Robust RegBayes

Selectively Incorporating First-Order Logic Domain Knowledge into Bayesian Models

Shike Mei^{†§}, Jun Zhu[§], Xiaojin Zhu[†]

[†]University of Wisconsin-Madison [§]Tsinghua University

∃ → (∃ →

Table of Contents

Motivation

2 Contribution

3 RegBayes Framework

4 Further Improvement: Robust RegBayes

Experiment on Topic Models

- Incorporating Domain Knowledge
- Robustness

()

Motivation

Top words in learned topics from hotel review

		0							
T1	T2	T3	T4	T5	T6	T7	T8	Т9	T10
n't	room	room	room	room	room	hotel	hotel	hotel	hotel
poor	n't	n't	n't	n't	hotel	room	room	room	pool
dirty	told	told	hotel	hotel	n't	n't	n't	day	day
bad	asked	hotel	stay	stay	stay	night	breakfast	staff	area
room	hotel	back	front	night	night	stay	staff	area	staff
hotel	back	front	desk	rooms	rooms	rooms	day	breakfast	rooms
worst	manager	desk	back	back	time	breakfast	night	pool	food
back	stay	stay	night	bed	staff	staff	rooms	time	time
small	called	asked	rooms	front	bed	time	time	n't	breakfast
awful	night	manager	door	time	breakfast	day	area	night	good

No Domain Knowledge

Use Domain Knowledge

T1+	Τ2	T3+	T4	T5+	Т6	T7+	T8	Т9+	T10
resort	n't	*beach	restaurant	pool	*breakfast	but	*room	*room	hotel
free	рау	*location	fruit	good	*food	n't	told	*bed	*room
*price	but	nice	*dinner	dinner holiday		kids	asked	*bathroom	rooms
great	money	street	wine	bar	but	people	desk	shower	*stay
*worth	check	parking	served	entertainment	day	time	front	*door	hotels
island	time	area	morning	day	water	nice	manager	*floor	night
trip	back	good	menu	*food	bar	night	*stay	colorred*stay	booked
beautiful	car	*restaurant	evening	euros	buffet	great	called	bedroom	*floor
*quality	expensive	internet	meal	lovely	drinks	day	call	coffee	city
place	lobfby	great	eggs	evening	lunch	family	back	towels	view

3

(日) (周) (三) (三)

Motivation

Incorporating knowledge can improve the **accuracy** (Richardson & Domingos, 2006) and the **interpretability** of models (Andrzejewski et al., 2011).

副下 《唐下 《唐下

Examples of Knowledge in Topic Modeling

seed-rules: $\forall i(w(i) = \text{``monkey''}) \rightarrow (z(i) = T)$ cannot-link rules: $\forall i \forall j(w(i) = \text{``monkey''}) \land (w(j) = \text{``apple''}) \rightarrow z(i) \neq z(j)$ must-link rules: $\forall i \forall j(w(i) = \text{``monkey''}) \land (w(j) = \text{``gorilla''}) \rightarrow z(i) = z(j)$

イロト 不得下 イヨト イヨト 二日

Table of Contents

Motivation

- 3 RegBayes Framework
- 4 Further Improvement: Robust RegBayes

Experiment on Topic Models

- Incorporating Domain Knowledge
- Robustness

()

3

イロト イヨト イヨト イヨト

• Previous work model knowledge as prior, which are lacking of flexibility.

3

• • = • • = •

- Previous work model knowledge as prior, which are lacking of flexibility.
- Robust RegBayes framework can incorporate any FOL knowledge into any Bayesian models as soft constraints.

A B K A B K

- Previous work model knowledge as prior, which are lacking of flexibility.
- Robust RegBayes framework can incorporate any FOL knowledge into any Bayesian models as soft constraints.
- Technically, it is a **convex** framework.

()

Table of Contents

Motivation

2 Contribution

3 RegBayes Framework

4 Further Improvement: Robust RegBayes

Experiment on Topic Models

- Incorporating Domain Knowledge
- Robustness

()

Standard Bayesian Model: Prior: $p_0(H)$ Likelihood p(X|H)

э

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Standard Bayesian Model:

Prior: $p_0(\mathbf{H})$ Likelihood $p(\mathbf{X}|\mathbf{H})$

(Noiseless) FOL base: Knowledge Base containing a set of rules R_I associated with golden standard satisfied proportion γ_I .

$$\gamma_{I} \triangleq \frac{\sum_{g_{l} \in G_{l}} \mathbb{I}_{1}(g_{l}(\mathbf{X}, \mathbf{H}))}{|G_{l}|}$$

E.g. for the seed rule $\forall i(w(i) = \text{``monkey''}) \rightarrow (z(i) = T)$,

$$G_I = \{z(i) = T : w(i) = \text{``monkey''}\}$$

• Posterior distribution:

 $p(\mathbf{H} \mid \mathbf{X}) \propto p_0(\mathbf{H})p(\mathbf{X} \mid \mathbf{H})$

2

<ロト < 団ト < 団ト < 団ト

• Posterior distribution:

 $p(\mathbf{H} \mid \mathbf{X}) \propto p_0(\mathbf{H}) p(\mathbf{X} \mid \mathbf{H})$

• Equivalent Variational Form Bayesian

 $\min_{q \in \mathbb{P}} \operatorname{KL}\left(q(\mathbf{H}) \parallel p(\mathbf{H} \mid \mathbf{X})\right)$

3

★聞▶ ★ 国▶ ★ 国▶

• Posterior distribution:

 $p(\mathbf{H} \mid \mathbf{X}) \propto p_0(\mathbf{H}) p(\mathbf{X} \mid \mathbf{H})$

• Equivalent Variational Form Bayesian

 $\min_{q \in \mathbb{P}} \operatorname{KL} \left(q(\mathbf{H}) \parallel p(\mathbf{H} \mid \mathbf{X}) \right)$

Define φ_l(H, X) as the satisfied proportion of variables on all groundings of an instantiation (H, X).
 Rules to constrain the variational satisfied proportion E_{q(H)} [φ_l(H, X)] to be close to the golden standard γ_l.

$$|\mathbb{E}_{q(\mathsf{H})} \left[\phi_l(\mathsf{H}, \mathsf{X}) \right] - \gamma_l | \leq \epsilon + \xi_l$$

• • = • • = •

$$\min_{q, \xi} \quad \text{KL}\left(q(\mathbf{H}) \parallel p(\mathbf{H} \mid \mathbf{X})\right) + C \sum_{l} \xi_{l}$$

s.t.
$$|\mathbb{E}_{q(\mathbf{H})}\left[\phi_{l}(\mathbf{H}, \mathbf{X})\right] - \gamma_{l}| \leq \epsilon + \xi_{l},$$

s.t.
$$|\mathbb{E}_{q(\mathbf{H})} [\phi_l(\mathbf{H}, \mathbf{X})] - \gamma_l| \le \epsilon + \xi_l,$$

 $\xi_l \ge 0, \quad \forall l = 1 \dots L$

Robust RegBayes

3

< □ > < □ > < □ > < □ > < □ > .

Optimization

• RegBayes is convex! We introduce dual variables μ (weights of rules).

$$q(\mathbf{H} \mid \boldsymbol{\mu}^*) = \frac{p(\mathbf{H} \mid \mathbf{X})}{Z(\boldsymbol{\mu}^*)} e^{\sum_l \mu_l^* (\phi_l(\mathbf{H}, \mathbf{X}) - \gamma_l)}$$

• • = • • = •

Optimization

• RegBayes is convex! We introduce dual variables μ (weights of rules).

$$q(\mathbf{H} \mid \boldsymbol{\mu}^*) = \frac{p(\mathbf{H} \mid \mathbf{X})}{Z(\boldsymbol{\mu}^*)} e^{\sum_l \mu_l^* (\phi_l(\mathbf{H}, \mathbf{X}) - \gamma_l)}$$

• μ^* is the optimum solution of the dual problem:

$$\max_{\boldsymbol{\mu}} \quad L(\boldsymbol{\mu}) = -\log Z(\boldsymbol{\mu}) - \epsilon \sum_{I} \mu_{I}$$

s.t.
$$-C \leq \mu_{I} \leq C,$$

 $Z(\mu)$ is the normalization factor for q

< Ξ > < Ξ >

Table of Contents

Motivation

2 Contribution

3 RegBayes Framework

4 Further Improvement: Robust RegBayes

Experiment on Topic Models

- Incorporating Domain Knowledge
- Robustness

()

Obtaining Robustness

Each rule has associated belief labels $\tilde{\gamma}_{l}$ from M workers: $\tilde{\gamma}_{l} = \{\tilde{\gamma}_{lm}: \ \tilde{\gamma}_{lm} \in [0,1]\}_{m=1}^{M}$.

米国 とくほとくほど

Obtaining Robustness

Each rule has associated belief labels $\tilde{\gamma}_{l}$ from M workers: $\tilde{\gamma}_{l} = \{\tilde{\gamma}_{lm}: \tilde{\gamma}_{lm} \in [0, 1]\}_{m=1}^{M}$.

Noisy Belief Likelihood: modeling $p(\tilde{\gamma}_{lm} | \gamma_l, b_l)$ as a spike-slab mixture of two components, selected by b_l (reliability)

Obtaining Robustness

Each rule has associated belief labels $\tilde{\gamma}_{I}$ from M workers: $\tilde{\gamma}_{I} = { \tilde{\gamma}_{Im} : \tilde{\gamma}_{Im} \in [0, 1] }_{m=1}^{M}$.

Noisy Belief Likelihood: modeling $p(\tilde{\gamma}_{lm} | \gamma_l, b_l)$ as a spike-slab mixture of two components, selected by b_l (reliability)

Obtain Robustness

$$\min_{q,\boldsymbol{\xi}} \quad \operatorname{KL}\left(q(\mathbf{H},\boldsymbol{\gamma},\mathbf{b}) \parallel p(\mathbf{H},\boldsymbol{\gamma},\mathbf{b} \mid \mathbf{X},\tilde{\boldsymbol{\gamma}})\right) + C \sum_{l} \xi_{l}$$

s.t.
$$\mathbb{E}_{q(b_l)} \left[b_l | \mathbb{E}_{q(\mathbf{H}|b_l)} \left[\phi_l(\mathbf{H}, \mathbf{X}) \right] - \mathbb{E}_{q(\gamma_l|b_l)} \left[\gamma_l \right] | \right]$$
$$\leq \epsilon + \xi_l, \quad \xi_l \geq 0, \quad \forall l = 1 \dots L$$

2

イロト イヨト イヨト イヨト

Table of Contents

Motivation

2 Contribution

- 3 RegBayes Framework
- 4 Further Improvement: Robust RegBayes

5 Experiment on Topic Models

- Incorporating Domain Knowledge
- Robustness

()

Experiment

Hypothesis one to test

• (Noiseless) RegBayes **can** incorporate FOL domain knowledge into topic models.

Hypothesis two to test

• Robust RegBayes can **robustly** incorporate FOL knowledge against noise in expert input.

A B F A B F

Datasets

Dataset	#Documents	#Topics	Description	#FOL Rules
COMP	5,000	20	comp.* in 20 newsgroup data	8 seeds
COM	2,740	25	U.S. House of Representatives	3 seeds, 2 docseeds
POL	2,000	20	movie reviews	1 cannot-link
HDG	24,073	50	PubMed abstracts	8 seeds, 6 inclusion, 6 exclusion

3

イロト イヨト イヨト イヨト

LogicLDA (RegBayes) vs LDA

	Proportion of Satisfied Logic Rule						
	LDA	LogicLDA					
COMP	0.00 ± 0.00	0.97 ± 0.01					
CON	0.07 ± 0.04	0.70 ± 0.00					
POL	1.00 ± 0.00	1.00 ± 0.00					
HDG	0.60 ± 0.01	0.96 ± 0.01					
	Test	Set Perplexity					
COMP	1531 ± 12	$\textbf{1463} \pm 5$					
CON	1206 ± 6	$\textbf{1216} \pm 11$					
POL	$\textbf{3218} \pm \textbf{13}$	$\textbf{3176} \pm 12$					
HDG	940 ± 6	$\textbf{885}\pm 2$					

2

イロト イヨト イヨト イヨト

LogicLDA (RegBayes) vs LDA

	Proportion of Satisfied Logic Rules						
	LDA	LogicLDA					
COMP	0.00 ± 0.00	0.97 ± 0.01					
CON	0.07 ± 0.04	0.70 ± 0.00					
POL	1.00 ± 0.00	1.00 ± 0.00					
HDG	0.60 ± 0.01	0.96 ± 0.01					
	Test	Set Perplexity					
COMP	1531 ± 12	$\textbf{1463} \pm 5$					
CON	1206 ± 6	$\textbf{1216} \pm 11$					
POL	$\textbf{3218} \pm \textbf{13}$	$\textbf{3176} \pm 12$					
HDG	940 ± 6	885 ± 2					

• Rules' satisfied proportion is high.

3

くほと くほと くほと

LogicLDA (RegBayes) vs LDA

	Proportion of Satisfied Logic Rules							
	LDA	LogicLDA						
COMP	0.00 ± 0.00	0.97 ± 0.01						
CON	0.07 ± 0.04	0.70 ± 0.00						
POL	1.00 ± 0.00	1.00 ± 0.00						
HDG	0.60 ± 0.01	0.96 ± 0.01						
	Test Set Perplexity							
COMP	1531 ± 12	1463 ± 5						
CON	$\boldsymbol{1206}\pm 6$	1216 ± 11						
POL	$\textbf{3218} \pm \textbf{13}$	3176 ± 12						
HDG	940 ± 6	$\textbf{885}\pm2$						

- Rules' satisfied proportion is high.
- smaller test set perplexity by incorporating domain knowledge (vs LDA).

・ 同 ト ・ ヨ ト ・ ヨ ト

Experiment on Supervised LDA

Task: Given HotelReview dataset, predict the rating of hotel (1 to 5 stars) based on the content of reviews. Two kinds of domain Knowledge

A B < A B </p>

Experiment on Supervised LDA

Task: Given HotelReview dataset, predict the rating of hotel (1 to 5 stars) based on the content of reviews. Two kinds of domain Knowledge

- Distinguish the topics as related to *value*, *location*, *service* and *room*
 - aspects. Specifically,

Seed words	Topic	Aspect
{value, price, quality, worth, resort}	T1-2	value
{location, traffic, restaurant, beach}	Т3	location
{service, food, breakfast, dinner}	T4-6	service
{door, floor, bed, stay, bathroom, room}	T7-10	room

< 3 > < 3 >

Experiment on Supervised LDA

Task: Given HotelReview dataset, predict the rating of hotel (1 to 5 stars) based on the content of reviews. Two kinds of domain Knowledge

• Distinguish the topics as related to *value*, *location*, *service* and *room* aspects. Specifically,

Seed words	Topic	Aspect
{value, price, quality, worth, resort}	T1-2	value
{location, traffic, restaurant, beach}	Т3	location
{service, food, breakfast, dinner}	T4-6	service
{door, floor, bed, stay, bathroom, room}	T7-10	room

• Two grammar rules, "Not" rule and "But" rule.

★ 3 > < 3 >

Interpretability of Topics

		<u> </u>							
T1	T2	T3	T4	T5	T6	T7	T8	Т9	T10
n't	room	room	room	room	room	hotel	hotel	hotel	hotel
poor	n't	n't	n't	n't	hotel	room	room	room	pool
dirty	told	told	hotel	hotel	n't	n't	n't	day	day
bad	asked	hotel	stay	stay	stay	night	breakfast	staff	area
room	hotel	back	front	night	night	stay	staff	area	staff
hotel	back	front	desk	rooms	rooms	rooms	day	breakfast	rooms
worst	manager	desk	back	back	time	breakfast	night	pool	food
back	stay	stay	night	bed	staff	staff	rooms	time	time
small	called	asked	rooms	front	bed	time	time	n't	breakfast
awful	night	manager	door	time	breakfast	day	area	night	good

No Domain Knowledge

Use Domain Knowledge

T1+	T2	T3+	T4	T5+	Т6	T7+	T8	T9+	T10
resort	n't	*beach	restaurant	restaurant pool		but	*room	*room	hotel
free	рау	*location	fruit	good	*food	n't	told	*bed	*room
*price	but	nice	*dinner	*dinner holiday		kids	asked	*bathroom	rooms
great	money	street	wine	wine bar		people	desk	shower	*stay
*worth	check	parking	served	entertainment	day	time	front	*door	hotels
island	time	area	morning	day	water	nice	manager	*floor	night
trip	back	good	menu	*food	bar	night	*stay	colorred*stay	booked
beautiful	car	*restaurant	evening	euros	buffet	great	called	bedroom	*floor
*quality	expensive	internet	meal	lovely	drinks	day	call	coffee	city
place	lobfby	great	eggs	evening	lunch	family	back	towels	view

æ

sRLogicLDA vs sLogicLDA

sLogicLDA naively constrains the satisfied proportion close to the mean, while sRLogicLDA filters the unreliable rules.

Pulo	Description	Histogram	$moon(\tilde{a}, \cdot)$	$p(b_i = 1 \mid i_i)$	Satisfaction Proportion		
Itule	Description	Thistogram	mean(¹ / _{lm})	$p(b_l = 1 \mid \lambda_l)$	sLogicLDA	sRLogicLDA	
Not rule	seed: {adjectives with negation within distance 4 before it} \rightarrow the last topic	r	0.91	0.99	0.98 ± 0.03	1.00 ± 0.00	
But rule	seed: {all words before adversative transition (e.g. "but") in sentences} → the last topic		0.56	0.00	0.70 ± 0.13	0.05 ± 0.4	

くほと くほと くほと

Shike Mei (University of Wisconsin-Madison)

3

イロト イヨト イヨト イヨト

 Robust RegBayes framework can robustly incorporate any FOL knowledge into any Bayesian model.

A B A A B A

- Robust RegBayes framework can robustly incorporate any FOL knowledge into any Bayesian model.
- Robust RegBayes framework improves the model accuracy and interpretability.

A B M A B M

- Robust RegBayes framework can robustly incorporate any FOL knowledge into any Bayesian model.
- Robust RegBayes framework improves the model accuracy and interpretability.
- More information on poster S14

()

Two Baselines

(*i*) MedLDAr (Zhu et al.,2013a), a RegBayes model that incorporates max-margin posterior regularization into LDA;

▶ ★ 聖 ▶ ★ 更 ▶

Two Baselines

(*i*) MedLDAr (Zhu et al.,2013a), a RegBayes model that incorporates max-margin posterior regularization into LDA;
(*ii*) sCTRF (Zhu & Xing, 2010), a feature based model that incorporates both single and pairwise word features into MedLDAr.

• • = • • = •

Predictive R^2 of sRLogicLDA, sCTRF, and MedLDAr

- sRLogicLDA achieves the similar performance with sCTRF (with only 7 rules vs 15 features on words in sCTRF) and better predictive performance than MedLDA.
- Incorporating domain knowledge improves predictive accuracy.