A Brief Introduction to Theoretical Foundations of Machine Learning and Machine Teaching

Jerry Zhu

University of Wisconsin-Madison

Simons Workshop on Synthesis of Models and Systems 3/15/2021

<□ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > ⊇ の Q · 1/55

Outline

Passive Learning (PAC Learning, Statistical Learning, Learning from iid Data)

<□> < @> < E> < E> E の Q @ 2/55

Active Learning

Machine Teaching: Helpful Teachers

Online Learning

Multi-Armed Bandits

Reinforcement Learning

Hypothesis Space

- X: input space, e.g. natural numbers \mathbb{N} (in general \mathbb{R}^d)
- Y: output space, e.g. $\{0,1\}$
- ▶ $h: X \mapsto Y$: a hypothesis, e.g. $h_i(x) = \mathbb{1}[x \ge i]$ or $h_i = 0 \dots 0111111 \dots$
- $\mathcal{H} \subseteq Y^X$: hypothesis space, e.g. $\mathcal{H} = \{h_i : i \in \mathbb{N}\}$
- target $h^* \in Y^X$
 - ▶ $h^* \in \mathcal{H}$: realizable, e.g. h_{2021}
 - $h^* \notin \mathcal{H}$: agnostic, e.g. $h^* = 101111111...$

Passive Learning Protocol

Environment has P(x, y), e.g. $\blacktriangleright P(x) = \lambda (1 - \lambda)^{x-1}$ ▶ $P(y \mid x) = \mathbb{1}[y = h^*(x)]$ Environment draws training set $S = (x_1, y_1) \dots (x_n, y_n) \stackrel{iid}{\sim} P(x, y_n)$ Example 1: $h^* = h_{2021}$, modest n S may not contain large x values. • Say $\max_{i=1}^{n} x_i = 100$, then $y_1 = \ldots = y_n = 0$ \blacktriangleright Learner receives S and selects $\hat{h} \in \mathcal{H}$. ▶ In Example 1 \hat{h} can be h_{101} , very different from h^*

But this is OK since machine learning only cares about the risk

True Risk and Empirical Risk

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Empirical Risk Minimization (ERM)

Learner wants to minimize R, but only observes R
ERM is a learning algorithm:

$$\hat{h} \in \operatorname*{argmin}_{h \in \mathcal{H}} \hat{R}(h) = \operatorname*{argmin}_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(h(x_i), y_i)$$

In Example 1 the argmin set is {h₁₀₁, h₁₀₂,...}
The learned ERM ĥ can be any one of them

Overfitting

Overfitting is a non-technical term, could mean

- $\blacktriangleright \ R(\hat{h}) \gg \hat{R}(\hat{h}),$ "my test error is much higher than training set error"
- $R(\hat{h}) \gg R(h^*)$, "I didn't get the best risk"
- ▶ $R(\hat{h}) \gg \inf_{h' \in \mathcal{H}} R(h')$, "I didn't get the best risk even among the models available to me"

<□ > < @ > < ≧ > < ≧ > ≧ > < ≥ < ♡ < ?/55

Risk Decomposition

$$\begin{split} R(\hat{h}) &= \left[R(\hat{h}) - \inf_{h' \in \mathcal{H}} R(h') \right] \text{ estimation error} \\ &+ \left[\inf_{h' \in \mathcal{H}} R(h') - R(h^*) \right] \text{ approximation error} \\ &+ \left[R(h^*) \right] \text{ Bayes error} \end{split}$$

Example 2: $\mathcal{H} = \{h_i = 0 \dots 0111111 \dots : i \in \mathbb{N}\},\ h^* = 10111111 \dots$

- ▶ Bayes error: $P(y \mid x)$ not concentrated on $y = h^*(x)$
- ▶ approximation error: $h^* \notin \mathcal{H}$, closest to arg $\inf_{h' \in \mathcal{H}} R(h') = h_1 = 111111...$ under geometric P(x)
- estimation error: S ~ Pⁿ(x, y) is finite and random. If S contains x = 2 but not x = 1, ERM will pick ĥ = h₃

Probably-Approximately-Correct (PAC) Guarantee

Assume finite \mathcal{H} .

Theorem For any $\delta > 0$

$$P_S\left(R(\hat{h}) - \inf_{h' \in \mathcal{H}} R(h') \le \sqrt{\frac{2}{n} \log \frac{2|\mathcal{H}|}{\delta}}\right) \ge 1 - \delta$$

- \blacktriangleright You probably will not receive a strange S
- Under typical S estimation error <u>bound</u> decreases as $O(\frac{1}{\sqrt{n}})$
- Can sharpen to $O(\frac{1}{n})$ for realizable case
- No control over approximation and Bayes errors

Probably-Approximately-Correct (PAC) Guarantee

How we get there:

- 1. Fixing $h,\,|R(h)-\hat{R}(h)|\lesssim \frac{1}{\sqrt{n}}$ by Hoeffding's inequality (just Monte Carlo)
- 2. Uniform convergence $\forall h \in \mathcal{H} : |R(h) \hat{R}(h)| \lesssim \sqrt{\frac{\log |\mathcal{H}|}{n}}$ by a union bound

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ 臣 のへで 10/55

- 3. \hat{h} chosen by ERM: $\hat{R}(\hat{h}) \leq \hat{R}(\text{best } h' \in \mathcal{H})$
- 4. $\Rightarrow R(\hat{h})$ cannot be much larger than $R(\text{best } h' \in \mathcal{H})$

Vapnik-Chervonenkis (VC) Dimension

- Recall our $\mathcal{H} = \{h_i = 0 \dots 0111111 \dots : i \in \mathbb{N}\}: |\mathcal{H}| = \infty$
- Should be learnable: union bound too weak!
- VC(ℋ): size t of the largest set {x_{i1},..., x_{it}} that can be assigned all 2^t labels by ℋ (shattering)
 - t = 1: $\{x = 1\}$ assigned label 0 by h_2 , label 1 by h_1
 - t = 2: $\{x = 1, x = 2\}$ assigned labels 00 by h_3 , labels 01 by h_2 , labels 11 by h_1 , but not 10

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ○ Q ○ 11/55

- ▶ No $x_1 < x_2$ can be assigned 10 by \mathcal{H}
- Our $VC(\mathcal{H}) = 1$

PAC Guarantee, Revisited

(Previously) finite \mathcal{H} : with probability at least $1 - \delta$,

$$R(\hat{h}) - \inf_{h' \in \mathcal{H}} R(h') \le O\left(\sqrt{\frac{\log |\mathcal{H}| + \log 1/\delta}{n}}\right)$$

Theorem

Finite $VC(\mathcal{H})$: with probability at least $1 - \delta$,

$$R(\hat{h}) - \inf_{h' \in \mathcal{H}} R(h') \le O\left(\sqrt{\frac{VC(\mathcal{H}) + \log 1/\delta}{n}}\right)$$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ 12/55

Passive Learning Summary

Environment draws training set

$$S = (x_1, y_1) \dots (x_n, y_n) \stackrel{iid}{\sim} P(x, y)$$

Learner has no say in data

Environment is not particularly helpful

• When $VC(\mathcal{H}) < \infty$, estimation error bound $O(\frac{1}{\sqrt{n}})$

approximation and Bayes errors uncontrolled

deep learning requires additional theory, active research area

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ♪ ○ ○ 13/55

Outline

Passive Learning (PAC Learning, Statistical Learning, Learning from iid Data)

Active Learning

Machine Teaching: Helpful Teachers

Online Learning

Multi-Armed Bandits

Reinforcement Learning

For Simplicity...

We will assume

▶ no Bayes error: $P(y = h^*(x) \mid x) = 1$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ <u>15/55</u>

• no approximation error:
$$h^* \in \mathcal{H}$$

Both can be relaxed.

Active Learning Protocol

 ${\mathcal H}$ is common knowledge. Environment has $h^* \in {\mathcal H}.$

1. For t = 1, 2, ...

- 2. learner asks query $x_t \in X$ based on history
- 3. oracle answers label $y_t = h^*(x_t)$
- 4. learner estimates $\hat{h}_t \in \mathcal{H}$

Two flavors of query x_t :

learner synthesizes any $x \in X$ (the Membership Query of [Angluin'88] is a special case for binary Y)

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ∽ Q ○ 16/55

 learner repeatedly draws x ~ P(x) until it likes the x (assuming unlabeled data costs nothing)

Example: Binary Search

Example 3:

• $X = [0, 1], P(x) = uniform(X), Y = \{0, 1\}$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ = りへで 17/55

$$h_a(x) = \mathbb{1}[x \ge a], \mathcal{H} = \{h_a : a \in X\}$$

▶
$$h^*$$
 has threshold $a^* \in X$

• Query x_t by binary search over X

• After n queries, the interval containing a^* has length

 $1/2^{n}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ○ ○ ○ 18/55

- Pick any \hat{h}_t in that interval
- $R(\hat{h}_t) \le 1/2^n$ (recall P(x) = uniform[0,1])
- Exponential speed up compared to passive learning's $R(\hat{h}_t) = O(1/n)$

Beyond Binary Search

- Nice, but only works for threshold functions.
- New concepts
 - version space

 $V = \{h \in \mathcal{H} : h \text{ agrees with all data seen so far}\}\$

disagreement region

$$DIS(V) = \{x \in X : \exists h, h' \in V, h(x) \neq h'(x)\}$$

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ のへで 19/55

CAL: A General Active Learning Algorithm

Assume $|\mathcal{H}| < \infty$, realizable

- 1. Version space $V = \mathcal{H}$
- 2. While $P(DIS(V)) \ge \epsilon$
- 3. repeat $x \sim P(X)$ until we have k points in DIS(V)
- 4. query these k points
- 5. $V \leftarrow \{h \in V : h \text{ agrees with these } k \text{ points}\}$
- 6. Output any $\hat{h} \in V$

Intuition: In iteration *i*, *k* random points in $DIS(V_i)$ reduce V_i 's radius $r(V_i) = \max_{h \in V_i} R(h)$ by at least half.

<□▶ < @▶ < 注▶ < 注▶ 注 の Q (* 20/55)</p>

CAL Guarantee

Let
$$k = 2\theta \left(\log \frac{|\mathcal{H}|}{\delta} + \log \log \frac{1}{\epsilon} \right)$$
 in step 3.

Theorem

With probability at least $1 - \delta$, CAL terminates after $\log \frac{1}{\epsilon}$ iterations, and $R(\hat{h}) \leq \epsilon$. The number of queries is

$$O\left(\left(\log\frac{1}{\epsilon}\right)\theta\left(\log\frac{|\mathcal{H}|}{\delta} + \log\log\frac{1}{\epsilon}\right)\right).$$

Number of queries n = O (log 1/ε) implies R(ĥ) = O (1/eⁿ)
Depends on θ being small

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ の へ ⁰ 21/55

Disagreement Coefficient θ

$$\theta = \sup_{r \in (0,1)} \frac{P(DIS(\mathbb{B}(h^*, r)))}{r}$$

▶ $\mathcal{H} = 1D$ thresholds

$$\begin{array}{l} h^* = h_{a^*} \\ & \mathbb{B}(h^*, r) = \{h_a : a \in [a^* - r, a^* + r]\} \\ & DIS(\mathbb{B}(h^*, r)) = \{x : a^* - r \leq x \leq a^* + r\} \\ & P(DIS(\mathbb{B}(h^*, r))) = 2r \\ & \theta = \sup_{r \in (0,1)} \frac{P(DIS(\mathbb{B}(h^*, r)))}{r} = 2 \\ & \mathcal{H} = 1 \text{D intervals } [a^*, b^*] \\ & \bullet \theta = \max\left(\frac{1}{\max(b^* - a^*, \epsilon)}, 4\right) \\ & \text{trouble when } b^* - a^* \text{ small} \\ & \text{``warm start'' problem (hit the interval) of active learning} \\ & \mathcal{H} = d\text{-dim hyperplane } \mathbbm{1}[\mathbf{w}^\top \mathbf{x} + b \geq 0]: \ \theta = O(1) \text{ under mild conditions on } P(x, y) \end{aligned}$$

Active Learning Summary

- \blacktriangleright Learner queries x_t
- Environment answers $h^*(y_t)$
- ▶ CAL error bound $O(e^{-\frac{n}{\theta}})$
- \blacktriangleright Potential exponential speed-up due to freedom in choosing x

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ ⑦ Q ♀ 23/55

Active Learning with Equivalence Queries?

1. For
$$t = 1, 2, ...$$

2. learner asks equivalence query
$$\hat{h}_{t-1} \in \mathcal{H}$$

3. oracle answers "yes" or counterexample
$$\left(x_t \in DIS(h^*, \hat{h}_{t-1}), y_t = h^*(x_t)\right)$$

4. learner estimates
$$\hat{h}_t \in \mathcal{H}$$

- Not well-studied in machine learning
- In classic work x_t is adversarial (least helpful oracle)

4 ロ ト 4 母 ト 4 星 ト 4 星 ト 星 の 9 0 24/55

But we can imagine a helpful oracle...

Helpful Oracle on Equivalence Queries

Recall Example 1: $\mathcal{H} = \{h_i = 0 \dots 0111111 \dots : i \in \mathbb{N}\},\$ $h^* = h_{2021}$ Least-helpful oracle • query: $\hat{h} = 111111...?$ > answer: no. (x = 1, y = 0)• query: $\hat{h} = 011111...?$ > answer: no. (x = 2, y = 0)Most-helpful oracle • query: $\hat{h} = 1111111...?$ • answer: no. (x = 2020, y = 0)• query: $\hat{h} = h_{999999}$? • answer: no. (x = 2021, y = 1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで 25/55

Outline

Passive Learning (PAC Learning, Statistical Learning, Learning from iid Data)

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q @ 26/55

Active Learning

Machine Teaching: Helpful Teachers

Online Learning

Multi-Armed Bandits

Reinforcement Learning

 ${\mathcal H}$ is common knowledge. Teacher has $h^* \in {\mathcal H}$ and knows the learner's algorithm

• Teacher creates teaching set $S = (x_1, y_1) \dots (x_n, y_n) \in X \times Y$

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ○ 27/55

- Learner receives S and selects $\hat{h} \in \mathcal{H}$
- Teacher's goals:
 - making the learner learn: $\hat{h} = h^*$
 - using the least effort: minimize n

Teaching Dimension

For learners that arbitrarily pick $\hat{h} \in V(S)$:

- S is a teaching set for h^{*} with respect to H, if h^{*} is the only consistent hypothesis in H.
- $\blacktriangleright \ TD(h^*,\mathcal{H}) =$

the size of the smallest teaching set for h^* w.r.t. ${\mathcal H}$

$$TD(\mathcal{H}) = \max_{h \in \mathcal{H}} TD(h, \mathcal{H})$$

Recall Example 1: $\mathcal{H} = \{h_i = 0 \dots 0111111 \dots : i \in \mathbb{N}\},\ h^* = h_{2021}$

▶
$$S = \{(2020, 0), (2021, 1)\}$$
 is a teaching set

▶ ... so is $S = \{(2020, 0), (2021, 1), (2022, 1)\}$

• ... but not $S = \{(2020, 0)\}$ nor $S = \{(2020, 0), (2022, 1)\}$

$$\blacktriangleright TD(h_1, \mathcal{H}) = 1; TD(h_a, \mathcal{H}) = 1, \forall a \ge 2$$

• ... and
$$TD(\mathcal{H}) = 2$$

More Examples of Teaching Dimension

	x1 xn
h0	0000000000
h1	1000000000
h2	0100000000
h3	0010000000
	• • •
hn	0000000001

$$TD(\mathcal{H}) = n \gg VC(\mathcal{H}) = 1$$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ⑦ Q ○ 29/55

More Examples of Teaching Dimension

	x1	
h1	1000000000	00000
h2	0100000000	00001
h3	0010000000	00010
h4	0001000000	00011
	• • •	
h_{2^k}	0000000001	11111

 $TD(\mathcal{H}) = 1 \ll VC(\mathcal{H}) = k$

<□▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ りへで 30/55

Teaching as Coding

$$\blacktriangleright$$
 message: target concept $h^* \in \mathcal{H}$

- \blacktriangleright language: S
- decoder: learning algorithm
- A conceptual way to find S:

$$\min_{S} \quad |S|$$
 s.t. $\hat{h}(S) = h^{*}$

or

$$\min_{S} \quad \text{effort}(S) + \|\hat{h}(S) - h^*\|$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 31/55

Machine Teaching Summary

- Teaching set S forces learner to learn h^*
- Teaching Dimension TD(h*, H) lower-bounds all sample-based learning
- ► For example, on 1D threshold
 - passive learning requires $O(\frac{1}{\epsilon})$ samples
 - active learning requires $O(\log \frac{1}{\epsilon})$
 - teaching only requires 2 regardless of ϵ

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の へ C 32/55

Outline

Passive Learning (PAC Learning, Statistical Learning, Learning from iid Data)

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ · ∽ Q ℃ 33/55

Active Learning

Machine Teaching: Helpful Teachers

Online Learning

Multi-Armed Bandits

Reinforcement Learning

Online Learning Protocol

 ${\mathcal H}$ is common knowledge. Environment has $h^* \in {\mathcal H}$

- 1. For t = 1, 2, ...
- 2. environment shows an <u>arbitrary</u> $x_t \in X$
 - no P(x) assumption
- 3. learner predicts \hat{y}_t
- 4. environment reveals true label $h^*(x_t)$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q @ 34/55

5. learner updates model

Example $\mathcal{H} = \{h_i = 0 \dots 0111111 \dots : i \leq N\}$, $h^* = h_{2021}$

If env keeps showing x = 1: no hope to learn h*, but also no further mistakes

<□▶ < @▶ < 注▶ < 注▶ 注 の Q (* 35/55)</p>

- Mistake bound on <u>any input sequence</u>
 - If env is a helpful teacher, mistake bound is $TD(\mathcal{H})$.
 - Assume worst case env instead

Some ERM Algorithms are No Good for Online Learning

• Receive
$$x_t$$
, predict $h(x_t)$, receive $h^*(x_t)$

$$\blacktriangleright V \leftarrow \{h \in V : h(x_t) = h^*(x_t)\}\$$

• Trivial mistake bound:
$$|\mathcal{H}| - 1$$

•
$$h^* = h_1$$
, $\hat{h} = h_N$, $x = N - 1$; $\hat{h} = h_{N-1}$, $x = N - 2$; ...

◆□▶ ◆昼▶ ◆ ≧▶ ◆ ≧▶ ≧ のへで 36/55

The Halving Algorithm

Start with $V = \mathcal{H}$. Repeat:

Receive x_t , predict majority vote by V, receive $h^*(x_t)$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 37/55

$$\blacktriangleright V \leftarrow \{h \in V : h(x_t) = h^*(x_t)\}$$

- Any mistake cuts V by at least half
- Mistake bound $\log_2 |\mathcal{H}|$

Online Learning Summary

- No separate training/test, no iid data assumption
- Mistake bound, can generalize to regret (learning from experts)
- Halving is suboptimal: Littlestone dimension and Standard Optimal Algorithm

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ · ∽ Q ℃ 38/55

Outline

Passive Learning (PAC Learning, Statistical Learning, Learning from iid Data)

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ · ∽ Q ℃ 39/55

Active Learning

Machine Teaching: Helpful Teachers

Online Learning

Multi-Armed Bandits

Reinforcement Learning

(Stochastic) Multi-Armed Bandit Protocol

- 1. Environment has k reward distributions R_1,\ldots,R_k with mean μ_1,\ldots,μ_k
- 2. For t = 1, 2, ..., T
- 3. learner pulls arm $a_t \in \{1 \dots k\}$
- 4. environment generates reward $r_t \sim R_{a_t}$
- Learner chooses which arm to pull, like in active learning
- Learner knows the R family (e.g. Bernoulli, Gaussian) but not the µ's

Generalizes A/B testing

Example: k = 2 Bernoulli $\{0, 1\}$ Arms

- First pull $a_1 = 1$, $r_1 = 1$
- Second pull $a_2 = 2$, $r_2 = 0$
- Third pull?
- What if we have pulled arm1 10 times with µ₁ = 0.7, and arm2 5 times with µ₂ = 0.4?

< □ > < @ > < E > < E > E の < C 41/55

Exploration Exploitation Tradeoff

Two distinct goals:

Pure exploration = best arm identification

$$\max P\left(a_{T+1} \in \operatorname*{argmax}_{a} \mu_{a}\right)$$

• Regret minimization = maximizing cumulative reward $\sum_{t=1}^{T} r_t$

$$\operatorname{Regret}(T) = \mu^* T - \mathbb{E}\left[\sum_{t=1}^T r_t\right]$$

$$\mu^* = \max_a \mu_a$$

< ロ ト 4 課 ト 4 差 ト 4 差 ト 差 の Q へ 42/55</p>

Upper Confidence Bound: Exploration Bonus

The UCB algorithm:

• For
$$t = 1, 2, ..., T$$

learner pulls arm

$$a_t \in \operatorname*{argmax}_{i \in [k]} \widehat{\mu}_i + \sqrt{\frac{4 \log T}{T_i}}$$

For the receives
$$r_t$$
, updates $\widehat{\mu}_{a_t}, T_{a_t}$

Theorem

$$\operatorname{Regret}(T) \le 8\sqrt{kT\log T} + 3\sum_{i=1}^{k} (\mu^* - \mu_i).$$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ⑦ Q ○ 43/55

"No regret" (per step, asymptotic)

With a Helpful Teacher

- **1**. For t = 1, 2, ..., T
- 2. learner pulls arm $a_t \in \{1 \dots k\}$
- 3. environment generates reward $r_t \sim R_{a_t}$
- 4. teacher modifies reward to $r_t + \delta_t$ before giving it to learner

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ ○ 44/55

- Guides best-arm identification
- Same vulnerability to adversarial attacks

Contextual Bandit

- A context is a state $s \in S$
 - 1. Environment has
 - context distribution ν
 - ▶ k reward distributions per state s: R_{s1}, \ldots, R_{sk} with mean $\mu_{s1}, \ldots, \mu_{sk}$

<□▶ < @ ▶ < E ▶ < E ▶ E の Q ♀ 45/55</p>

2. For
$$t = 1, 2, \dots, T$$

- 3. environment shows state $s_t \sim \nu$
- 4. learner pulls arm $a_t \in \{1 \dots k\}$
- 5. environment shows reward $r_t \sim R_{s_t,a_t}$

Useful if similar states share similar R 's, e.g. linear bandits $\mu=\theta^{\top}\phi(s,a)$

Multi-Armed Bandit Summary

- Simplest exploration-exploitation tradeoff
- State-less (basic bandit) or memoryless (contextual bandit)

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ↔ 46/55

Outline

Passive Learning (PAC Learning, Statistical Learning, Learning from iid Data)

Active Learning

Machine Teaching: Helpful Teachers

Online Learning

Multi-Armed Bandits

Reinforcement Learning

Markov Decision Process

Contextual bandit + first-order state transition. Environment:

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q @ 48/55

- State space S
- Action space A
- State transitions $P(s' \mid s, a)$
- Reward distributions R(s, a)
- Initial state distribution ν
- Discounting parameter $\gamma \in (0,1)$

Reinforcement Learning Interaction Protocol

The learner's policies $\pi:S\mapsto \operatorname{probability}$ simplex on A

- 1. Learner picks initial policy π_0
- 2. Environment draws initial state $s_0 \sim \nu$

3. For
$$t = 0, 1, 2, \ldots$$

- 4. learner chooses (randomized) action $a_t \sim \pi_t(s_t)$
- 5. environment generates reward $r_t \sim R(s_t, a_t)$
- 6. environment transits learner to $s_{t+1} \sim P(\cdot |, s_t, a_t)$

<□▶ < @ ▶ < E ▶ < E ▶ E の Q ↔ 49/55</p>

7. learner updates policy π_{t+1}

Value Function, Optimal Policy, Regret

For a fixed π , define state-value function $V^{\pi}: S \mapsto \mathbb{R}$

$$V^{\pi}(s) = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s_{0} = s\right]$$

Two distinct goals:

Optimal policy identification

$$\pi^* \in \operatorname*{argmax}_{\pi} \mathbb{E}_{s \sim \nu} V^{\pi}(s)$$

Regret minimization

$$\mathbb{E}\left[V^{\pi^*} - \sum_t \gamma^t r_t\right]$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の へ ⊙ 50/55

Solution Strategies

Three types of RL methods:

- 1. Model-based: estimate \hat{P},\hat{R} from experience, then plan in the estimated MDP
- 2. Value-based (e.g. Q-learning): estimate the optimal action-value Q^* function with value iteration (fixed point to Bellman optimality equations)

$$Q(s,a) \leftarrow R(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a'} Q(s',a')$$

Then extract the optimal policy

$$\pi^*(s) \in \operatorname*{argmax}_a Q(s,a)$$

3. Policy gradient (e.g. REINFORCE): parametrize π_{θ} , then directly optimize

$$\max_{\theta} \mathbb{E}_{s \sim \nu} V^{\pi_{\theta}}(s)$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ◆ ○ ○ ○ 51/55

Upper Confidence Bound Value Iteration (UCBVI)

Episodic MDP with horizon H. Assume reward function R known.

1. For episode
$$k = 0, \ldots, K-1$$

2. Form empirical transition estimate \hat{P}_h^k

3. Form reward bonus
$$b_h^k(s,a) = H \sqrt{rac{\log \frac{SAHK}{\delta}}{T_h^k(s,a)}}$$

4.
$$\pi^k = \text{ValueIteration}(\hat{P}^k, R + b_h^k : h = 0 \dots H - 1)$$

5. Run
$$\pi^k$$
 to generate a new trajectory, add to data

Theorem

Regret bound of UCBVI

$$\operatorname{Regret} = \mathbb{E}\left[\sum_{k=0}^{K-1} \left(V^* - V^{\pi^k}\right)\right] \le 2H^2 S \sqrt{AK \log(SAH^2 K^2)}$$

< □ ▶ < @ ▶ < ミ ▶ < ミ ▶ ミ の Q (~ 52/55

RL With a Helpful Teacher 1

Imitation learning

Expert provides trajectories

 $(s_0, a_0, s_1, a_1, \ldots)$

but no reward r_t is observed.

• Goal: learn $\hat{\pi}$ as good as the expert

- Require specialized learner (not standard RL)
- Behavior cloning: reduction to supervised learning $\pi: S \mapsto A$

<□▶ < @▶ < 注▶ < 注▶ 注 の Q C^{*} 53/55

Inverse reinforcement learning: estimate reward function R(s, a), then planning

RL With a Helpful Teacher 2

Teacher shaping the interaction trajectories

on rewards:
$$(s_0,a_0,r_0+\delta_0,s_1,a_1,r_1+\delta_1,\ldots)$$

on transitions: $(s_0, a_0, r_0, s'_1, a_1, r_1, s'_2, \ldots)$

or both.

- Standard RL learner
- Goal: guide the learner to π^* faster
- Teacher planning for δ_t or s'_t: a higher-level RL problem; state includes learner π̂_t

◆□ ▶ < 畳 ▶ < 星 ▶ < 星 ▶ 星 ⑦ Q ℃ 54/55</p>

References

Passive learning, online learning

 Understanding Machine Learning: From Theory to Algorithms. Shalev-Shwartz and Ben-David, 2014

Active learning

Theory of Active Learning. Hanneke, 2014

Machine teaching

 An Overview of Machine Teaching. Zhu, Singla, Zilles, and Rafferty. 2018

Multi-Armed Bandits

► Bandit Algorithms. Lattimore and Szepesvari. 2020

Reinforcement Learning

 Reinforcement Learning: Theory and Algorithms. Agarwal, Jiang, Kakade, Sun. (draft 2021)