# **Online Manifold Regularization: A New Learning Setting and Empirical Study** Andrew B. Goldberg<sup>1</sup>, Ming Li<sup>2</sup>, Xiaojin Zhu<sup>1</sup>



Department of Computer Sciences, University of Wisconsin–Madison, USA <sup>2</sup> National Key Laboratory for Novel Software Technology, Nanjing University, China

## **MOTIVATING EXAMPLES**

Consider a mobile robot continuously learning to recognize interesting objects (x)with limited feedback from humans (y):



#### **FROM BATCH TO ONLINE**

Batch risk = average instantaneous risks

$$J(f) = rac{1}{T}\sum_{t=1}^T J_t(f)$$

Instantaneous risk

$$J_t(f) = \frac{T}{I} \delta(\mathbf{y}_t) c(f(\mathbf{x}_t), \mathbf{y}_t) + \frac{\lambda_1}{2} \|f\|_K^2 + \lambda_2 \sum_{t} (f(\mathbf{x}_t) - f(\mathbf{x}_t))^2 W_{it}$$

# **EXPERIMENT: RUNTIME**

Buffering and random projection tree scale linearly, enabling life-long learning



$$y_1 = 0$$
 n/a ...  $y_{1000} = 1$  ...  $y_{1000000} = 0$  ...

This is how children learn, too:



Unlike standard supervised learning:

- $n \rightarrow \infty$  examples arrive sequentially
- Cannot even store them all
- Most examples are unlabeled
- No iid assumption; p(x, y) can change

## **New Paradigm: Online SEMI-SUPERVISED LEARNING**

Main contribution: Merging settings **1.** Online: learn from non-iid sequence, but

$$\frac{1}{i=1} (I(\mathbf{x}_i) - I(\mathbf{x}_i)) \quad \forall i t$$

(includes graph edges between  $x_t$  and all previous x's)

## **ONLINE CONVEX PROGRAMMING**

Instead of minimizing convex J(f), reduce convex  $J_t(f)$  at each step t  $(1 (\mathbf{r}))$ 

$$f_{t+1} = f_t - \eta_t \frac{\partial J_t(t)}{\partial f}$$

Remarkable no regret guarantee against adversary: [Zinkevich ICML03]  $\limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} J_t(f_t) - J(f^*) \le 0$ 

If no adversary (iid), the average classifier  $\overline{f} = 1/T \sum_{t=1}^{T} f_t$  is good:  $J(\overline{f}) \rightarrow J(f^*)$ 

#### **KERNELIZED ALGORITHM**

New representation:  $f_t(\cdot) = \sum_{i=1}^{t-1} \alpha_i^{(t)} K(\mathbf{x}_i, \cdot)$ ▶ Init:  $t = 1, f_1 = 0$ Repeat

#### **EXPERIMENT: RISK**

Online MR risk  $J_{air}(T) \equiv \frac{1}{T} \sum_{t=1}^{T} J_t(f_t)$ approaches batch risk  $J(f^*)$  as *T* increases



## **EXPERIMENT: GENERALIZATION** ERROR OF f IF IID

Variation of buffering as good as batch MR (prefer to keep labeled examples in buffer)



- fully labeled data
- 2. Semi-supervised: learn from iid batch, but (mostly) unlabeled data

Learning proceeds iteratively:

- **1.** At time *t*, adversary picks  $x_t \in \mathcal{X}, y_t \in \mathcal{Y}$ not necessarily iid; shows  $x_t$  to learner
- **2.** Learner has  $f_t : \mathcal{X} \mapsto \mathbb{R}$ ; predicts  $f_t(x_t)$
- 3. With small probability, adversary reveals  $y_t$ ; otherwise it abstains (unlabeled)
- 4. Learner updates to  $f_{t+1}$  based on  $x_t$ and  $y_t$  (if given). Repeat.

## **REVIEW: BATCH MANIFOLD** REGULARIZATION

- A form of graph-based semi-supervised learning [Belkin et al. JMLR06]:
- Graph on  $x_1 \dots x_n$
- Edge weights  $w_{st}$  encode similarity
- Assumption: similar x's have similar labels

1. Receive  $x_t$ , predict  $f_t(x_t) = \sum_{i=1}^{t-1} \alpha_i^{(t)} K(x_i, x_t)$ 2. Occasionally receive  $y_t$ **3.** Update  $f_t$  to  $f_{t+1}$  by adjusting coefficients  $\alpha_i^{(t+1)} = (1 - \eta_t \lambda_1) \alpha_i^{(t)} - 2\eta_t \lambda_2 (f_t(\mathbf{x}_i) - f_t(\mathbf{x}_i)) W_{it}, \ i < t$  $\alpha_i^{(t+1)} =$  $2\eta_t \lambda_2 \sum_{i=1}^t (f_t(\mathbf{x}_i) - f_t(\mathbf{x}_t)) \mathbf{w}_{it}$  $-\eta_t \frac{T}{T} \delta(\mathbf{y}_t) \mathbf{C}'(f(\mathbf{x}_t), \mathbf{y}_t)$ i = t

4. Store  $x_t$ , let t = t + 1

#### **SPARSE APPROXIMATIONS**

- The algorithm is impractical
- Space O(T): stores all previous examples
- Time  $O(T^2)$ : each new example compared to all previous ones
- In reality,  $T \rightarrow \infty$  for life-long learning

## Two ways to speed up:

# Buffering

- Keep a size  $\tau$  buffer
- Approximate representers:  $f_t = \sum_{i=t-\tau}^{t-1} \alpha_i^{(t)} K(x_i, \cdot)$
- Approximate instantaneous risk; only  $\tau$  edge terms

# **EXPERIMENT: CONCEPT DRIFT**

- Slowly rotating spirals;
- both p(x) and p(y|x) change over time
- ▶ Test set ~ current p(x, y) at time T
- Online MR buffering  $f_T$  beats batch  $f^*$



Manifold regularization minimizes risk:



c(f(x), y) convex loss function, e.g., hinge

Generalizes graph mincut and label propagation.

Dynamic graph on examples in the buffer

#### Random projection tree

- Discretize data manifold by online clustering using RP tree [Dasgupta and Freund, STOC08]
- Use clusters as representers
- Approximate risk using "cluster graph"



# SUMMARY

Introduced online semi-supervised learning framework and specialization for MR

- Sparse approximations to make it practical: buffering and random projection tree
- Future work: new bounds, new algorithms (e.g., S3VM, multi-view)

http://pages.cs.wisc.edu/~goldberg/publications.html

