ECML-PKDD 2012

Socioscope:

Spatio-Temporal Signal Recovery from Social Media

Jun-Ming Xu⁺, Aniruddha Bhargava^{*}, Robert Nowak^{*}, Xiaojin Zhu^{+*}

Department of Computer Sciences
 *Department of Electrical and Computer Engineering
 University of Wisconsin-Madison

Spatio-temporal Signal: When, Where, How Much

Public Health

Transportation Safety

"100 dead robins found in New York last Friday" "16 deer got run over by cars in Wisconsin last month "

Direct instrumental sensing is difficult and expensive

Humans as Sensors

Humans as Sensors

Socioscope is not for hot trending topics. Instead we want to precisely recover the intensity of pre-defined target phenomenon.

Challenges of Using Humans as Sensors

Keyword doesn't always mean event "I was just told I look like dead crow." "Don't blame me if one day I treat you like a dead crow."

Human sensors aren't under our control

"You are such a 'lazy sensor.' Stop watching Olympic Games! Go to the forests and count the dead birds for us! Now!"

Location stamps may be erroneous or missing 3% have GPS coordinates: (-98.24, 23.22) 47% have valid user profile location: "Bristol, UK", "New York" 50% don't have valid location information "Hogwarts," "In the traffic..blah," "Sitting On A Taco"

Socioscope: Problem Definition

Input:

A list of time and location stamps of the target posts.

Output: $f_{s,t}$

Intensity of target phenomenon at location *s* (e.g., New York) and time *t* (e.g., 0-1am)

Time	Location				Time (<i>t</i>)		
2012-09-26 17:35:23	New York US				0-1am	1-2am	2-3am
2012-09-27 12:17:52	N/A		Location (s)	California	f(1,1)	f(1,2)	f(1,3)
2012 00 27	(-98.24, 23.22)			New York	f(2,1)	f(2,2)	f(2,3)
08:28:12				Washington	f(3,1)	f(3,2)	f(3,3)

Why Simple Estimation is Bad

 $f_{s,t} = x_{s,t}$, the count of target posts in bin (s, t)

Justification: MLE of the model $x \sim Poisson(f)$

However,

• Population Bias

Even $f_{s,t} = f_{s',t'}$, if more users in (s, t), then $x_{s,t} > x_{s',t'}$

Imprecise location

Posts without location stamp, noisy user profile location

• Zero/Low counts

If no tweeters in Antarctica, does it mean no penguins there?

Correcting Population Bias

Social media user activity intensity $g_{s,t}$

 $x \sim Poisson(\eta(f,g))$

Link function (target post intensity) $\eta(f,g) = f \cdot g$

Count of all posts

 $z \sim Poisson(g)$

 $g_{s,t}$ can be accurately recovered

Handling Imprecise Location

Positron Emission Tomography (PET)

[Reproduced from Vardi et al(1985), A statistical model for positron emission tomography]

Handling Imprecise Location (cont.)

Handling Imprecise Location (cont.)

Probability that user was in California, but profile location is New York

Source Bin: Where the posts were created

(California, Sept 1st)
(New York, Sept 1st)
(Washington, Sept 1st)

Intensity $\eta(f,g)$

Fraction of posts without location stamps

Detector Bin: Where the location stamps indicate

(New York/GPS, Sept 1st)

(Washington/GPS, Sept 1st)

(New York/user, Sept 1st)

(Washington/user, Sept 1st)

(N/A, Sept 1st)

=

Intensity
$$h_i = \sum_{j=1}^n P_{ij}\eta(f_j, g_j)$$

 $x_i \sim Poisson(h_i)$

Optimization and Tuning

$$\min_{\theta} - \sum_{i=1}^{m} (x_i \log h_i - h_i) + \lambda \Omega(\theta)$$
$$\theta_j = \log f_j \qquad h_i = \sum_{j=1}^{n} P_{ij} f_j g_j$$

Quasi-Newton method (BFGS)

Cross-Validation

Data-based and objective approach to regularization Sub-sample events from the total observations

Theoretical Consideration

How many posts do we need to obtain reliable recovery?

If
$$x \sim Poisson(h)$$
, then $E\left[\left(\frac{x-h}{h}\right)^2\right] = h^{-1} \approx x^{-1}$

more counts, less error

Theorem 1. Let f be a Hölder α -smooth d-dimensional intensity function and suppose we observe N events from the distribution Poisson(f). Then there exists a constant $C_{\alpha} > 0$ such that

$$\inf_{\widehat{f}} \sup_{f} \frac{\mathbf{E}[\|\widehat{f} - f\|_{1}^{2}]}{\|f\|_{1}^{2}} \geq C_{\alpha} N^{\frac{-2\alpha}{2\alpha+d}} ,$$

Best achievable recovery error is inversely proportional to N with exponent depending on the underlying smoothness

Case Study: Roadkill

The intensity of roadkill events within the continental US

Spatio-Temporal resolution:

State: 48 continental US states, hour-of-day: 24 hours

Data source: Twitter

Text classifier: Trained with 1450 labeled tweets. CV accuracy 90%

Chipmunk Roadkill Results

Roadkill Results on Other Species

Future Work

Incorporate text classification confidence in the input

		Text Classifier Confidence	Time	Location
Time	Location		2012-09-26	Wisconsin
2012-09-26	Wisconsin	0.9	17:35:23	US
17.55.25		0.2	2012-09-26	N/A
2012-09-27	N/A		17:38:33	
12.17.32		0.6	2012-09-27	
2012-09-27	(-98.24,	0.0	12:17:52	N/A
08:28:12	23.22)	0.05	2012-09-27	(-105.24,
		0.05	13:13:28	35.82)
Target pos	st only	0.7	2012-09-27 08:28:12	(-98.24 <i>,</i> 23.22)

...

Future Work (cont.)

Handle the time delay and spatial displacement between the target event and the generation of a post

"So the pigeon I ran over yesterday must have some bird friends in high places. Car is full of bird shit."

"Ran over a chipmunk on my way 2 work this morning 😕"

Incorporate Psychology factors :

Will you post a tweet about running over a ...?

Thanks!

We thank Megan K. Hines for her guidance on wildlife. This work is supported in part by Global Health Institute at the University of Wisconsin-Madison.