A Brief Introduction to Theoretical Foundations of Machine Learning and Machine Teaching

Jerry Zhu
University of Wisconsin-Madison

Simons Workshop on Synthesis of Models and Systems
3/15/2021

Outline

Passive Learning (PAC Learning, Statistical Learning, Learning from iid Data)

Active Learning

Machine Teaching: Helpful Teachers

Online Learning

Multi-Armed Bandits

Reinforcement Learning

Hypothesis Space

- X : input space, e.g. natural numbers \mathbb{N} (in general \mathbb{R}^{d})
- Y : output space, e.g. $\{0,1\}$
- $h: X \mapsto Y$: a hypothesis, e.g. $h_{i}(x)=\mathbb{1}[x \geq i]$ or $h_{i}=0 \ldots 0111111 \ldots$
- $\mathcal{H} \subseteq Y^{X}$: hypothesis space, e.g. $\mathcal{H}=\left\{h_{i}: i \in \mathbb{N}\right\}$
- target $h^{*} \in Y^{X}$
- $h^{*} \in \mathcal{H}$: realizable, e.g. h_{2021}
- $h^{*} \notin \mathcal{H}$: agnostic, e.g. $h^{*}=10111111 \ldots$

Passive Learning Protocol

- Environment has $P(x, y)$, e.g.
- $P(x)=\lambda(1-\lambda)^{x-1}$
- $P(y \mid x)=\mathbb{1}\left[y=h^{*}(x)\right]$
- Environment draws training set
$S=\left(x_{1}, y_{1}\right) \ldots\left(x_{n}, y_{n}\right) \stackrel{i i d}{\sim} P(x, y)$
- Example 1: $h^{*}=h_{2021}$, modest n
- S may not contain large x values.
- Say $\max _{i=1}^{n} x_{i}=100$, then $y_{1}=\ldots=y_{n}=0$
- Learner receives S and selects $\hat{h} \in \mathcal{H}$
- In Example $1 \hat{h}$ can be h_{101}, very different from h^{*}
- But this is OK since machine learning only cares about the risk

True Risk and Empirical Risk

- Loss $\ell\left(y, y^{\prime}\right) \geq 0$, e.g. 0-1 loss $\mathbb{1}\left[y \neq y^{\prime}\right]$
- True risk $R(h)=\mathbb{E}_{P}(\ell(h(x), y))$
- How $P(x, y)$ relates to $h^{*}: h^{*}=\operatorname{argmin}_{h \in \mathcal{Y}^{x}} R(h)$
- Learner's goal is small $R(\hat{h})$, not $\hat{h}=h^{*}$
- Test set error is a Monte Carlo estimate of R
- Empirical risk (training set error) on S :
$\hat{R}(h)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(h\left(x_{i}\right), y_{i}\right)$

Empirical Risk Minimization (ERM)

- Learner wants to minimize R, but only observes \hat{R}
- ERM is a learning algorithm:

$$
\hat{h} \in \underset{h \in \mathcal{H}}{\operatorname{argmin}} \hat{R}(h)=\underset{h \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(h\left(x_{i}\right), y_{i}\right)
$$

- In Example 1 the argmin set is $\left\{h_{101}, h_{102}, \ldots\right\}$
- The learned ERM \hat{h} can be any one of them

Overfitting

Overfitting is a non-technical term, could mean

- $R(\hat{h}) \gg \hat{R}(\hat{h})$, "my test error is much higher than training set error"
- $R(\hat{h}) \gg R\left(h^{*}\right)$, "I didn't get the best risk"
- $R(\hat{h}) \gg \inf _{h^{\prime} \in \mathcal{H}} R\left(h^{\prime}\right)$, "I didn't get the best risk even among the models available to me"

Risk Decomposition

$$
\begin{aligned}
R(\hat{h})= & {\left[R(\hat{h})-\inf _{h^{\prime} \in \mathcal{H}} R\left(h^{\prime}\right)\right] \text { estimation error } } \\
& +\left[\inf _{h^{\prime} \in \mathcal{H}} R\left(h^{\prime}\right)-R\left(h^{*}\right)\right] \text { approximation error } \\
& +\left[R\left(h^{*}\right)\right] \text { Bayes error }
\end{aligned}
$$

Example 2: $\mathcal{H}=\left\{h_{i}=0 \ldots 0111111 \ldots: i \in \mathbb{N}\right\}$, $h^{*}=10111111 \ldots$

- Bayes error: $P(y \mid x)$ not concentrated on $y=h^{*}(x)$
- approximation error: $h^{*} \notin \mathcal{H}$, closest to $\arg \inf _{h^{\prime} \in \mathcal{H}} R\left(h^{\prime}\right)=h_{1}=111111 \ldots$ under geometric $P(x)$
- estimation error: $S \sim P^{n}(x, y)$ is finite and random. If S contains $x=2$ but not $x=1$, ERM will pick $\hat{h}=h_{3}$

Probably-Approximately-Correct (PAC) Guarantee

Assume finite \mathcal{H}.
Theorem
For any $\delta>0$

$$
P_{S}\left(R(\hat{h})-\inf _{h^{\prime} \in \mathcal{H}} R\left(h^{\prime}\right) \leq \sqrt{\frac{2}{n} \log \frac{2|\mathcal{H}|}{\delta}}\right) \geq 1-\delta
$$

- You probably will not receive a strange S
- Under typical S estimation error bound decreases as $O\left(\frac{1}{\sqrt{n}}\right)$
- Can sharpen to $O\left(\frac{1}{n}\right)$ for realizable case
- No control over approximation and Bayes errors

Probably-Approximately-Correct (PAC) Guarantee

How we get there:

1. Fixing $h,|R(h)-\hat{R}(h)| \lesssim \frac{1}{\sqrt{n}}$ by Hoeffding's inequality (just Monte Carlo)
2. Uniform convergence $\forall h \in \mathcal{H}:|R(h)-\hat{R}(h)| \lesssim \sqrt{\frac{\log |\mathcal{H}|}{n}}$ by a union bound
3. \hat{h} chosen by ERM: $\hat{R}(\hat{h}) \leq \hat{R}$ (best $\left.h^{\prime} \in \mathcal{H}\right)$
4. $\Rightarrow R(\hat{h})$ cannot be much larger than R (best $\left.h^{\prime} \in \mathcal{H}\right)$

Vapnik-Chervonenkis (VC) Dimension

- Recall our $\mathcal{H}=\left\{h_{i}=0 \ldots 0111111 \ldots: i \in \mathbb{N}\right\}:|\mathcal{H}|=\infty$
- Should be learnable: union bound too weak!
- $V C(\mathcal{H})$: size t of the largest set $\left\{x_{i_{1}}, \ldots, x_{i_{t}}\right\}$ that can be assigned all 2^{t} labels by \mathcal{H} (shattering)
- $t=1:\{x=1\}$ assigned label 0 by h_{2}, label 1 by h_{1}
- $t=2$: $\{x=1, x=2\}$ assigned labels 00 by h_{3}, labels 01 by h_{2}, labels 11 by h_{1}, but not 10
- No $x_{1}<x_{2}$ can be assigned 10 by \mathcal{H}
- Our $V C(\mathcal{H})=1$

PAC Guarantee, Revisited

(Previously) finite \mathcal{H} : with probability at least $1-\delta$,

$$
R(\hat{h})-\inf _{h^{\prime} \in \mathcal{H}} R\left(h^{\prime}\right) \leq O\left(\sqrt{\frac{\log |\mathcal{H}|+\log 1 / \delta}{n}}\right)
$$

Theorem
Finite $V C(\mathcal{H})$: with probability at least $1-\delta$,

$$
R(\hat{h})-\inf _{h^{\prime} \in \mathcal{H}} R\left(h^{\prime}\right) \leq O\left(\sqrt{\frac{V C(\mathcal{H})+\log 1 / \delta}{n}}\right)
$$

Passive Learning Summary

- Environment draws training set

$$
S=\left(x_{1}, y_{1}\right) \ldots\left(x_{n}, y_{n}\right) \stackrel{i i d}{\sim} P(x, y)
$$

- Learner has no say in data
- Environment is not particularly helpful
- When $V C(\mathcal{H})<\infty$, estimation error bound $O\left(\frac{1}{\sqrt{n}}\right)$
- approximation and Bayes errors uncontrolled
- deep learning requires additional theory, active research area

Outline

> Passive Learning (PAC Learning, Statistical Learning, Learning from iid Data)

Active Learning

Machine Teaching: Helpful Teachers

Online Learning

Multi-Armed Bandits

Reinforcement Learning
\square

For Simplicity...

We will assume

- no Bayes error: $P\left(y=h^{*}(x) \mid x\right)=1$
- no approximation error: $h^{*} \in \mathcal{H}$

Both can be relaxed.

Active Learning Protocol

\mathcal{H} is common knowledge. Environment has $h^{*} \in \mathcal{H}$.

1. For $t=1,2, \ldots$
2. learner asks query $x_{t} \in X$ based on history
3. oracle answers label $y_{t}=h^{*}\left(x_{t}\right)$
4. learner estimates $\hat{h}_{t} \in \mathcal{H}$

Two flavors of query x_{t} :

- learner synthesizes any $x \in X$ (the Membership Query of [Angluin'88] is a special case for binary Y)
- learner repeatedly draws $x \sim P(x)$ until it likes the x (assuming unlabeled data costs nothing)

Example: Binary Search

Example 3:

- $X=[0,1], P(x)=$ uniform $(X), Y=\{0,1\}$
- $h_{a}(x)=\mathbb{1}[x \geq a], \mathcal{H}=\left\{h_{a}: a \in X\right\}$
- h^{*} has threshold $a^{*} \in X$
- Query x_{t} by binary search over X

Binary Search Analysis

- After n queries, the interval containing a^{*} has length

$$
1 / 2^{n}
$$

- Pick any \hat{h}_{t} in that interval
- $R\left(\hat{h}_{t}\right) \leq 1 / 2^{n}$ (recall $P(x)=$ uniform $\left.[0,1]\right)$
- Exponential speed up compared to passive learning's $R\left(\hat{h}_{t}\right)=O(1 / n)$

Beyond Binary Search

- Nice, but only works for threshold functions.
- New concepts
- version space

$$
V=\{h \in \mathcal{H}: h \text { agrees with all data seen so far }\}
$$

- disagreement region

$$
D I S(V)=\left\{x \in X: \exists h, h^{\prime} \in V, h(x) \neq h^{\prime}(x)\right\}
$$

CAL: A General Active Learning Algorithm

Assume $|\mathcal{H}|<\infty$, realizable

1. Version space $V=\mathcal{H}$
2. While $P(D I S(V)) \geq \epsilon$
3. repeat $x \sim P(X)$ until we have k points in $D I S(V)$
4. query these k points
5. $V \leftarrow\{h \in V: h$ agrees with these k points $\}$
6. Output any $\hat{h} \in V$

Intuition: In iteration i, k random points in $D I S\left(V_{i}\right)$ reduce V_{i} 's radius $r\left(V_{i}\right)=\max _{h \in V_{i}} R(h)$ by at least half.

CAL Guarantee

Let $k=2 \theta\left(\log \frac{|\mathcal{H}|}{\delta}+\log \log \frac{1}{\epsilon}\right)$ in step 3 .
Theorem
With probability at least $1-\delta$, CAL terminates after $\log \frac{1}{\epsilon}$ iterations, and $R(\hat{h}) \leq \epsilon$. The number of queries is

$$
O\left(\left(\log \frac{1}{\epsilon}\right) \theta\left(\log \frac{|\mathcal{H}|}{\delta}+\log \log \frac{1}{\epsilon}\right)\right)
$$

- Number of queries $n=O\left(\log \frac{1}{\epsilon}\right)$ implies $R(\hat{h})=O\left(1 / e^{n}\right)$
- Depends on θ being small

Disagreement Coefficient θ

$$
\theta=\sup _{r \in(0,1)} \frac{P\left(D I S\left(\mathbb{B}\left(h^{*}, r\right)\right)\right)}{r}
$$

- $\mathcal{H}=1 \mathrm{D}$ thresholds
- $h^{*}=h_{a^{*}}$
- $\mathbb{B}\left(h^{*}, r\right)=\left\{h_{a}: a \in\left[a^{*}-r, a^{*}+r\right]\right\}$
- $\operatorname{DIS}\left(\mathbb{B}\left(h^{*}, r\right)\right)=\left\{x: a^{*}-r \leq x \leq a^{*}+r\right\}$
- $P\left(D I S\left(\mathbb{B}\left(h^{*}, r\right)\right)\right)=2 r$
- $\theta=\sup _{r \in(0,1)} \frac{P\left(D I S\left(\mathbb{B}\left(h^{*}, r\right)\right)\right)}{r}=2$
- $\mathcal{H}=1 \mathrm{D}$ intervals $\left[a^{*}, b^{*}\right]$
- $\theta=\max \left(\frac{1}{\max \left(b^{*}-a^{*}, \epsilon\right)}, 4\right)$
- trouble when $b^{*}-a^{*}$ small
- "warm start" problem (hit the interval) of active learning
- $\mathcal{H}=d$-dim hyperplane $\mathbb{1}\left[\mathbf{w}^{\top} \mathbf{x}+b \geq 0\right]: \theta=O(1)$ under mild conditions on $P(x, y)$

Active Learning Summary

- Learner queries x_{t}
- Environment answers $h^{*}\left(y_{t}\right)$
- CAL error bound $O\left(e^{-\frac{n}{\theta}}\right)$
- Potential exponential speed-up due to freedom in choosing x

Active Learning with Equivalence Queries?

1. For $t=1,2, \ldots$
2. learner asks equivalence query $\hat{h}_{t-1} \in \mathcal{H}$
3. oracle answers "yes" or counterexample $\left(x_{t} \in D I S\left(h^{*}, \hat{h}_{t-1}\right), y_{t}=h^{*}\left(x_{t}\right)\right)$
4. learner estimates $\hat{h}_{t} \in \mathcal{H}$

- Not well-studied in machine learning
- In classic work x_{t} is adversarial (least helpful oracle)
- But we can imagine a helpful oracle...

Helpful Oracle on Equivalence Queries

Recall Example 1: $\mathcal{H}=\left\{h_{i}=0 \ldots 0111111 \ldots: i \in \mathbb{N}\right\}$, $h^{*}=h_{2021}$

- Least-helpful oracle
- query: $\hat{h}=111111 \ldots$?
- answer: no. $(x=1, y=0)$
- query: $\hat{h}=011111 \ldots$?
- answer: no. $(x=2, y=0)$
- Most-helpful oracle
- query: $\hat{h}=111111 \ldots$?
- answer: no. $(x=2020, y=0)$
- query: $\hat{h}=h_{999999}$?
- answer: no. $(x=2021, y=1)$

Outline

> Passive Learning (PAC Learning, Statistical Learning, Learning from iid Data)

Active Learning

Machine Teaching: Helpful Teachers

Online Learning

Multi-Armed Bandits

Reinforcement Learning

Teaching Protocol

\mathcal{H} is common knowledge. Teacher has $h^{*} \in \mathcal{H}$ and knows the learner's algorithm

- Teacher creates teaching set $S=\left(x_{1}, y_{1}\right) \ldots\left(x_{n}, y_{n}\right) \in X \times Y$
- Learner receives S and selects $\hat{h} \in \mathcal{H}$
- Teacher's goals:
- making the learner learn: $\hat{h}=h^{*}$
- using the least effort: minimize n

Teaching Dimension

For learners that arbitrarily pick $\hat{h} \in V(S)$:

- S is a teaching set for h^{*} with respect to \mathcal{H}, if h^{*} is the only consistent hypothesis in \mathcal{H}.
- $T D\left(h^{*}, \mathcal{H}\right)=$ the size of the smallest teaching set for h^{*} w.r.t. \mathcal{H}
- $T D(\mathcal{H})=\max _{h \in \mathcal{H}} T D(h, \mathcal{H})$

Recall Example 1: $\mathcal{H}=\left\{h_{i}=0 \ldots 0111111 \ldots: i \in \mathbb{N}\right\}$, $h^{*}=h_{2021}$

- $S=\{(2020,0),(2021,1)\}$ is a teaching set
- ... so is $S=\{(2020,0),(2021,1),(2022,1)\}$
- ... but not $S=\{(2020,0)\}$ nor $S=\{(2020,0),(2022,1)\}$
- $T D\left(h_{1}, \mathcal{H}\right)=1 ; T D\left(h_{a}, \mathcal{H}\right)=1, \forall a \geq 2$
- ... and $T D(\mathcal{H})=2$

More Examples of Teaching Dimension

	$x 1 \ldots x n$
h0	0000000000
h1	1000000000
h2	0100000000
h3	0010000000
hn	$\ldots 000000001$

$$
T D(\mathcal{H})=n \gg V C(\mathcal{H})=1
$$

More Examples of Teaching Dimension

Teaching as Coding

- message: target concept $h^{*} \in \mathcal{H}$
- language: S
- decoder: learning algorithm

A conceptual way to find S :

$$
\begin{array}{ll}
\min _{S} & |S| \\
\text { s.t. } & \hat{h}(S)=h^{*}
\end{array}
$$

or

$$
\min _{S} \operatorname{effort}(S)+\left\|\hat{h}(S)-h^{*}\right\|
$$

Machine Teaching Summary

- Teaching set S forces learner to learn h^{*}
- Teaching Dimension $T D\left(h^{*}, \mathcal{H}\right)$ lower-bounds all sample-based learning
- For example, on 1D threshold
- passive learning requires $O\left(\frac{1}{\epsilon}\right)$ samples
- active learning requires $O\left(\log \frac{1}{\epsilon}\right)$
- teaching only requires 2 regardless of ϵ

Outline

> Passive Learning (PAC Learning, Statistical Learning, Learning from iid Data)

Active Learning

Machine Teaching: Helpful Teachers

Online Learning

Multi-Armed Bandits

Reinforcement Learning

Online Learning Protocol

\mathcal{H} is common knowledge. Environment has $h^{*} \in \mathcal{H}$

1. For $t=1,2, \ldots$
2. environment shows an arbitrary $x_{t} \in X$

- no $P(x)$ assumption

3. learner predicts \hat{y}_{t}
4. environment reveals true label $h^{*}\left(x_{t}\right)$
5. learner updates model

Mistake Bound

Example $\mathcal{H}=\left\{h_{i}=0 \ldots 0111111 \ldots: i \leq N\right\}, h^{*}=h_{2021}$

- If env keeps showing $x=1$: no hope to learn h^{*}, but also no further mistakes
- Mistake bound on any input sequence
- If env is a helpful teacher, mistake bound is $T D(\mathcal{H})$.
- Assume worst case env instead

Some ERM Algorithms are No Good for Online Learning

- Trivial algorithm: Start with $V=\mathcal{H}$. Repeat:
- Pick any $\hat{h} \in V$
- Receive x_{t}, predict $\hat{h}\left(x_{t}\right)$, receive $h^{*}\left(x_{t}\right)$
- $V \leftarrow\left\{h \in V: h\left(x_{t}\right)=h^{*}\left(x_{t}\right)\right\}$
- Trivial mistake bound: $|\mathcal{H}|-1$
- $h^{*}=h_{1}, \hat{h}=h_{N}, x=N-1 ; \hat{h}=h_{N-1}, x=N-2 ; \ldots$

The Halving Algorithm

- Start with $V=\mathcal{H}$. Repeat:
- Receive x_{t}, predict majority vote by V, receive $h^{*}\left(x_{t}\right)$
- $V \leftarrow\left\{h \in V: h\left(x_{t}\right)=h^{*}\left(x_{t}\right)\right\}$
- Any mistake cuts V by at least half
- Mistake bound $\log _{2}|\mathcal{H}|$

Online Learning Summary

- No separate training/test, no iid data assumption
- Mistake bound, can generalize to regret (learning from experts)
- Halving is suboptimal: Littlestone dimension and Standard Optimal Algorithm

Outline

> Passive Learning (PAC Learning, Statistical Learning, Learning from iid Data)

> Active Learning

> Machine Teaching: Helpful Teachers

> Online Learning

Multi-Armed Bandits

Reinforcement Learning

(Stochastic) Multi-Armed Bandit Protocol

1. Environment has k reward distributions R_{1}, \ldots, R_{k} with mean μ_{1}, \ldots, μ_{k}
2. For $t=1,2, \ldots, T$
3. learner pulls arm $a_{t} \in\{1 \ldots k\}$
4. environment generates reward $r_{t} \sim R_{a_{t}}$

- Learner chooses which arm to pull, like in active learning
- Learner knows the R family (e.g. Bernoulli, Gaussian) but not the μ 's
- Generalizes A / B testing

Example: $k=2$ Bernoulli $\{0,1\}$ Arms

- First pull $a_{1}=1, r_{1}=1$
- Second pull $a_{2}=2, r_{2}=0$
- Third pull?
- What if we have pulled arm1 10 times with $\hat{\mu}_{1}=0.7$, and arm2 5 times with $\hat{\mu}_{2}=0.4$?

Exploration Exploitation Tradeoff

Two distinct goals:

- Pure exploration $=$ best arm identification

$$
\max P\left(a_{T+1} \in \underset{a}{\operatorname{argmax}} \mu_{a}\right)
$$

- Regret minimization $=$ maximizing cumulative reward $\sum_{t=1}^{T} r_{t}$

$$
\begin{aligned}
\operatorname{Regret}(T) & =\mu^{*} T-\mathbb{E}\left[\sum_{t=1}^{T} r_{t}\right] \\
\mu^{*} & =\max _{a} \mu_{a}
\end{aligned}
$$

Upper Confidence Bound: Exploration Bonus

The UCB algorithm:

- For $t=1,2, \ldots, T$
learner pulls arm

$$
a_{t} \in \underset{i \in[k]}{\operatorname{argmax}} \widehat{\mu}_{i}+\sqrt{\frac{4 \log T}{T_{i}}}
$$

receives r_{t}, updates $\widehat{\mu}_{a_{t}}, T_{a_{t}}$
Theorem

$$
\operatorname{Regret}(T) \leq 8 \sqrt{k T \log T}+3 \sum_{i=1}^{k}\left(\mu^{*}-\mu_{i}\right)
$$

"No regret" (per step, asymptotic)

With a Helpful Teacher

1. For $t=1,2, \ldots, T$
2. learner pulls arm $a_{t} \in\{1 \ldots k\}$
3. environment generates reward $r_{t} \sim R_{a_{t}}$
4. teacher modifies reward to $r_{t}+\delta_{t}$ before giving it to learner

- Guides best-arm identification
- Same vulnerability to adversarial attacks

Contextual Bandit

A context is a state $s \in S$

1. Environment has

- context distribution ν
- k reward distributions per state $s: R_{s 1}, \ldots, R_{s k}$ with mean $\mu_{s 1}, \ldots, \mu_{s k}$

2. For $t=1,2, \ldots, T$
3. environment shows state $s_{t} \sim \nu$
4. learner pulls arm $a_{t} \in\{1 \ldots k\}$
5. environment shows reward $r_{t} \sim R_{s_{t}, a_{t}}$

Useful if similar states share similar R 's, e.g. linear bandits $\mu=\theta^{\top} \phi(s, a)$

Multi-Armed Bandit Summary

- Simplest exploration-exploitation tradeoff
- State-less (basic bandit) or memoryless (contextual bandit)

Outline

> Passive Learning (PAC Learning, Statistical Learning, Learning from iid Data)

> Active Learning

> Machine Teaching: Helpful Teachers

> Online Learning

> Multi-Armed Bandits

Reinforcement Learning

Markov Decision Process

Contextual bandit + first-order state transition. Environment:

- State space S
- Action space A
- State transitions $P\left(s^{\prime} \mid s, a\right)$
- Reward distributions $R(s, a)$
- Initial state distribution ν
- Discounting parameter $\gamma \in(0,1)$

Reinforcement Learning Interaction Protocol

The learner's policies $\pi: S \mapsto$ probability simplex on A

1. Learner picks initial policy π_{0}
2. Environment draws initial state $s_{0} \sim \nu$
3. For $t=0,1,2, \ldots$
4. learner chooses (randomized) action $a_{t} \sim \pi_{t}\left(s_{t}\right)$
5. environment generates reward $r_{t} \sim R\left(s_{t}, a_{t}\right)$
6. environment transits learner to $s_{t+1} \sim P\left(\cdot \mid, s_{t}, a_{t}\right)$
7. learner updates policy π_{t+1}

Value Function, Optimal Policy, Regret

For a fixed π, define state-value function $V^{\pi}: S \mapsto \mathbb{R}$

$$
V^{\pi}(s)=\mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s_{0}=s\right]
$$

Two distinct goals:

- Optimal policy identification

$$
\pi^{*} \in \underset{\pi}{\operatorname{argmax}} \mathbb{E}_{s \sim \nu} V^{\pi}(s)
$$

- Regret minimization

$$
\mathbb{E}\left[V^{\pi^{*}}-\sum_{t} \gamma^{t} r_{t}\right]
$$

Solution Strategies

Three types of RL methods:

1. Model-based: estimate \hat{P}, \hat{R} from experience, then plan in the estimated MDP
2. Value-based (e.g. Q-learning): estimate the optimal action-value Q^{*} function with value iteration (fixed point to Bellman optimality equations)

$$
Q(s, a) \leftarrow R(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)} \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)
$$

Then extract the optimal policy

$$
\pi^{*}(s) \in \underset{a}{\operatorname{argmax}} Q(s, a)
$$

3. Policy gradient (e.g. REINFORCE): parametrize π_{θ}, then directly optimize

$$
\max _{\theta} \mathbb{E}_{s \sim \nu} V^{\pi_{\theta}}(s)
$$

Upper Confidence Bound Value Iteration (UCBVI)

Episodic MDP with horizon H. Assume reward function R known.

1. For episode $k=0, \ldots, K-1$
2. Form empirical transition estimate \hat{P}_{h}^{k}
3. Form reward bonus $b_{h}^{k}(s, a)=H \sqrt{\frac{\log \frac{S A H K}{\delta}}{T_{h}^{k}(s, a)}}$
4. $\quad \pi^{k}=$ ValueIteration $\left(\hat{P}^{k}, R+b_{h}^{k}: h=0 \ldots H-1\right)$
5. Run π^{k} to generate a new trajectory, add to data

Theorem
Regret bound of UCBVI

$$
\text { Regret }=\mathbb{E}\left[\sum_{k=0}^{K-1}\left(V^{*}-V^{\pi^{k}}\right)\right] \leq 2 H^{2} S \sqrt{A K \log \left(S A H^{2} K^{2}\right)}
$$

RL With a Helpful Teacher 1

Imitation learning

- Expert provides trajectories

$$
\left(s_{0}, a_{0}, s_{1}, a_{1}, \ldots\right)
$$

but no reward r_{t} is observed.

- Goal: learn $\hat{\pi}$ as good as the expert
- Require specialized learner (not standard RL)
- Behavior cloning: reduction to supervised learning $\pi: S \mapsto A$
- Inverse reinforcement learning: estimate reward function $R(s, a)$, then planning

RL With a Helpful Teacher 2

- Teacher shaping the interaction trajectories

$$
\begin{aligned}
& \text { on rewards: }\left(s_{0}, a_{0}, r_{0}+\delta_{0}, s_{1}, a_{1}, r_{1}+\delta_{1}, \ldots\right) \\
& \text { on transitions: }\left(s_{0}, a_{0}, r_{0}, s_{1}^{\prime}, a_{1}, r_{1}, s_{2}^{\prime}, \ldots\right)
\end{aligned}
$$

or both.

- Standard RL learner
- Goal: guide the learner to π^{*} faster
- Teacher planning for δ_{t} or s_{t}^{\prime} : a higher-level RL problem; state includes learner $\hat{\pi}_{t}$

References

Passive learning, online learning

- Understanding Machine Learning: From Theory to Algorithms. Shalev-Shwartz and Ben-David, 2014
Active learning
- Theory of Active Learning. Hanneke, 2014

Machine teaching

- An Overview of Machine Teaching. Zhu, Singla, Zilles, and Rafferty. 2018
Multi-Armed Bandits
- Bandit Algorithms. Lattimore and Szepesvari. 2020

Reinforcement Learning

- Reinforcement Learning: Theory and Algorithms. Agarwal, Jiang, Kakade, Sun. (draft 2021)

