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The semi-supervised learning task

labeled data
————— decision boundary (labeled)
QO unlabeled data
— decision boundary (labeled and unlabeled)
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@ Assuming each class is a coherent group (e.g. Gaussian),
semi-supervised machine learning predicts decision boundary shift.

[Castelli & Cover 96; Ratsaby & Venkatesh 95; Nigam et al. 00]
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@ Assuming each class is a coherent group (e.g. Gaussian),
semi-supervised machine learning predicts decision boundary shift.

[Castelli & Cover 96; Ratsaby & Venkatesh 95; Nigam et al. 00]

@ Do we humans shift decision boundary too?
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Human learning: a behavioral experiment

Goal

Determine human decision boundaries for:
@ labeled data only vs. labeled and unlabeled data

@ same labeled data, different unlabeled data
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@ 22 University of Wisconsin students
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Participants and materials

22 University of Wisconsin students
Novel stimuli displayed one at a time (nothing stays on screen)
Stimuli parameterized by a single parameter

Told stimuli are microscopic pollens

Press B or N to classify
Label: audio feedback
No audio feedback for unlabeled data
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Visual stimuli

Stimuli parameterized by a continuous variable z.
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Experiment procedure

@ Half L-subjects, half R-subjects
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Experiment procedure

Half L-subjects, half R-subjects
Each subject sees 6 blocks of stimuli

Order within each block randomized

Record their decisions and response times
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The 6 blocks of stimuli
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Observation 1: Unlabeled data affects decision boundary
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Decision boundary:
o after labeled data (test-1): = 0.11

o after labeled and unlabeled data (test-2):
L-subjects x = —0.10, R-subjects x = 0.48
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Observation 2: Reaction time reflects boundary shift
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@ Longer reaction time — closer to decision boundary
@ Test-2 overall faster, familiarity with experiment

@ L-, R-reaction time further support decision boundary shift
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Machine learning model

We can explain the human experiment with a 2-component Gaussian
Mixture Model (GMM).

J

The GMM:

wiN(p1,07) + weN (p2,03) ,wi +wo = 1,w; >0
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Machine learning model

We can explain the human experiment with a 2-component Gaussian
Mixture Model (GMM). J
The GMM:

wiN(p1,07) + waN(pg,03) wi +wy = 1,w; >0
Prior on parameters 6:

wy, ~ Uniform|[0, 1], u, ~ N(0,00), 07 ~ Inv—x*(v, s%),k = 1,2

We fit the GMM with the Expectation-Maximization (EM) algorithm on
blocks 1,2 vs. on all blocks.
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EM

Maximize the objective (A < 1 weight on unlabeled example)
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Model fitting result 1
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Model fitting result 2

Unlabeled data seem to worth less than labeled data (A = 0.06)
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Model fitting result 3

The GMM also explains reaction time:
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Conclusions

@ Humans and machines both perform semi-supervised learning.
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Conclusions

@ Humans and machines both perform semi-supervised learning.
@ Flatness on [test-2] not well explained.
@ Co-training, manifold regularization, S3VMs, etc. in humans should

be explored.

@ Further study may lead to new learning algorithms.
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