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MOTIVATING EXAMPLES

Consider a mobile robot continuously
learning to recognize interesting objects (x)
with limited feedback from humans (y):

yi=0n/a ... Yiooo=1 ... Y1000000 =0 ...

This 1s how children learn, too:
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yi=0n/a ... Yiooo=1... Y1000000 =0 ...

Unlike standard supervised learning:

» N — oo examples arrive sequentially

» Cannot even store them alll

» Most examples are unlabeled

» No iid assumption; p(x,y) can change

NEW PARADIGM:. ONLINE
SEMI-SUPERVISED LEARNING

Main contribution: Merging settings

1. Online: learn from non-iid sequence, but
fully labeled data

2. Semi-supervised: learn from iid batch, but
(mostly) unlabeled data

Learning proceeds iteratively:

1. At time t, adversary picks X € X, y; € Y
not necessarily Iid; shows x; to learner

2.Learner has f; : X — R; predicts f;(x;)

3. With small probability, adversary reveals y;;
otherwise It abstains (unlabeled)

4. Learner updates to f;,1 based on x;
and y; (if given). Repeat.

REVIEW: BATCH MANIFOLD
'REGULARIZATION

A form of graph-based semi-supervised
learning [Belkin et al. JIMLROG]:

» Graph on X; ... X;
» Edge weights wg; encode similarity
» Assumption: similar x’s have similar labels

Manifold regularization minimizes risk:
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c(f(x),y) convex loss function, e.g., hinge

Generalizes graph mincut -
and label propagation.

FROM BATCH TO ONLINE

Batch risk = average instantaneous risks

Instantaneous risk

n(f) = T—(sm)c(f(x )y + 2 E +
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(includes graph edges between X; and all previous x’s)

ONLINE CONVEX PROGRAMMING

Instead of minimizing convex J(f), reduce
convex Ji(f) at each step t
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Remarkable no regret guarantee against
adversary: [Zinkevich ICMLO3]

imsupr 5 J(f) —I(f*) <0

If no adversary (id), the average classifier
f=1/T Zt  fi is good: J(f) — J(f*)

KERNELIZED ALGORITHM

New representation: fi(-) = Zit;ll ai(t)K(Xi, )
» NIt t = 1,f,=0
» Repeat
1. Receive x;, predict f,(x;) = S L oK (x;, %)
2. Occasionally receive y;
3. Update f; to f;,1 by adjusting coefficients
ol = (1—nar)al — 2n o (f(x) — (%) )Wir, | < t
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4. Store x¢, lett =t + 1

SPARSE APPROXIMATIONS

The algorithm is impractical
» Space O(T): stores all previous examples

» Time O(T 2): each new example compared
to all previous ones

» In reality, T — oo for life-long learning

Two ways to speed up:

» Buffering
» Keep a size 7 buffer
» Approximate representers: f; = f tl T ,(t)K(Xu, )

» Approximate instantaneous risk; only 7 edge terms
» Dynamic graph on examples in the buffer

» Random projection tree
» Discretize data manifold by online clustering using
RP tree [Dasgupta and Freund, STOCOQ8]
» Use clusters as representers
» Approximate risk using “cluster graph”

‘ EXPERIMENT. RUNTIME

Buffering and random projection tree scale
linearly, enabling life-long learning
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‘ EXPERIMENT: RISK

Online MR risk J4;(T) = 2 >/, Ji(f)
approaches batch risk J(f*) as T increases
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EXPERIMENT: GENERALIZATION
'ERROR OF f IF IID

Variation of buffering as good as batch MR
(prefer to keep labeled examples in buffer)
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‘ EXPERIMENT. CONCEPT DRIFT

» Slowly rotating spirals;
both p(x) and p(y|x) change over time

» Test set ~ current p(x,y) attime T
» Online MR buffering f+ beats batch f*
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SUMMARY

» Introduced online semi-supervised learning
framework and specialization for MR

» Sparse approximations to make it practical:
buffering and random projection tree

» Future work: new bounds, new algorithms
(e.qg., S3VM, multi-view)

http://pages.cs.wisc.edu/~goldberg/publications.html
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