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The semi-supervised learning task
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Assuming each class is a coherent group (e.g. Gaussian),
semi-supervised machine learning predicts decision boundary shift.
[Castelli & Cover 96; Ratsaby & Venkatesh 95; Nigam et al. 00]

Do we humans shift decision boundary too?
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Human learning: a behavioral experiment

Goal

Determine human decision boundaries for:

labeled data only vs. labeled and unlabeled data

same labeled data, different unlabeled data
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Participants and materials

22 University of Wisconsin students

Novel stimuli displayed one at a time (nothing stays on screen)

Stimuli parameterized by a single parameter

Told stimuli are microscopic pollens

Press B or N to classify

Label: audio feedback

No audio feedback for unlabeled data
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Visual stimuli

Stimuli parameterized by a continuous variable x.

−2.5 −2 −1.5 −1
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Experiment procedure

Half L-subjects, half R-subjects

Each subject sees 6 blocks of stimuli

Order within each block randomized

Record their decisions and response times
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The 6 blocks of stimuli
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x
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1 (labeled) 10 (x = 1, B), 10

(x = −1, N). The only labeled
block.

2 (test-1) x = −1,−0.9, . . . , 0.9, 1
3 (unlabeled-1) 230 stimuli ∼

offset 2 Gaussian, left- or
right-shifted. 21 range stimuli
evenly in [−2.5, 2.5]

4 (unlabeled-2) similar to block 3

5 (unlabeled-3) similar to block 3

6 (test-2) x = −1,−0.9, . . . , 0.9, 1
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Observation 1: Unlabeled data affects decision boundary
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test−1, all
test−2, L−subjects
test−2, R−subjects

Decision boundary:

after labeled data (test-1): x = 0.11
after labeled and unlabeled data (test-2):
L-subjects x = −0.10, R-subjects x = 0.48
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Observation 2: Reaction time reflects boundary shift
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Longer reaction time → closer to decision boundary

Test-2 overall faster, familiarity with experiment

L-, R-reaction time further support decision boundary shift
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Machine learning model

We can explain the human experiment with a 2-component Gaussian
Mixture Model (GMM).

The GMM:

w1N(µ1, σ
2
1) + w2N(µ2, σ

2
2) , w1 + w2 = 1, wi ≥ 0

Prior on parameters θ:

wk ∼ Uniform[0, 1], µk ∼ N(0,∞), σ2
k ∼ Inv−χ2(ν, s2), k = 1, 2

We fit the GMM with the Expectation-Maximization (EM) algorithm on
blocks 1,2 vs. on all blocks.
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EM
Maximize the objective (λ ≤ 1 weight on unlabeled example)

log p(θ) +
l∑

i=1

log p(xi, yi|θ) + λ

n∑
i=l+1

log p(xi|θ)

E-step
qi(k) ∝ wkN(xi;µk, σ

2
k), i = l + 1, . . . , n; k = 1, 2

M-step

µk =
∑l

i=1 δ(yi, k)xi + λ
∑n

i=l+1 qi(k)xi∑l
i=1 δ(yi, k) + λ

∑n
i=l+1 qi(k)

σ2
k =

νs2 +
∑l

i=1 δ(yi, k)eik + λ
∑n

i=l+1 qi(k)eik

ν + 2 +
∑l

i=1 δ(yi, k) + λ
∑n

i=l+1 qi(k)

wk =
∑l

i=1 δ(yi, k) + λ
∑n

i=l+1 qi(k)
l + λ(n− l)
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Model fitting result 1

The GMM predicts the decision boundary shift:
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Model fitting result 2

Unlabeled data seem to worth less than labeled data (λ = 0.06)
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Model fitting result 3

The GMM also explains reaction time:
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t = aH(x) + b, H(x) the entropy of label prediction
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Conclusions

Humans and machines both perform semi-supervised learning.

Flatness on [test-2] not well explained.

Co-training, manifold regularization, S3VMs, etc. in humans should
be explored.

Further study may lead to new learning algorithms.
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