Aarti Singh, Robert Nowak, Xiaojin Zhu

University of Wisconsin-Madison

NIPS 2008

Semi-Supervised Learning under Cluster Assumption

- f(X) is the optimal predictor of Y given P_{XY}
- Data: n labeled points $\stackrel{iid}{\sim} P_{XY}$, m unlabeled points $\stackrel{iid}{\sim} P_X$, $m \gg n$
- Goal: learn f(X) from data

Semi-Supervised Learning under Cluster Assumption

- f(X) is the optimal predictor of Y given P_{XY}
- Data: n labeled points $\stackrel{iid}{\sim} P_{XY}$, m unlabeled points $\stackrel{iid}{\sim} P_X$, $m \gg n$
- Goal: learn f(X) from data
- The cluster assumption:
 - ▶ *P_X* is a mixture of components in *d*-dim
 - f(X) smooth on each component
 - ▶ γ is the margin (> 0 separation, < 0 overlap), characterizes difficulty of learning problem

• Unlabeled data doesn't help

• Unlabeled data doesn't help

• Unlabeled data doesn't help

For any $\gamma > 0$, given enough labeled data, unlabeled data is superfluous (SSL does not result in faster rates of convergence).

• Unlabeled data doesn't help

For any $\gamma > 0$, given enough labeled data, unlabeled data is superfluous (SSL does not result in faster rates of convergence).

• Unlabeled data helps

• Unlabeled data doesn't help

For any $\gamma > 0$, given enough labeled data, unlabeled data is superfluous (SSL does not result in faster rates of convergence).

• Unlabeled data helps

• Unlabeled data doesn't help

For any $\gamma > 0$, given enough labeled data, unlabeled data is superfluous (SSL does not result in faster rates of convergence).

• Unlabeled data helps

• Unlabeled data doesn't help

For any $\gamma > 0$, given enough labeled data, unlabeled data is superfluous (SSL does not result in faster rates of convergence).

Unlabeled data helps

Given a finite labeled data, there are learning problems with small enough γ that SL fails, whereas perfect knowledge of components would yield small error.

Our Contributions

- Benefits of SSL not always revealed through asymptotic analysis and rates
- Instead, we quantify them with finite sample analysis
- We show SSL sometimes helps, sometimes not
- There are cases in which SSL has faster rates than SL

- $f_{m,n}$: predictor learned from m unlabeled and n labeled points
 - m = 0: supervised
 - m > 0: semi-supervised
 - $m = \infty$: oracle (full knowledge of P_X , but not f)

E 5 4

- $f_{m,n}$: predictor learned from m unlabeled and n labeled points
 - m = 0: supervised
 - m > 0: semi-supervised
 - $m = \infty$: oracle (full knowledge of P_X , but not f)

• $R(f_{m,n})$: Risk under loss function ℓ , e.g., $\ell = (f_{m,n}(X) - Y)^2$

$$R(f_{m,n}) = \mathbb{E}_{(X,Y) \sim P_{XY}} \left[\ell(f_{m,n}(X), Y) \right]$$

- $f_{m,n}$: predictor learned from m unlabeled and n labeled points
 - m = 0: supervised
 - ▶ m > 0: semi-supervised
 - $m = \infty$: oracle (full knowledge of P_X , but not f)
- $R(f_{m,n})$: Risk under loss function ℓ , e.g., $\ell = (f_{m,n}(X) Y)^2$

$$R(f_{m,n}) = \mathbb{E}_{(X,Y) \sim P_{XY}} \left[\ell(f_{m,n}(X), Y) \right]$$

• $\mathcal{E}(f_{m,n})$: Excess Risk, the difference between expected Risk (over random draws of training set) and Bayes Risk

$$\mathcal{E}(f_{m,n}) = \mathbb{E}_{\text{training}}\left[R(f_{m,n})\right] - \inf_{\tilde{f}} R(\tilde{f})$$

- $f_{m,n}$: predictor learned from m unlabeled and n labeled points
 - m = 0: supervised
 - m > 0: semi-supervised
 - $m = \infty$: oracle (full knowledge of P_X , but not f)
- $R(f_{m,n})$: Risk under loss function ℓ , e.g., $\ell = (f_{m,n}(X) Y)^2$

$$R(f_{m,n}) = \mathbb{E}_{(X,Y) \sim P_{XY}} \left[\ell(f_{m,n}(X), Y) \right]$$

• $\mathcal{E}(f_{m,n})$: Excess Risk, the difference between expected Risk (over random draws of training set) and Bayes Risk

$$\mathcal{E}(f_{m,n}) = \mathbb{E}_{\text{training}} \left[R(f_{m,n}) \right] - \inf_{\tilde{f}} R(\tilde{f})$$

Minimax error

$$\epsilon_{m,n,\gamma} \overset{\text{polylog}}{\sim} \inf_{f_{m,n}} \sup_{P(\gamma)} \mathcal{E}(f_{m,n})$$

- $f_{m,n}$: predictor learned from m unlabeled and n labeled points
 - m = 0: supervised
 - ▶ m > 0: semi-supervised
 - $m = \infty$: oracle (full knowledge of P_X , but not f)
- $R(f_{m,n})$: Risk under loss function ℓ , e.g., $\ell = (f_{m,n}(X) Y)^2$

$$R(f_{m,n}) = \mathbb{E}_{(X,Y) \sim P_{XY}} \left[\ell(f_{m,n}(X), Y) \right]$$

• $\mathcal{E}(f_{m,n})$: Excess Risk, the difference between expected Risk (over random draws of training set) and Bayes Risk

$$\mathcal{E}(f_{m,n}) = \mathbb{E}_{\text{training}} \left[R(f_{m,n}) \right] - \inf_{\tilde{f}} R(\tilde{f})$$

Minimax error

$$\epsilon_{m,n,\gamma} \overset{\text{polylog}}{\sim} \inf_{f_{m,n}} \sup_{P(\gamma)} \mathcal{E}(f_{m,n})$$

• $\epsilon_{\infty,n,\gamma} \leq \epsilon_{m,n,\gamma} \leq \epsilon_{0,n,\gamma}$

Mathematical Formalization of Cluster Assumption

- Components (compact support, Lipschitz boundary)
- \bullet Density bounded from below and above, Hölder- α smooth

Mathematical Formalization of Cluster Assumption

- Components (compact support, Lipschitz boundary)
- \bullet Density bounded from below and above, Hölder- α smooth

• Decision sets \mathcal{D} : all intersections of components

Mathematical Formalization of Cluster Assumption

- Components (compact support, Lipschitz boundary)
- \bullet Density bounded from below and above, Hölder- α smooth

p(x)

- Decision sets \mathcal{D} : all intersections of components
- Overall density jumps at decision set boundaries

• Oracle knows the shape of decision sets, learns within a decision set.

< ∃ ►

- Oracle knows the shape of decision sets, learns within a decision set.
- SSL mimics Oracle, learns only from *connected* labeled points

- Oracle knows the shape of decision sets, learns within a decision set.
- SSL mimics Oracle, learns only from connected labeled points
- Connected: x₁ ↔ x₂ if there is a sequence of unlabeled steppingstones: (1) close together, (2) similar local density

- Oracle knows the shape of decision sets, learns within a decision set.
- SSL mimics Oracle, learns only from connected labeled points
- Connected: x₁ ↔ x₂ if there is a sequence of unlabeled steppingstones: (1) close together, (2) similar local density

• Connectedness is almost as good as knowing the decision sets: Lemma: if $|\gamma| > Cm^{-1/d}$, then for all pairs x_1, x_2 not in a small tube around decision set boundaries, with large probability x_1, x_2 in same decision set if and only if $x_1 \leftrightarrow x_2$

SSL Error

Corollary: if $|\gamma| > Cm^{-1/d}$, then SSL is only "a bit worse" than oracle:

$$\epsilon_{m,n,\gamma} \le \epsilon_{\infty,n,\gamma} + O\left(nm^{-1/d}\right)$$

SSL Error

Corollary: if $|\gamma| > Cm^{-1/d}$, then SSL is only "a bit worse" than oracle:

$$\epsilon_{m,n,\gamma} \le \epsilon_{\infty,n,\gamma} + O\left(nm^{-1/d}\right)$$

- The value of unlabeled data: if $m \gg n$ s.t. $nm^{-1/d} \le \epsilon_{\infty,n,\gamma}$, then SSL is as good as Oracle.
 - if $\epsilon_{\infty,n,\gamma}$ decays polynomially, m must grow polynomially with n
 - if $\epsilon_{\infty,n,\gamma}$ decays exponentially, m must grow exponentially with n

SSL Error

Corollary: if $|\gamma| > Cm^{-1/d}$, then SSL is only "a bit worse" than oracle:

$$\epsilon_{m,n,\gamma} \le \epsilon_{\infty,n,\gamma} + O\left(nm^{-1/d}\right)$$

- The value of unlabeled data: if $m \gg n$ s.t. $nm^{-1/d} \le \epsilon_{\infty,n,\gamma}$, then SSL is as good as Oracle.
 - if $\epsilon_{\infty,n,\gamma}$ decays polynomially, m must grow polynomially with n
 - if $\epsilon_{\infty,n,\gamma}$ decays exponentially, m must grow exponentially with n
- If, in addition, Oracle is better than any ordinary SL

$$\epsilon_{\infty,n,\gamma} < \epsilon_{0,n,\gamma}$$

then SSL helps.

• Assumption: target function Hölder- α smooth within a decision set, but may be discontinuous across decision sets.

- Assumption: target function Hölder- α smooth within a decision set, but may be discontinuous across decision sets.
- Two possible sources of error:
 - **1** regression error within decision sets $n^{-2\alpha/(2\alpha+d)}$
 - 2 error in estimating boundaries of decision sets $n^{-1/d}$

- Assumption: target function Hölder- α smooth within a decision set, but may be discontinuous across decision sets.
- Two possible sources of error:
 - regression error within decision sets $n^{-2\alpha/(2\alpha+d)}$
 - 2 error in estimating boundaries of decision sets $n^{-1/d}$
- Oracle: learn f on each decision set separately, $\epsilon_{\infty,n,\gamma}=n^{-2\alpha/(2\alpha+d)}$

- Assumption: target function Hölder- α smooth within a decision set, but may be discontinuous across decision sets.
- Two possible sources of error:
 - **1** regression error within decision sets $n^{-2\alpha/(2\alpha+d)}$
 - 2 error in estimating boundaries of decision sets $n^{-1/d}$
- \bullet Oracle: learn f on each decision set separately, $\epsilon_{\infty,n,\gamma}=n^{-2\alpha/(2\alpha+d)}$
- SL: if $\gamma > cn^{-1/d}$ then $\epsilon_{0,n,\gamma} = n^{-2\alpha/(2\alpha+d)}$, otherwise $\epsilon_{0,n,\gamma} = n^{-1/d}$ (worse: blur across decision sets).

- Assumption: target function Hölder- α smooth within a decision set, but may be discontinuous across decision sets.
- Two possible sources of error:
 - **1** regression error within decision sets $n^{-2\alpha/(2\alpha+d)}$
 - 2 error in estimating boundaries of decision sets $n^{-1/d}$
- \bullet Oracle: learn f on each decision set separately, $\epsilon_{\infty,n,\gamma}=n^{-2\alpha/(2\alpha+d)}$
- SL: if $\gamma > cn^{-1/d}$ then $\epsilon_{0,n,\gamma} = n^{-2\alpha/(2\alpha+d)}$, otherwise $\epsilon_{0,n,\gamma} = n^{-1/d}$ (worse: blur across decision sets).

• SSL: if $|\gamma| > Cm^{-1/d}$ and $m \gg n^{2d}$, then the same as Oracle.

margin	Oracle	SL	SSL	SSL
	$\epsilon_{\infty,n,\gamma}$	$\epsilon_{0,n,\gamma}$	$\epsilon_{m,n,\gamma}$	helps?
$n^{-\frac{1}{d}} \le \gamma$	$n^{-\frac{2\alpha}{2\alpha+d}}$	$n^{-\frac{2\alpha}{2\alpha+d}}$	$n^{-\frac{2\alpha}{2\alpha+d}}$	no

NIPS 2008 10 / 13

NIPS 2008 10 / 13

In particular, with $\gamma<-\gamma_0,$ SSL has a faster rate of error convergence than SL, provided $m\gg n^{2d}.$

In particular, with $\gamma < -\gamma_0$, SSL has a faster rate of error convergence than SL, provided $m \gg n^{2d}$.

Thank you

Backup Slides

Singh, Nowak, Zhu (Wisconsin) Unlabeled data: Now it helps, now it doesn't

イロト イヨト イヨト イヨト

Hölder Smoothness

If f is Hölder- α , then the $k = \lfloor \alpha \rfloor$ Taylor polynomial at x_0 , p_{k,f,x_0} , yields the approximation error bound:

$$|p_{k,f,x_0}(x) - f(x)| \le C|x - x_0|^{\alpha}$$

The Corollary

Even when $|\gamma| > Cm^{-1/d}$, the Lemma may fail for two reasons:

- One of the *n* labeled points or the test point falls in the small uncertain tube.
 - Volume of the tube $O(m^{-1/d})$
 - This is the probability that one point falls in the tube
 - Union bound gives $O(nm^{-1/d})$
 - Risk is bounded
 - The contribution to excess error is $O(nm^{-1/d})$

ullet With probability 1/m connectedness does not imply same decision set

- The contribution to excess error is O(1/m)
- Overall, $O(1/m+nm^{-1/d})\sim O(nm^{-1/d}).$

The lemma does not apply when $|\gamma| \leq Cm^{-1/d}$.