
## Dissimilarity in Graph-Based Semi-Supervised Classification

Andrew B. Goldberg, Xiaojin Zhu, Stephen Wright

Computer Sciences Department, University of Wisconsin, Madison, WI, USA. {goldberg, jerryzhu, swright}@cs.wisc.edu



Example: Predict political party from Web blogs

You were the one who thought it should be investigated last week.

No I didn't, and I made it clear. You are name! YOU are the one with NO \*\*\*\*ING RESPECT FOR DEMOCRACY!

(actual postings)

They disagree.  $\rightarrow$   $y_1 \neq y_2$ , known as cannot-links in clustering.

Our contribution: A convex formula that incorporates both cannot-links and must-links for binary and multiclass classification.

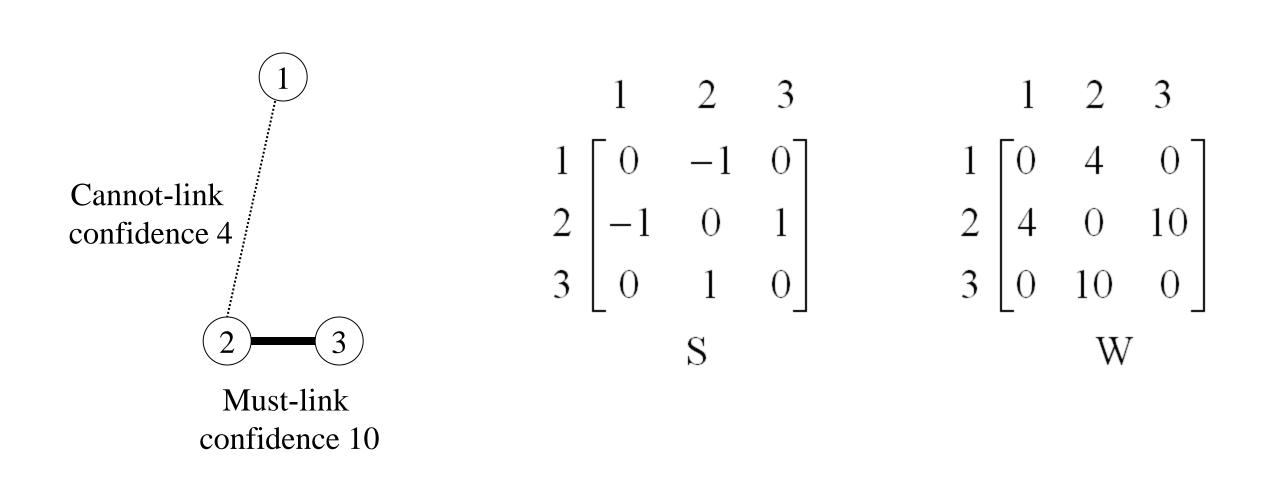
## Binary Classification

Existing graph-based semi-supervised learning requires a graph W

- For example, a kNN graph over data points
- $w_{ii}$  is the edge weight between  $x_i$  and  $x_i$
- Discriminant f regularized by  $\frac{1}{2} \sum_{i=1}^{n} w_{ij} (f(\mathbf{x}_i) f(\mathbf{x}_j))^2$ .
- Can be written asf<sup>⊤</sup>Lf
- $w_{ii}$  is essentially must-links in clustering

We want to add cannot-links.

Things that do not work:


Small or zero w: no-link instead of cannot-link

• Negative w: unbounded solution; non-convex problem

Our solution: encode cannot-links between  $x_i$  and  $x_j$  as

$$w_{ij}(f(\mathbf{x}_i) + f(\mathbf{x}_j))^2$$
.

Both cannot-links and must-links can be represented by a mixed graph, where each edge has two variables  $s_{ij}$  (1 if must-link, -1 if cannot-link) and  $w_{ij}$  (confidence, non-negative).



The new regularizer is

 $\mathcal{X}_2$ 

$$\mathbf{f}^{\top} \mathcal{M} \mathbf{f} = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f(\mathbf{x}_i) - s_{ij} f(\mathbf{x}_j))^2.$$

The "mixed graph Laplacian" is

$$\mathcal{M} = \mathcal{L} + (\mathbf{1} - S) \bullet W,$$

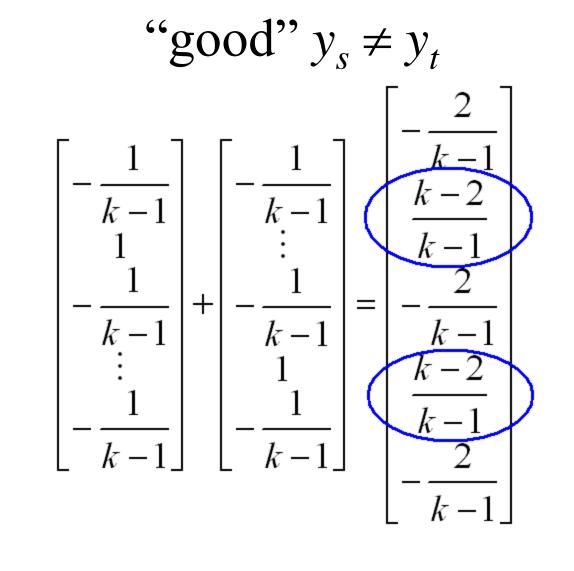
where *M* is positive semi-definite, and reverts to the standard graph Laplacian *L* if there are no cannot-links.

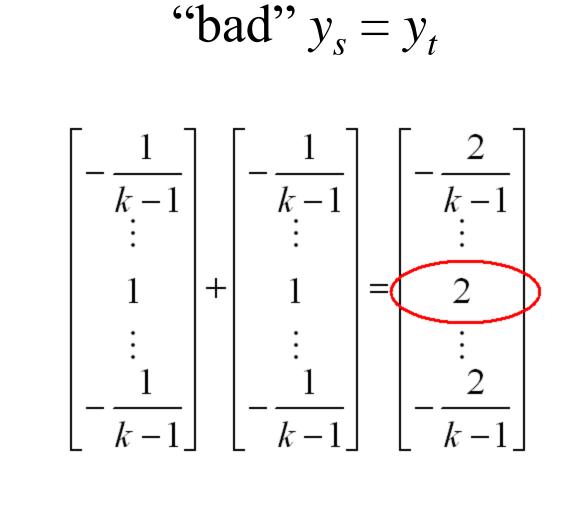
The convex binary classification problem is

$$\min_{f \in \mathcal{H}} \sum_{i=1}^{l} c(y_i, f(\mathbf{x}_i)) + \lambda_1 ||f||_{\mathcal{H}}^2 + \lambda_2 \mathbf{f}^{\top} \mathcal{M} \mathbf{f}.$$

with any convex loss function c().

## Multiclass Classification


It is not trivial to incorporate cannot-links into multiclass semisupervised classification.


Things that do not work:

- 1-vs-rest: cannot-links become must-links in "rest."
- 1-vs-1: cannot determine which unlabeled points to participate.
- Warped kernel in multiclass kernel machine.

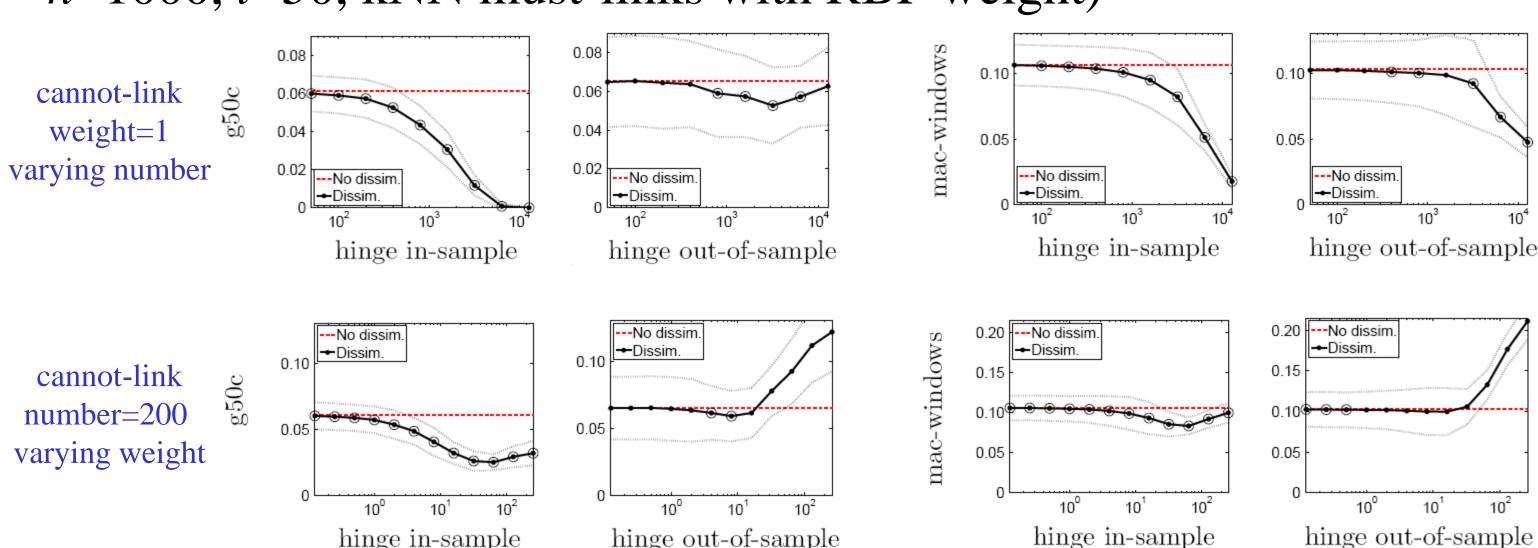
We use Lee, Lin & Wahba (2004) multiclass SVM encoding, which encodes y=j in a k class problem as the zero-sum vector  $\begin{bmatrix} 1 & 1 \end{bmatrix}$ 

If we want a cannot-link between  $x_s$  and  $x_t$ , the "good" and "bad" y's, when summed up, are





So we do not want any element in  $f(x_i) + f(x_j)$  larger than (k-2)/(k-1). This is achieved with the convex regularizer


$$\sum_{(s,t)\in\mathcal{D}} \sum_{j=1}^{k} \left( f_j(\mathbf{x}_s) + f_j(\mathbf{x}_t) - \frac{k-2}{k-1} \right)_+^p,$$

The convex multiclass SVM classification problem is

min 
$$\frac{1}{l} \sum_{i=1}^{l} L_{i} (\mathbf{f}(\mathbf{x}_{i}) - \mathbf{y}_{i})_{+} + \lambda_{1} \sum_{j=1}^{k} ||h_{j}||_{\mathcal{H}}^{2}$$
$$+ \frac{\lambda_{2}}{|\mathcal{D}|} \sum_{(s,t)\in\mathcal{D}} \sum_{j=1}^{k} \left( f_{j}(\mathbf{x}_{s}) + f_{j}(\mathbf{x}_{t}) - \frac{k-2}{k-1} \right)_{+}^{p}$$
s.t. 
$$\sum_{j=1}^{k} f_{j}(\mathbf{x}_{i}) = 0, \quad i = 1 \cdots n,$$

## Experiments

Binary classification, oracle cannot-links (g50c, mac-window,  $n\approx 1000$ , l=50, kNN must-links with RBF weight)



Multiclass classification, oracle cannot-links (USPS,  $n\approx2000$ , k=10, l=50)

|     | Dissim.  | Overall | In-sample | Out-of-sample |
|-----|----------|---------|-----------|---------------|
| bas | seline 0 | 24.48   | 24.48     | 24.48         |
|     | 10       | 24.41   | 20.47     | 24.40         |
|     | 20       | 24.32   | 23.53     | 24.33         |
|     | 40       | 24.27   | 24.17     | 24.27         |
|     | 80       | 23.96   | 23.57     | 23.99         |
|     | 160      | 23.63   | 24.49     | 23.48         |
|     | 320      | 23.30   | 23.57     | 23.20         |

Binary classification, real cannot-links (politics.com, n=184, l=50)

Cannot-link(A,B) if twice, A or B quotes the other, and text next to quote has ??, or !!, or ALL CAPS.

| Classifier | Base error rate  | SSL error rate   | $\Delta$ |
|------------|------------------|------------------|----------|
| SVM        | $45.67 \pm 3.28$ | $40.15 \pm 4.95$ | 5.5%     |
| RLS        | $45.60 \pm 3.94$ | $37.99 \pm 1.88$ | 7.6%     |

