

Neural Information Processing Systems (NIPS) 2010, Vancouver, Canada

Transduction with Matrix Completion: Three Birds with One Stone Andrew B. Goldberg¹, Xiaojin Zhu¹, Benjamin Recht¹, Jun-Ming Xu¹, Robert Nowak² Department of ¹Computer Sciences, ²Electrical and Computer Engineering, University of Wisconsin-Madison

Completion (MC) Ind labels $\mathbf{X}, \mathbf{Y}, \Omega_{\mathbf{X}}, \Omega_{\mathbf{Y}}$ Is matrix $[\mathbf{Y^0}; \mathbf{X^0}] = \mathbf{Z}$			 Experimental Setup Goal: Evaluate MC as a tool for multi-label transductive classification with missing data Baselines (two-step approaches combining an imputation and prediction method): Imputation: FPC, EM with k-component mixture model, Mean imputation, or Zero imputation 								
eature red lo stic los	es and labels are noisy! Use oss for features: $c_x(u,v) =$ ss for labels: $c_y(u,v) =$	e loss functions. = $\frac{1}{2}(u-v)^2$ $\log(1 + \exp(-uv))$	Meta-average and varying <i>r</i>	es over 24 synthe r (the rank of ${f X^0}$	Synt etic data set), # items n	hetic D is created by , noise level,	ata R fixing # tas and obser	esults sks $t=10$, rved rate	S # features a	d =20	$egin{aligned} \mathbf{X^0} &= \mathbf{LR}^{ op} \ \mathbf{L} \in \mathbb{R}^{d imes r} \ \mathbf{R} \in \mathbb{R}^{n imes r} \end{aligned}$
						MC-b	MC-1 F	PC+SVM	EM1+SVM	Mean+SVM	Zero+SVM
orr	n2 Two Eormul	ations	Tran (% of missing	sductive Label Erro g labels predicted in	or ncorrectly)	25.6	21.4	22.6	24.1	28.6	28.0
	MC-b (explicit)	MC-1 (implicit)	$ \begin{array}{c} \text{Relative} \\ \left(\sum_{ij \notin \Omega_{\mathbf{X}}} \right. \end{array} $	Feature Imputation $(x_{ij} - \hat{x}_{ij})^2) / \sum_{ij}$	Error $\notin \Omega_{\mathbf{x}} x_{ij}^2$	0.66	0.66	0.68	0.78	1.02	1.00
t m j hod $c_y(z)$	$\begin{array}{c c} \operatorname{sign}(z_{ij} + b_i) \\ \hline \text{Fixed Point Continuation} \\ (\operatorname{gradient} + \operatorname{shrinkage}) \\ \text{Yes, with appropriately} \\ \operatorname{chosen step size} \\ \hline \\ i_j + b_i, y_{ij}) + \frac{1}{ \Omega_{\mathbf{X}} } \sum_{(i,j) \in \Omega_{\mathbf{X}}} \\ \hline \\ \hline \\ i_j, y_{ij}) + \frac{1}{ \Omega_{\mathbf{X}} } \sum_{(i,j) \in \Omega_{\mathbf{X}}} \\ \hline \end{array}$	$sign(z_{ij})$ FPC (gradient + hrinkage + projection) No, but converges in practice $c_x(z_{(i+t)j}, x_{ij})$ α_x $c_x(z_{(i+t)j}, x_{ij})$	Obs. 3: Other Music emotion $\frac{0 \text{bs.} = 40\%}{28.0(1.2)}$ $\frac{25}{27.4(0.8)}$ $\frac{23}{26.9(0.7)}$ $\frac{25}{26.0(1.1)}$ $\frac{23}{26.2(0.9)}$ $\frac{23}{26.3(0.8)}$ $\frac{24}{30.3(0.6)}$ $\frac{28}{28}$ transduct Meast micros $\frac{0 \text{bs.} = 40\%}{16.1(0.3)}$	r results (in paper ions: predict emc 60% 80% 5.2(1.0) 22.2(1.6) 3.7(1.6) 19.8(2.4) 5.2(1.6) 24.4(2.0) 3.6(1.1) 21.2(2.3) 3.1(1.2) 21.6(1.6) 4.2(1.0) 22.6(1.3) 8.9(1.1) 25.7(1.4) tive label error parray: predict get 60% 80% 2.2(0.3) 8.7(0.4) 3.0(0.2) 8.5(0.4)) show that Re Re otions evoke Algorithm MC-b MC-1 FPC+SVM EM1+SVM EM1+SVM EM4+SVM Mean+SVM Zero+SVM Mean+SVM Algorithm MC-b MC-b MC-1	MC-b and M Example 1 Constant of Constant and Const	A C-1 improvements a Rest $(n=593, t=6, 60\%)$ (n=593, t=6, 60%) (n=593, t=6, 60%)	ve more a ults =6, $d=72$) δ 80 0 0.41(0.0 0 0.41(0.0 0 0.31(0.0 0 0.13(0.0 0 0.15(0.0 0 0.15(0.0 0 0.73(0.0 0 0.73(0.0 0 0.73(0.0 0 0.74(0.0	0% 02) 03) 03) 03) 01) 02) 03) 03) 03) 03) 03) 03) 03) 03) 03) 03) 03) 03) 03) 03) 03) 03) 03) 03) 03) 04) 050) 06) 076 076 070 070	Der of tasks Observ -1 among b formers for erved, desp ture imputat	increases. vation: est label-err 60%, 80% bite poor tion. vation: 1 significant
Techniques Fixed Point Continuation (FPC) [Ma <i>et al</i> , 2009]			$\begin{array}{c cccc} 16.7(0.3) & 1.\\ 21.5(0.3) & 20\\ 22.0(0.2) & 21\\ 21.7(0.2) & 21\\ 21.6(0.2) & 21\\ transduct$	3.0(0.2) $8.5(0.4)$ $0.8(0.3)$ $20.3(0.3)$ $1.2(0.2)$ $20.4(0.2)$ $1.1(0.2)$ $20.5(0.4)$ $1.1(0.2)$ $20.5(0.4)$ $20.5(0.4)$ $20.5(0.4)$	MC-1 FPC+SVM EM1+SVM Mean+SVM Zero+SVM	0.86(0.00 1 0.81(0.00 1.15(0.02 1.00(0.00 1.00(0.00 relative	$\begin{array}{c ccccc} 0 & 0.92(0.00) \\ \hline 0 & 0.76(0.00) \\ \hline 1 & 0.04(0.02) \\ \hline 1 & 0.00(0.00) \\ \hline 1 & 0.00(0.00) \\ \hline re \ feature \ imp \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 00) \\ 00) \\ 01) \\ 1abe \\ 00) \\ 00) \\ 00) \\ mis \\ \end{array} $	perform bas el error, ben ultaneous p sing labels	selines in refiting from prediction of and features
τ _z	FPC algorithm for MInput : Initial matrix Z_0 , paraDetermine $\mu_1 > \mu_2 > \cdots > \mu_1$ Set $Z = Z_0$. foreach $\mu = \mu_1, \mu_2, \dots, \mu_L$ while Not converged doPCompute $A = Z - \tau$ Compute SVD of A	the meters μ , λ , Step size $\tau_{\mathbf{Z}}$ $\mu_L = \mu > 0.$ do $\mathbf{z}g(\mathbf{Z})$ $= \mathbf{U}\Lambda\mathbf{V}^{\top}$	 Summary and Conclusions First work to simultaneously perform: 1) multi-label prediction, 2) transduction, and 3) feature imputation Novel low-rank SSL assumption leads to formulation as a matrix completion problem Introduced two algorithms (MC-b and MC-1) that outperform baselines on synthetic and real data Future work: Go beyond linear classification by explicit kernelization (e.g., using a polynomial kernel) 								

goldberg@cs.wisc.edu, jerryzhu@cs.wisc.edu