OASIS: Online Active Semi-Supervised Learning

Andrew Goldberg, Xiaojin Zhu*, Alex Furger, Jun-Ming Xu

University of Wisconsin-Madison

AAAI 2011

The Problem We Consider

- 1. At time t the world picks x_t , y_t , shows x_t
- 2. We predict y'_t
- 3. With small probability, world reveals y_t
- 4. If y_t not revealed we may query it
- 5. We update our model even if y_t unknown

Is this ...

- semi-supervised learning?
 - Yes, but sequential input, active query
- online learning?
 - Yes, but learns on unlabeled items
- active learning?
 - Yes, but learns on un-queried items

OASIS = Online Active Semi-Supervised Learning

Main idea: Be Bayesian!

- Track all gaps with the posterior.
 - semi-supervised learning
 - online learning
 - active learning
 - all naturally follow.

The Margin in Supervised Learning

• E.g. SVM linear classifier $f(\mathbf{x}) = \mathbf{w}^{ op} \mathbf{x}$

The Gap Assumption in SSL

S3VM: find the largest unlabeled margin

Another Example of Multi-modal Posterior

[courtesy of Kwang-Sung Jun]

Life is Easy Being Bayesian: Likelihood

- The "null-category" likelihood pushes w away from unlabeled points. → semi-supervised learning
- Inspired by [Lawrence & Jordan NIPS'04]

Life is Easy Being Bayesian: Update

- Sequential Bayesian update
 online learning
 - assume iid, not adversarial
 - Cauchy prior

Life is Easy Being Bayesian: Predict

Predict label

$$\hat{y}_t = f(\mathbf{x_t}) = \underset{y \in \{-1,1\}}{\operatorname{argmax}} p(y \mid \mathbf{x_t}, D_{t-1})$$

Integrate out w

$$p(y \mid \mathbf{x}_t, D_{t-1}) = \int p(y \mid \mathbf{x}_t, \mathbf{w}') p(\mathbf{w}' \mid D_{t-1}) d\mathbf{w}'$$

• If the posterior strongly disagree on x_t , ask for its label \rightarrow active learning

Life is Hard Being Bayesian!

$$p(y \mid \mathbf{x}_t, D_{t-1}) = \int p(y \mid \mathbf{x}_t, \mathbf{w}') p(\mathbf{w}' \mid D_{t-1}) d\mathbf{w}'$$

Particle filtering

intractable

Posterior approximated by m weighted particles:

$$p(\mathbf{w} \mid D_{t-1}) \approx \sum_{i=1}^{m} \beta_i \delta(\mathbf{w} - \mathbf{w}^{(i)})$$

Prediction using particles:

$$p(y \mid \mathbf{x}_t, D_{t-1}) = \int p(y \mid \mathbf{x}_t, \mathbf{w}') p(\mathbf{w}' \mid D_{t-1}) d\mathbf{w}'$$

$$\approx \sum_{i=1}^m \beta_i p(y \mid \mathbf{x}_t, \mathbf{w}^{(i)})$$

Particle Filtering Details

• Update weight β_i by a multiplicative factor:

$$p(y = y_t | \mathbf{x}_t, \mathbf{w}_{t-1}^{(i)})$$
 if y_t is revealed or queried

$$p(y \in \{-1, 1\} | \mathbf{x}_t, \mathbf{w}_{t-1}^{(i)})$$
 if unlabeled

- Occasional resample-move to rejuvenize particles
 - A single step of Metropolis-Hastings sampling

Active Learning using Particles

Each incoming unlabeled point has a score:

$$score(\mathbf{x}) = \left| \sum_{i=1}^{m} \beta_i \underset{y \in \{-1,1\}}{\operatorname{argmax}} p(y \mid \mathbf{x}, \mathbf{w}^{(i)}) \right|$$

• Query for label if $score(x) < s_0$

The Complete Algorithm

Experiments: List of Algorithms

	Online	Active	SSL
OASIS	X	X	X
OSIS	X		X
OS	Х		
AROW (C=I)	Х		
AROW (C*) (test-set-tuned)	X		

OSIS=Online Semi-Supervised Learning
OS = Online Supervised learning
AROW = Adaptive Regularization of Weight Vectors
[Crammer et al. NIPS 09]

Experiments: Procedure

- 20 trials of T iterations
- Start with 2 labeled points
- To control the total number of labels:
 - First run OASIS, record the number of queries a
 - Run other algorithms with 2+a labeled points
- Same exact $x_1 \dots x_T$ sequence across algorithms

Results on Letter

(a) letter A vs B (
$$d = 16$$
)
 $T = 1555, l = 2$
 $a = 5.10(1.92)$

OASIS ≫ OS, AROW, OSIS ≈ OS, AROW; active learning is key

Results on Pendigits

(b) pendigits 0 vs 1 (
$$d = 16$$
)
 $T = 2286, l = 2$
 $a = 2.60(1.14)$

OASIS, OSIS »
OS, AROW;
semi-supervised
learning is key

Results on MNIST

(c) MNIST 0 vs 1 (
$$d = 10$$
)
 $T = 10000, l = 2$
 $a = 10.30(5.01)$

OASIS >> OSIS >> OS,AROW;
SSL + active learning are both key

Summary

- Online + active + semi-supervised learning
- Full Bayesian on gap assumption
- Particle filtering
- Future work:
 - Theory
 - Adversarial setting

Acknowledgments: NSF IIS-0916038, AFOSR FA9550-09-1-0313, and NSF IIS-0953219. We thank Rob Nowak for helpful discussions.