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ABSTRACT
We investigate the p-voltages algorithm, which labels nodes
in a graph based on their theoretical voltages in a refor-
mulated system of electricity. Building on previous work
concerning p-electric networks, we prove that the p-voltage
solution is well-formed and has desirable properties for semi-
supervised learning. Our experiments confirm that the p-
voltages algorithm does not suffer from the same weaknesses
as the Laplacian Regularization algorithm (equivalent to
p = 2) and therefore improves classification performance.
However, our p-voltages algorithm does not outperform the
state-of-the-art iterated Laplacian algorithm.

1. INTRODUCTION
A popular method for semi-supervised learning (SSL) on

graphs is Laplacian Regularization [1]. It has underlying
connections to random walks and electric networks and works
well in practice on low dimensional data. However, Nadler
et al [2] showed that in higher dimensions when the number
of unlabeled vertices increases, the resulting label function
becomes constant almost everywhere with extremely thin
“spikes” at the labeled points, which is undesirable for both
classification and regression. In this paper, we examine the
p-voltages algorithm which seeks to combat this issue.

From an electric network perspective, we can think of the
graph as an electric circuit with edge weights interpreted as
conductance. The Laplacian Regularization solution is ex-
actly the set of voltages that would occur in a physical circuit
if the voltages of the labeled vertices were held constant. In-
tuitively, the larger the resistance between two vertices, the
more energy that must be expended for current to travel be-
tween them, and so the larger their difference in voltage. It
turns out that as the number of vertices grows, the current
becomes too widely distributed to encounter any significant
resistance in the majority of the graph, which leads to the
unwanted flatness in the solution.

Alamgir et al [3] attempted to address this problem with a
concept of p-electric networks, which reformulates the defini-
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tion of power to favor flows which are concentrated on fewer
paths in the graph. Their study focuses on p-resistances,
which are the analog of effective resistance in p-electric net-
works. However, they did not examine closely the voltages
resulting from such a p-electric which we call “p-voltages”.
They did propose to label the vertices by p-voltages (which
they call q-Laplacian Regularization), but they connect it to
p-resistances via a conjecture which we prove to be false in
this paper. p-voltages has appeared in other previous work
but did not receive sufficient attention. Specifically, Herb-
ster et al [4] formulated a family of p-electric networks, and
proposed labeling by p-voltages (which they call p-seminorm
interpolation) in an online learning setting. However, they
advocated using a value of p that suffers from flatness, lead-
ing to poor empirical performance. In contrast, we argue
that labeling by p-voltages with the correct setting for p
fixes the flaws and is suitable for semi-supervised learning
on graphs.

This paper makes three major contributions. First, we
disprove the conjecture of [3]. Next, we prove two proper-
ties of p-voltages which demonstrate that they do not suffer
from the issues in [2]. In doing so, we utilize the machinery
about p-electric networks developed by [3] and [4]. Finally,
we present empirical results of p-voltages on both real and
synthetic data and compare them to other state-of-the-art
graph-based semi-supervised learning algorithms.

2. BACKGROUND
There is a set of data points X = {X1, . . . , Xn} drawn

from an underlying smooth density p(x) in Rd. We know
the labels of some of the points Xl ⊂ X, and would like to
predict the labels of the unlabeled points Xu := X \Xl. To
capture the similarities between the points, we construct an
undirected graph G = (V,E) where the points are vertices
and the edge weights correspond to some similarity function
between the points. A common choice for the similarity
function is the RBF kernel:

wij = e
−
‖Xi−Xj‖

2

2σ2 (1)

We can view this graph as an electric circuit where the edges
are resistors with resistance re = 1/we. That is, the more
similar two points are, the lower the resistance in the edge
between them. Consider a binary semi-supervised classifi-
cation problem with one labeled point per class. The two
labeled points are named the source s and the sink t, re-
spectively. To address the flatness issue pointed out by [2],
Alamgir et al [3] proposed the following optimization prob-
lem for computing the effective p-resistance on the graph:



Rp(s, t) = min
i

{∑
e∈E

re|ie|p
∣∣∣∣∣ i = {ie} is a unit flow s→ t

}
(2)

This simulates running a unit current from s to t and
selecting the current which minimizes the p-energy shown
above. There is an equivalent optimization problem which
computes the effective conductance of the graph:

Cp(s, t) = min
v

 ∑
(a,b)∈E

|va − vb|
p
p−1

rab
1
p−1

∣∣∣∣∣∣ vs − vt = 1

 (3)

This simulates imposing a unit difference in voltage be-
tween s and t and selecting voltages for the other vertices
which minimize the p-energy shown above. Notice that when
p = 2, these reduce to standard Harmonic energy minimiza-
tion in an electric circuit. The solutions i∗ from R2(s, t)
and v∗ from C2(s, t) are exactly the currents and voltages,
respectively, that would arise in a real circuit, and v∗ is the
solution to the original Laplacian Regularization algorithm
of [1]. (2) and (3) generalize electric networks to p-electric
networks, where the current flows differently because the
definition of energy to be minimized is changed. We only
consider values of p > 1. Alamgir et al [3] showed that
when p < p∗ := d

d−1
, the p-resistance contains meaningful

information about the graph as the size of the graph grows to
infinity, and when p > p∗∗ := d−1

d−2
the p-resistance converges

to a meaningless quantity.
The result of solving Rp(s, t) on a graph is a set of currents

iR which form a unit flow and which minimize the p-energy
of the graph. It can be shown that there is a unique mapping
of points to values v : V → R such that every edge e = (a, b)
in the graph has the following property [4]:

va − vb = sgn(iab)|iab|p−1rab (4)

This can be viewed as p-Ohm’s Law, Ohm’s Law for gen-
eral p-electric networks. Call the set of voltages derived in
this way vR, with vR(s) = Rp(s, t) and vR(t) = 0.

When we solve the equivalent Cp(s, t) problem (3) with
vs = 1 and vt = 0 on the same graph, we find a set of
p-voltages vC that minimizes the p-energy of the graph. p-
Ohm’s Law holds in this setting as well, and the correspond-
ing set of currents iC can be calculated using (4). We will
develop the relationship between Rp(s, t) and Cp(s, t) later
as Equation (13), and show that for every node u ∈ V ,

vR(u) = Rp(s, t) · vC(u) (5)

That is, vR and vC are proportional to each other with
factor Rp(s, t). In the following proofs we will discuss prop-
erties of vR, and the same properties will follow for vC (p-
voltages) directly since they are proportional.

The p-voltages classification algorithm proceeds as fol-
lows. First, we construct a similarity graph over the dataset
such as a knn- or ε-graph. Specific conditions for graph con-
struction are covered in Section 3.2. Next, we set voltages
vi = 1 for all labeled points Xi in the “positive” class, and
vj = 0 for all labeled points Xj in the “negative” class. We

solve the Cp(s, t) problem (3) with p ∈
(

1, d
d−1

)
, where d is

the underlying dimension of the data. A standard numeri-
cal solver can be used to calculate the answer. Cp(s, t) is a

convex optimization problem over a convex set, so it has a
unique minimizer, which yields a set of p-voltages {v∗i } over
all points in the graph. Finally, we threshold the p-voltages:
all points with v∗i > 0.5 are predicted as “positive”, and all
points with v∗i ≤ 0.5 are predicted as “negative”. In the re-
gression setting, we follow the same steps but skip the final
thresholding step.

3. THEORETICAL RESULTS
Our first main result shows that while p-voltages and p-

resistances are related, using them to label graphs in the
SSL setting results in different solutions.

3.1 Disproving the p-resistance conjecture
The authors of [3] propose the following conjecture in Sec-

tion 5.

Conjecture 1. Given a graph G = (V,E), consider a
semi-supervised classification problem with one labeled point
per class: vs = 1, vt = −1. Let the solution to the conduc-
tance problem (3) be v∗, and let u be an unlabeled point.
Then, for all p > 1,

v∗u − v∗t > v∗s − v∗u ⇐⇒ Rp(u, t) > Rp(s, u) (6)

They showed that this property holds for p = 2, and their
conjecture is that it holds for general p > 1. If true, this
property (6) would be extremely useful because the p-voltages
algorithm would be an efficient surrogate method for classi-
fication with p-resistances. Classification with p-resistances
as proposed in [3] is the right-hand-side of (6): each point
u is in class 1 iff Rp(u, t) > Rp(s, u). Alamgir et al. proved
that classification with p-resistances captures cluster struc-
ture in the graph and does not suffer from the flatness is-
sue, if p < p∗. Note, however, that this requires computing
two effective p-resistances Rp(u, t), Rp(s, u) for each unla-
beled point u by solving (2), which is not practical for large
graphs. The value of Conjecture 1, if it were true, would be
to solve vC only once and obtain all the classifications that
effective p-resistances would produce.

However, we can show that this conjecture does not hold
for general p. In numerical experiments over random geo-
metric graphs, we found that it often fails. Below we present
an analytic counterexample where the conjecture does not
hold.
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Figure 1: Two sample graphs. The resistance of each
edge is shown as a multiple of r. In both graphs we
fix vs = 1 and vt = −1.

First we consider Graph A, shown in Figure 1. For gen-
erality, we set the edge resistances to multiples of r where



r can be any finite positive real number. To compute the
value of v∗u, we directly minimize (3):

Cp(s, t) ≡ min
v
PC

= min
v

|vs − vu|
p
p−1

r
1
p−1

+
|vu − vt|

p
p−1

(3r)
1
p−1

+
|vs − vt|

p
p−1

(2r)
1
p−1

∂PC
∂vu

=
p

p− 1

(
−|v

∗
s − v∗u|

1
p−1

r
1
p−1

+
|v∗u − v∗t |

1
p−1

(3r)
1
p−1

)
= 0

v∗s − v∗u =
1

3
(v∗u − v∗t )

v∗u =
3

4
v∗s +

1

4
v∗t =

3

4
(1) +

1

4
(−1) =

1

2

To solve for Rp(s, u) and Rp(u, t), we use the definition
from (2):

Rp(s, u) = min
i
PR ≡ r(1− i)p + 5r(i)p

∂PR
∂i

= −rp(1− i∗)p−1 + 5rp(i∗)p−1 = 0

i∗ =
1

5
1
p−1 + 1

Rp(s, u) = r(1− i∗)p + 5r(i∗)p

=
5r

(5
1

p−1 + 1)p−1

Rp(u, t) = min
i
PR ≡ 3r(1− i)p + 3r(i)p

∂PR
∂i

= −3rp(1− i∗)p−1 + 3rp(i∗)p−1 = 0

i∗ =
1

2
Rp(u, t) = 3r(1− i∗)p + 3r(i∗)p

=
3r

2p−1

Rp(s, u) < Rp(u, t) for p ∈ (1,∞) and v∗u is closer to v∗s
than it is to v∗t , so the conjecture holds for Graph A for finite
p.

Now let us consider the slightly modified Graph B, also
shown in Figure 1. We can show that the conjecture does
not hold on this graph for node u. Since the structure of the
graph is very similar, we can reuse some of our intermediate
results above. Specifically, we know that v∗u = 3

4
v∗w + 1

4
v∗t .

Again, we hold the labeled points fixed: vs = 1, vt = −1.
For notational convenience, we define the constant α :=[

2

4
1
p−1

+ 1

2
1
p−1

]
.

Cp(s, t) =
|vs − vw|

p
p−1

r
1
p−1

+
|vw − vu|

p
p−1

r
1
p−1

+

|vu − vt|
p
p−1

(3r)
1
p−1

+
|vw − vt|

p
p−1

(2r)
1
p−1

∂PC
∂vw

=
p

(p− 1)(r
1
p−1 )

(
−
∣∣∣∣v∗s − v∗w∣∣∣∣ 1

p−1

+

∣∣∣∣14v∗w − 1

4
v∗t

∣∣∣∣ 1
p−1

+

1

3
1
p−1

∣∣∣∣34v∗w − 3

4
v∗t

∣∣∣∣ 1
p−1

+
1

2
1
p−1

∣∣∣∣v∗w − v∗t ∣∣∣∣ 1
p−1
)

= 0

= − |v∗s − v∗w|
1
p−1 + α|v∗w − v∗t |

1
p−1

v∗w =
1− αp−1

1 + αp−1

v∗u =
3

4
v∗w −

1

4

To solve forRp(s, u) andRp(u, t), we can re-use our results
from Graph A:

Rp(s, u) = min
i
PR = r(1)p + r(1− i)p + 5r(i)p

The optimal flow is identical to the one calculated for
Rp(s, u) in Graph A, with a unit flow through the new edge
from s to w.

Rp(s, u) = r +
5r

(5
1

p−1 + 1)p−1

Similarly, the optimal flow for Rp(u, t) is identical to the one
calculated for Rp(u, t) in Graph A. No current flows on the
new edge from s to w.

Rp(u, t) = min
i
PR = 3r(1− i)p + 3r(i)p =

3r

2p−1
.

Over the range p ∈ (1, 2], αp−1 takes values in
(
1
2
, 1
]
, which

means that v∗w ∈
[
0, 1

3

)
and v∗u ∈

[
− 1

4
, 0
)
. Therefore, v∗u −

v∗t < v∗s − v∗u over this range of p. However, for many values
of p ∈ (1, 2], including all p ≤ 1.6, Rp(s, u) < Rp(u, t), so
the conjecture is violated for Graph B.

Thus, we have shown that Conjecture 1 does not hold for
many values of p on this counterexample graph. In practice,
we have found that many random graphs fail the conjecture
for several of their nodes. Unfortunately, this means that p-
voltages cannot be used as a surrogate to efficiently obtain
the comparison of p-resistances.

3.2 p-voltages Solutions are Well-Formed
While p-voltages are not a surrogate of p-resistances, this

does not mean they lack desirable properties for classifica-
tion. Perhaps surprisingly, prior work did not study the
properties of p-voltage in its own right. Here we will prove
two important properties of p-voltages which demonstrate
that they could be potentially useful for semi-supervised
learning over graphs. The first result shows that with the
proper selection of parameter p, p-voltage solutions are not
“spiky” like those which potentially arise from Laplacian
Regularization (when p = 2). The second result shows that
p-voltages interpolate smoothly over the graph and do not
exhibit undesirable “flatness” behavior in the graph.

Our results apply to unweighted geometric graphs in Rd,
d > 2, which satisfy the general graph assumptions stated in
Section 4 of [3]. These are mild assumptions which hold for
many classes of graphs including appropriately-constructed
knn- and ε-graphs. An important fact is that we assume
there exist constants 0 < r ≤ R such that every sample
point x is directly connected to all sample points inside ball
B(x, r) and x is not directly connected to any sample points
outside B(x,R). There also must exist a function τn := τ(n)
such that all degrees in the graph are of order Θ(τn) and

both r and R are of order Θ((τn/n)1/d), where n is the
number of sample points.

3.2.1 p-Voltage Solutions Are Not Spiky
Zhu et al [1] developed the Laplacian regularization method

which corresponds to using p-voltages with p = 2. Nadler et



al [2] identified a problem with this method. As the number
of unlabeled points grows to infinity, there exist functions
which minimize the energy equation and yet have constant
value almost everywhere and narrow “spikes” at the source
and sink points. These pathological functions are clearly not
useful for predicting the labels in the graph and suggest that
the C2(s, t) optimization problem is ill-posed. Here we show
that p-voltages address this problem with appropriate choice
of p. Another approach that addresses this deficiency is the
Iterated Laplacians approach [5], to which we will compare
in the experiments.

Consider a smooth density p(x) over Rd, d > 2. Define
‖ · ‖ as the Euclidean distance metric, and fix a source s and
a sink t with ‖s − t‖ ≥ 1. An example of a Nadler “spiky”
function is:

yε(x) = min

(
‖x− t‖

ε
, 1

)
(7)

As n → ∞, ε → 0, the infinite limit of C2(yε) → 0, so
yε is a solution to C2. It is also clear that yε(t) = 0 and
yε(x) = 1 almost everywhere else, so yε is not a reasonable
estimate for a smooth function on p(x) for the purpose of
semi-supervised learning.

However, we can show that this type of function cannot be
the solution to the p-voltages problem when 1 < p < p∗ =
d
d−1

. As in [3], we define the local neighborhood N (s) of

vertex s as the ball with radius C ·r around s, C ≥ R/r. By
the definition of R, N (s) must contain at least all vertices
adjacent to s. Let EN (s) be the set of edges which have both
endpoints in N (s).

Consider a graph G = (V,E) which satisfies the general
assumptions, and n → ∞. We next show that, if we solve
the p-voltages problem Cp(s, t) over the graph with 1 < p <
d
d−1

, the maximum voltage drop in N (s) and N (t) will be
negligible compared to the voltage drop across the entire
graph. Thus, Nadler’s “spiky” functions cannot be solutions
to the p-voltage problem.

Specifically, let us define the following quantities:

Vs := max {|vs − vu|, u ∈ N (s)}
Vt := max {|vu − vt|, u ∈ N (t)}
V := vs − vt = Rp(s, t).

Theorem 3.1. Vs+Vt
V
→ 0 as n→ 0.

Proof. We can examine the contribution of the local
neighborhoods of s and t to the overall p-resistance in the
graph. Suppose we compute Rp(s, t) from (2) on G and ob-
tain the optimal unit flow i∗ = iR. By (4), we know that
the voltages {vR} from the optimal solution to (2) have the
property that for all edges e = (a, b), |va − vb| := |∆ve| =
|i∗e |p−1re = |i∗e |p−1 where the last step follows because the
graph is unweighted. Consider a vertex u ∈ N (s). Denote
by πs,u the shortest path from s to u which contains edges
only in EN (s), and the length of that path as ls,u. Then

|vs − vu| ≤
∑

e∈πs,u

|∆ve| =
∑

e∈πs,u

|i∗e |p−1
(a)

≤
∑

e∈πs,u

1 = ls,u (8)

where the step labeled (a) holds because i is a unit flow
and p > 1. By Proposition 9 of [3], for every vertex u ∈
N (s), the shortest path from s to u is smaller than 2C. Thus

we can conclude from (8) that |vs − vu| < 2C, ∀u ∈ N (s).
Identical reasoning applies to the sink t.

We know that Vs < 2C, Vt < 2C, and thus Vs + Vt < 4C.
Consider the ratio Vs+Vt

V
, which is the portion of the total

graph-wide change in p-voltage which occurs in the local
neighborhoods of s and t. By Theorem 5 of [3],

V = Rp(s, t) ≥
1

dp−1
s

+
1

dp−1
t

+ T1 ≥ T1 (9)

where du is the degree of vertex u and

T1 = Θ

(
1

np(1−1/d)−1τ
p(1+1/d)−1
n

)

Now, if we used p < p∗ in (2) and define c2 := 1 − p(1 −
1/d) > 0, we can bound the ratio in a manner similar to
their Proof of Theorem 3:

Vs + Vt
V

≤ 4C

T1
≤ 4C · τ2/(d−1)

n

nc2
(10)

This ratio converges to 0 as n→∞ if τ is sub-polynomial
in n, which is true under the general graph assumptions.
Thus in the limit, the p-voltage solution has almost no volt-
age drop in the local neighborhoods of s and t, so arbitrarily
thin spikes do not manifest themselves at the labeled points.
We can immediately see that Nadler’s problematic yε func-
tion cannot be the solution since all of its change in voltage
occurs in the local neighborhoods of s and t.

3.2.2 p-Voltage Solutions Are Not Flat
We now know that almost no p-voltage drop occurs in the

immediate neighborhoods of s and t. However, we would
also like to understand how p-voltages behave in the remain-
der of the graph. After all, there could still be large regions
of constant voltage, which would still be detrimental for pre-
dicting labels on the graph. It turns out that we can show
that p-voltages drop gradually over the graph and are not
“flat” over large regions. First, we need to prove a lemma
establishing a connection between change in p-voltage over
a region and the effective p-resistance of that region.

Lemma 3.2. Fix a source vertex s and sink vertex t in
graph G = (V,E). Let M ∈ V be a region of G which has
edge set EM , and let ∂M be the set of vertices (“the bound-
ary”) in M which are either s, t, or connected to a vertex
not in M . Define RMp (s, t) as the portion of the solution of
Rp(s, t) that passes through the edges in EM . Then we know
that

RMp (s, t) =
∑
u∈∂M

vui
∗
u (11)

where

i∗u :=
∑
x∈M

i∗ux (12)

Proof. As mentioned, i∗ is the optimal flow solution re-
sulting from Rp(s, t). We can see that



RMp (s, t) :=
∑
e∈EM

re|i∗e |p
(a)
=

∑
e∈EM

|i∗e |p−1|i∗e |

(b)
=

∑
(a,b)∈EM

|va − vb||i∗ab|

(c)
=

∑
(a,b)∈EM

(va − vb) i∗ab

where (a) holds because the graph is unweighted, (b) fol-
lows from p-Ohm’s Law, and (c) holds because i∗ab and (va−
vb) must have the same sign by (4). Assume without loss
of generality that there is some ordering over the vertices of
M . Now, using a derivation in the spirit of [6], page 49,

RMp (s, t) =
∑

a<b∈M

vai
∗
ab −

∑
a<b∈M

vbi
∗
ab

=
∑
u∈M

vu

( ∑
x>u∈M

i∗ux −
∑

x<u∈M

i∗xu

)

=
∑
u∈M

vu

( ∑
x>u∈M

i∗ux +
∑

x<u∈M

i∗ux

)

=
∑
u∈M

vu

(∑
x∈M

i∗ux

)
=
∑
u∈M

vui
∗
u

We took advantage of that fact that in any flow, iab =
−iba. By the flow definition of i∗, i∗u = 0 for any vertex u
on the interior of M , M \ ∂M . Therefore we can conclude
that

RMp (s, t) =
∑
u∈∂M

vui
∗
u

which is what was to be proved.

When M is the entire set of vertices in the graph, ∂M =
{s, t} and

RMp (s, t) = Rp(s, t) = vsis + vtit = (vs − vt)is (13)

which coincides with Lemma 4 of [4]. It is clear why when
we solve Rp(s, t) with is = 1 and vt = 0, we know that
vs = Rp(s, t).

We select our region M according to the following proce-
dure:

Procedure 3.3. Given a graph G = (V,E) with fixed
source vertex s and sink vertex t, solve the Rp(s, t) problem
over the graph to recover the optimal flow. Use p-Ohm’s Law
to calculate the p-voltage for each vertex. Sort the vertices in

descending order of voltage: Vsorted = {v(1)s , . . . , v(i), . . . , v
(n)
t }.

Ties can be broken in any order, as long as when v(i) is cho-
sen, one of the vertices in {v(1), . . . , v(i−1)} is adjacent to it.
As shown in the appendix in Lemma A.1, this is always pos-
sible. Define region M by picking two endpoints in Vsorted,
exactly one of which is s or t. All vertices between the two
endpoints in Vsorted, inclusive, are considered part of M .
Denote by M the remainder of the graph not in M .

We can lower bound the maximum p-voltage drop across
a region selected in this manner.

Lemma 3.4. Consider a region M selected according to
Procedure 3.3. Define VM := maxa,b∈M |va − vb|. Then

VM ≥ RMp (s, t) (14)

Proof. Without loss of generality, let us say that t is part
of M and that s is not. By Lemma A.1, M is contiguous:
every vertex in M has a path to s not passing through M ,
because M cannot “surround” vertices with voltage outside
its range. ∂M consists of the vertices of M connected to M .
Consider the total flow between M and M . We know that
the total flow must equal 1, because M and M form an s-t
cut; that is,

∑
u∈∂M iu = 1. We also know that the flow

on every edge from M to M is non-negative because ∀a ∈
M, b ∈M, va ≥ vb by the construction of M . Equation (11)
gives us:

RMp (s, t) = vtit +
∑
u∈∂M

vuiu

= −vt + weighted-average
u∈∂M

(vu) (15)

Given a set of real numbers X = {x1, . . . , xt} and their
weighted average A, it is self-evident that there must exist
some element in X greater than or equal to A, and some
element less than or equal to A. Thus, we can conclude
from (15) that:

RMp (s, t) ≤ max
u∈∂M

|vu − vt| ≤ max
a,b∈M

|va − vb| =: VM

(16)
That is, the p-voltage drop across a region M constructed

in this manner is at least as large as its contribution to the
p-resistance of the graph, RMp (s, t). A symmetric argument
can be made if M contains s instead of t. In that case,

RMp (s, t) ≤ max
u∈∂M

|vs − vu| ≤ max
a,b∈M

|va − vb| =: VM

(17)

Our next goal is to lower bound p-resistance in regions
of the graph, so that we can lower bound the change in
p-voltage over those regions. Specifically, we will improve
the lower bound of Theorem 5 of [3]. We take advantage
of Rayleigh’s Monotonicity Principle, which states that the
effective resistance can only decrease when we add edges
of finite resistance to the graph. This was shown to hold
for p-electric networks in Lemma 9 of [4], and can be eas-
ily adapted to our formulation of p-electric networks. In a
similar approach to [3], we will “short” some vertices of the
network together to form a new graph G′. We can then cal-
culate the p-resistance of G′ to establish a lower bound for
G.

We construct G′ as follows, in a similar manner to the
graph setup of Proposition 8 of [3]. We add edges of zero
resistance between all neighbors of s, merging them into one
vertex. Then, expanding out from s, we merge all vertices
together that fall into “rings” of width r/2. There are 1/r of
these rings around s. We perform the exact same construc-
tion around t. Between the two sets of rings, we divide the
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Figure 2: Construction of G′

graph into “slices” of width 3R which run perpendicular to
the line connecting s and t, and merge all of the vertices in
each slice together. For a visualization of G′, see Figure 2.

First, we can lower bound the p-resistance contribution of

one of the ring regions, R
ring(s)
p (s, t). The number of ver-

tices in ring k, Nk, is proportional to n times the volume of
the ring. As shown in [3], Nk = Θ(τnk

d−2). Therefore, be-
tween rings k and k+1, there are Θ(Nkτn) edges in edge set

Ek. Denote by R
Ek
p (s, t) the contribution of the p-resistance

flowing between the rings. By the generalized mean inequal-
ity for values p and 1, we know that:

 1

Nkτn

∑
e∈Ek

ipe

 1
p

≥ 1

Nkτn

∑
e∈Ek

ie

(
1

Nkτn
REkp (s, t)

) 1
p

≥ 1

Nkτn

∑
e∈Ek

ie

(
1

Nkτn
REkp (s, t)

) 1
p

≥ 1

Nkτn

REkp (s, t) ≥ (Nkτn)1−p

where we used the fact that the flow between rings k and
k + 1 must be a unit flow because they form an s-t cut.

The p-resistance of all of the rings around s is simply the
sum of the contributions of all the rings.

Rring(s)p (s, t) =
∑
k

REkp (s, t) ≥
∑
k

(Nkτn)1−p

= Θ

 1

τ
2(p−1)
n

1/r∑
k=1

1

k(d−2)(p−1)

 =: T2

(18)

The rings around t have the same lower bound by symmetry.
Next, we can lower bound the p-resistance contribution of

one of the slices. Consider a single slice S. We say an edge
e is in ES if it has both endpoints in S. Denote by |ES | the
number of edges in ES . Then,

RESp (s, t) =
∑
e∈ES

|ie|p
(a)

≥ 1

|ES |p−1

∑
e∈ES

|ie|

p

(b)

≥ 1

|ES |p−1

(19)
Step (a) is a result of the generalized mean inequality for

values p and 1, and step (b) results because slice S is a cross-
section of the whole graph G and so must have at least unit
total flow traveling through it.

Define by NS the number of vertices which fall at least R
distance from the boundaries of S. Since S has width 3R,
these vertices occupy a region of width R. We can upper
bound |ES | by NS times the maximum degree of the graph.

|ES | ≤ NS · dmax = Θ(nR)Θ(τn)

= Θ
(
n
d−1
d τ

1
d

)
Θ(τn) = Θ

(
n
d−1
d τ

d+1
d

n

)
From (19) we have that:

RESp (s, t) ≥ Θ

 1(
n
d−1
d τ

d+1
d

n

)p−1

 (20)

There are on the order of K = Θ( 1
3R

) = Θ((n/τn)1/d) of
these slices in the graph. Suppose region M contains some
number of slices such that it contains some fraction c of the
total K slices. That is, it contains cK slices, with 0 < c ≤ 1.
Using (20), we can see that:

RMp (s, t) ≥
∑
S∈M

RSp (s, t) ≥ Θ

 cK(
n
d−1
d τ

d+1
d

n

)p−1

 = cT1

(21)
For convenience, we define a property of regions in which

we are interested.

Definition 3.5. A substantial region is one that is con-
structed according to Procedure 3.3, and which contains all
vertices in the rings around s or t as well as cK slices of the
graph as defined above.

If we have a substantial region M , then we know by (18)
and (21) that

RMp (s, t) ≥ cT1 + T2 (22)

We are ready to prove our main result.

Theorem 3.6. Consider the ratio VM
V

, which is the por-
tion of the total graph-wide change in p-voltage which oc-
curs in region M . If M is a substantial region for constant
0 < c ≤ 1, and p < d

d−1
, then we know that VM

V
≥ c.

Proof. If we examine the reciprocal of the ratio, and
use (14) and (22),

V

VM
≤ Rp(s, t)

RMp (s, t)
≤ 4C + T1 + T2

cT1 + T2

where the numerator comes from the bound in Theorem 5
in [3]. When we let the number of vertices n→∞,

V

VM
≤ 4C

cT1 + T2
+

T1 + T2

cT1 + T2
→ T1 + T2

cT1 + T2
≤ 1

c

since T1, T2 > 0. We can take the reciprocal to arrive at our
result: VM

V
≥ c.

This result has significant implications. If we label the
graph with p-voltages using a suitable value for p, any sub-
stantial region will have significant voltage drop across it.



Figure 3: Barbell graph labeled with Laplacian Regularization (left, p = 2) and p-voltages (right, p = 1.4)

This means that there cannot be large areas of constant p-
voltage in the graph, and that the voltage drop is distributed
somewhat evenly over the graph. Thus p-voltages with a
properly selected p do not suffer from the same limitations
as Laplacian Regularization of [1].

4. EXPERIMENTS
We conducted several numerical experiments to test the

performance of the p-voltages algorithm. We were interested
in two questions: in practice, do p-voltage solutions exhibit
the pathological behavior of Laplacian Regularization solu-
tions? Additionally, how does the p-voltage algorithm per-
form on both real and synthetic datasets compared to other
algorithms such as the Iterated Laplacians algorithm of [5]?

Our theoretical guarantees apply to geometric graphs such
as knn- and ε-graphs. However, we found in practice that
it was difficult to create “balanced” forms of these graphs
on high-dimensional datasets. Symmetric knn-graphs re-
sulted in points that had many more neighbors than others,
while mutual knn-graphs were poorly connected, requiring
random neighbors and these “hubs” to be added back in.
Similar problems occurred for ε-graphs. These issues vio-
late the local neighborhood assumptions of our theory. We
found that complete graphs with edge weights from the RBF
kernel (1) provided the best empirical performance. In one
sense, the complete graph can be thought of as a “soft” ver-
sion of a neighborhood graph where the great majority of a
point’s edge weight is still connected to its local neighbors.

4.1 Toy Example
To examine the p-voltage solution, we generated a series

of toy graphs and compared the results of the Laplacian
Regularization and p-voltage algorithms. Here we share a
sample “barbell” graph, which is meant to simulate a graph
with defined cluster structure.

To generate the barbell in R3, we sampled 2000 data
points from each of two three-dimensional Gaussians, cen-
tered at (−2.5, 0, 0) and (2.5, 0, 0). The “handle” of the bar-
bell consisted of another 500 points sampled from a nar-
row cylinder spanning the means of the Gaussians. A sin-
gle source point was placed in one end of the barbell at
(−1,−1, 0), and a single sink point was placed in the other
end at (1, 1, 0). A complete graph was constructed over
the data points using the RBF kernel (1) with bandwidth

σ = 0.1386.
We ran both Laplacian Regularization and p-voltages with

source label vs = 1 and sink label vt = 0. Since p must be
set to less than d

d−1
= 3

3−1
= 1.5, we chose p = 1.4. The

two solutions are shown in Figure 3. The points are shown
projected onto the x-y plane, and their predicted labels are
indicated by their color: red shows labels close to 1, and
blue shows labels close to 0.

Note several aspects of these examples. While the Lapla-
cian Regularization solution does seem to label based on the
cluster structure of the graph, the range of labels in the ma-
jority of the graph is extremely small. This is the “flatness”
problem that we discussed. Also, the appropriate threshold
between the two classes is not at 0.5 despite the equally-sized
clusters; if we thresholded at 0.5, all but a few points around
the source point would be labeled as negative, resulting in
poor classification performance. On the other hand, the p-
voltage solution appears to be much more desirable. There
is a more gradual and constant drop in label throughout
the graph, and the threshold between the clusters is much
closer to 0.5 (between yellow and green). On similar graphs
with more dimensions or more data points, the difference
between the algorithms is even more pronounced. Thus, on
these examples, our empirical results agree with our theo-
retical ones and suggest that p-voltages do not suffer from
the same limitations as Laplacian Regularization.

4.2 Benchmark Datasets
We tested the p-voltages algorithm on several synthetic

and real world datasets from the binary classification bench-
mark from Chapter 21 of [7]. Each of the datasets contains
1500 points and is provided with twelve different random
training-test set splits (100 labeled training set points and
1400 test set points). The exception is the BCI dataset,
which has 400 data points and 100 and 300 training and test
set sizes, respectively. We constructed a complete graph over
the points and used the RBF kernel (1) with the bandwidth
σ fixed according to the heuristic described in [7]: σ = d

3
,

where d is the average distance between a point and its tenth
nearest neighbor.

Our experiments compare the performance of four algo-
rithms. The first is standard Laplacian Regularization of [1].
The second is a version of Laplacian Regularization which
uses class mass normalization (CMN). CMN is a heuristic
proposed in [1] which attempts to shift the classification



Dataset LapReg LapReg + CMN IterLap p-voltages
g241c 48.95 ± 4.38 22.46 ± 1.42 19.40 ± 4.88 33.74 ± 7.20
g241n 49.93 ± 1.20 30.88 ± 3.43 13.15 ± 0.97 29.91 ± 3.67
Digit1 8.81 ± 0.56 3.74 ± 1.05 2.24 ± 0.81 3.14 ± 0.95
USPS 19.19 ± 0.67 10.91 ± 1.06 4.58 ± 0.86 7.54 ± 1.98
BCI 46.89 ± 2.33 46.19 ± 2.14 45.67 ± 2.75 45.03 ± 2.78

Table 1: Average Test Set Classification Error Percentage and Standard Error on Chapelle Benchmark

threshold to an appropriate value by using the size of the
labeled classes as a prior. In practice this significantly im-
proves the performance of Laplacian Regularization. Third,
we test Iterated Laplacians of [5], which seeks to fix Lapla-
cian Regularization using an exponentiated Laplacian to
provide a higher order norm. Finally, we test the p-voltages
algorithm.

To determine the other parameters of the algorithms, we
performed a grid search and chose the best setting by vali-
dation on the first training set. A random tuning set of size
10 was withheld several times from the training set and the
parameters which provided the lowest average classification
error were selected. The p parameter for p-voltages was se-
lected among

{
128
127

, 64
63
, 32
31
, 16
15
, 8
7
, 6
5
, 4
3
, 3
2
, 2
}

. The m param-
eter of Iterated Laplacians was chosen among {2, 3, 4, 6, 8,
16, 32, 64, 128}, the µ parameter among

{
10−2, 10−4, 10−6

}
and the Laplacian type among the four types listed in [5].

Once the final parameters were set, we ran the algorithms
on each of the twelve splits using the training sets as the
labeled points and measuring classification error on the test
sets. The mean classification error rate and standard error
over the twelve splits for each algorithm and dataset is shown
in Table 1.

There is a mixture of positive and negative conclusions
from these results. On one hand, the p-voltages algorithm
outperformed Laplacian Regularization significantly on ev-
ery dataset. On all but one of the datasets, p-voltages
also outperformed the version with class mass normaliza-
tion, which suggests that not only does the p-voltage solu-
tion have “better shape”, it also provides a better ranking of
the data points. However, the current state-of-the-art Iter-
ated Laplacians algorithm performed better on all but one
of the datasets. From a practical standpoint, one advantage
of the p-voltages algorithm is that it has only a single pa-
rameter p to set as compared to Iterated Laplacians, which
has three (m, µ, and L). This made the parameter search
significantly more difficult for Iterated Laplacians. It also
may have contributed to the success of Iterated Laplacians
since the algorithm had more degrees of freedom to tune.

5. CONCLUSION
We have investigated many of the properties as well as the

performance of the p-voltages algorithm for semi-supervised
learning. While we proved that p-voltage solutions are not
equivalent to p-resistance solutions, we also showed that p-
voltage solutions are potentially valuable as they do not suf-
fer from the same limitations as Laplacian Regularization.
Numerical experiments confirmed these results, though em-
pirically p-voltage did not outperform Iterated Laplacian.
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APPENDIX
A. HELPFUL P-VOLTAGE RESULTS

To prove that ties can always be resolved in Procedure 3.3,
we can use the following lemma:

Lemma A.1. No vertex besides the source vertex s can
have a p-voltage greater than all of its neighbors. Likewise,
no vertex besides the sink t can have a p-voltage less than
all of its neighbors.

Proof. We will prove the first statement by contradic-
tion, and the second will follow by similar logic. Assume
there is some non-source node u which has a p-voltage greater
than all of its neighbors. By definition, the set of p-voltages
minimizes equation (3) on the graph. However, if we lower
vu so that it is equal to the maximum p-voltage of its neigh-
bors, then all terms in (3) involving edges connected to u
will decrease, and no other terms will be affected. Thus, this
new set of voltages leads to a lower value of Cp(s, t), and the
original set of voltages could not be the set of p-voltages.

Note that this statement holds for the voltages calculated
from Rp(s, t) as well because the two sets of voltages are
proportional to each other. Thus, according to Lemma A.1,
every u 6= s, t is connected to some vertex with greater or
equal p-voltage, and some vertex with less or equal p-voltage.
As a result, ties can always be resolved when constructing
Vsorted.


