 13] in that we regularize the feature and
label matrix directly, without ever learning explicit weight vectors. Our methods also differ from
multi-label prediction via reduction to binary classification or ranking [15], and via compressed
sensing [7], which assumes sparsity in that each item has a small number of positive labels, rather
than the low-rank nature of feature matrices. These methods do not naturally allow for missing fea-
tures. Yet other multi-label methods identify a subspace of highly predictive features across tasks in
a first stage, and learn in this subspace in a second stage [8, 12]. Our methods do not require separate
stages. Learning in the presence of missing data typically involves imputation followed by learning
with completed data [9]. Our methods perform imputation plus learning in one step, similar to EM
on missing labels and features [6], but the underlying model assumption is quite different.

A drawback of our methods is their restriction to linear classifiers only. One future extension is to
explicitly map the partial feature matrix to a partially observed polynomial (or other) kernel Gram
matrix, and apply our methods there. Though such mapping proliferates the missing entries, we
hope that the low-rank structure in the kernel matrix will allow us to recover labels that are nonlinear
functions of the original features.

4Available at http://mulan.sourceforge.net/datasets.html
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Obs.

Obs. Obs.

Obs.

Observation:
MC-1 among best label-error 
performers for 60%, 80% 
observed, despite poor 
feature imputation.

Observation:
MC-b and MC-1 significantly 
outperform baselines in 
label error, benefiting from 
simultaneous prediction of 
missing labels and features.


