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Abstract

We propose to use Rademacher complexity, originally developed in computational
learning theory, as a measure of human learning capacity. Rademacher complex-
ity measures a learner’s ability to fit random labels, and can be used to bound
the learner’s true error based on the observed training sample error. We first re-
view the definition of Rademacher complexity and its generalization bound. We
then describe a “learning the noise” procedure to experimentally measure human
Rademacher complexities. The results from empirical studies showed that: (i)
human Rademacher complexity can be successfully measured, (ii) the complex-
ity depends on the domain and training sample size in intuitive ways, (iii) hu-
man learning respects the generalization bounds, (iv) the bounds can be useful in
predicting the danger of overfitting in human learning. Finally, we discuss the
potential applications of human Rademacher complexity in cognitive science.

1 Introduction

Many problems in cognitive psychology arise from questions ofcapacity. How much information
can human beings hold in mind and deploy in simple memory tasks [19, 15, 6]? What kinds of
functions can humans easily acquire when learning to classify items [29, 7], and do they have bi-
ases for learning some functions over others[10]? Is there a single domain-general answer to these
questions, or is the answer domain-specific [28]? How do human beings avoid over-fitting learning
examples when acquiring knowledge that allows them to generalize [20]? Such questions are central
to a variety of research in cognitive psychology, but only recently have they begun to be placed on a
formal mathematical footing [7, 9, 5].

Machine learning offers a variety of formal approaches to measuring the capacity of a learning sys-
tem, with concepts such as Vapnik-Chervonenkis (VC) dimension [27, 25, 12] and Rademacher
complexity [1, 13, 24]. Based on these notions of capacity, one can quantify the generalization
performance of a classifier, and the danger of over-fitting, by bounding its future test error using
its observed training sample error. In this paper, we show how one such concept–Rademacher
complexity–can be measured in humans, based on their performance in a “learning the noise” pro-
cedure. We chose Rademacher complexity (rather than the better-known VC dimension) because
it is particularly amenable to experimental studies, as discussed in Section 5. We assess whether
human capacity varies depending on the nature of the materials to be categorized, and empirically
test whether human generalization behavior respects the error bounds in a variety of categorization
tasks. The results validate Rademacher complexity as a meaningful measure of human learning
capacity, and provide a new perspective on the human tendency to overfit training data in category
learning tasks. We note that our aim is not to develop a new formal approach to complexity, but
rather to show how a well-studied formal measure can be computed for human beings.
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2 Rademacher Complexity

Background and definitions.LetX be a domain of interest, which in psychology corresponds to a
stimulus space. For example,X could be an infinite set of images parametrized by some continuous
parameters, a finite set of words, etc.. We will usex ∈ X to denote an instance (e.g., an image
or a word) from the domain; precisely howx is represented is immaterial. We assume there is an
underlying marginal distributionPX onX , such thatx is sampled with probabilityPX(x) during
training and testing. For example,PX can be uniform on the set of words.

Let f : X 7→ R be a real-valued function. This corresponds to a hypothesis that predicts the label
of any instance in the domain. The label can be a continuous value for regression, or{−1, 1} for
binary classification. LetF be the set of such functions, or the hypothesis space, that we consider.
For example, in machine learningF may be the set of linear classifiers. In the present work, we will
takeF to be the (possibly infinite) set of hypotheses fromX to binary classes{−1, 1} that humans
can come up with.

Rademacher complexity (see for example [1]) measures the capacity of the hypothesis spaceF by
how easy it is forF to fit random noise. Consider a sample ofn instances:x1, . . . , xn drawn
i.i.d. from PX . Now generaten random numbersσ1, . . . , σn, each taking value -1 or 1 with equal
probability. For a given functionf ∈ F , its fit to the random numbers is defined as|

∑n
i=1 σif(xi)|.

This is easier to understand whenf produces -1, 1 binary labels. In this case, theσ’s can be thought
of as random labels, and{(xi, σi)}n

i=1 as a training sample. The fit measures howf ’s predictions
match the random labels on the training sample: iff perfectly predicts theσ’s, or completely the
opposite by flipping the classes, then the fit is maximized atn; if f ’s predictions are orthogonal to
theσ’s, the fit is minimized at 0.

The fit of a set of functionsF is defined assupf∈F |
∑n

i=1 σif(xi)|. That is, we are fitting the
particular training sample by finding the hypothesis inF with the best fit. IfF is rich, it will be
easier to find a hypothesisf ∈ F that matches the random labels, and its fit will be large. On the
other hand, ifF is simple (e.g., in the extreme containing only one functionf ), it is unlikely that
f(xi) will matchσi, and its fit will be close to zero.

Finally, recall that{(xi, σi)}n
i=1 is a particular random training sample. If, for every random training

sample of sizen, there always exists somef ∈ F (which may be different each time) that matches
it, thenF is very good at fitting random noise. This also means thatF is prone to overfitting, whose
very definition is to learn noise. This is captured by taking the expectation over training samples:

Definition 1 (Rademacher Complexity). For a set of real-valued functionsF with domainX , a
distributionPX onX , and a sizen, the Rademacher complexityR(F ,X , PX , n) is

R(F ,X , PX , n) = Exσ

[
sup
f∈F

∣∣∣∣∣ 2
n

n∑
i=1

σif(xi)

∣∣∣∣∣
]

, (1)

where the expectation is overx = x1, . . . , xn
iid∼ PX , andσ = σ1, . . . , σn

iid∼ Bernoulli( 1
2 , 1

2 ) with
values±1.

Rademacher complexity depends on the hypothesis spaceF , the domainX , the distribution on the
domainPX , as well as the training sample sizen. The sizen is relevant because for a fixedF ,
it will be increasingly difficult to fit random noise asn gets larger. On the other hand, it is worth
noting that Rademacher complexity is independent of any future classification tasks. For example,
in Section 4 we will discuss two different tasks on the sameX (set of words): classifying a word by
its emotional valence, or by its length. These two tasks will share the same Rademacher complexity.
In general, the value of Rademacher complexity will depend on the range ofF . In the special case
whenF is a set of functions mappingx to {−1, 1}, R(F ,X , PX , n) is between 0 and 2.

A particularly important property of Rademacher complexity is that it can be estimated from random
samples. Let{(x(1)

i , σ
(1)
i )}n

i=1, . . . , {(x
(m)
i , σ

(m)
i )}n

i=1 be m random samples of sizen each. In
Section 3, these will correspond tom different subjects. The following theorem is an extension of
Theorem 11 in [1]. The proof follows from McDiarmid’s inequality [16].
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Theorem 1. LetF be a set of functions mapping to[−1, 1]. For any integersn, m,

P


∣∣∣∣∣∣R(F ,X , PX , n)− 1

m

m∑
j=1

sup
f∈F

∣∣∣∣∣ 2
n

n∑
i=1

σ
(j)
i f(x(j)

i )

∣∣∣∣∣
∣∣∣∣∣∣ ≥ ε

 ≤ 2 exp
(
−ε2nm

8

)
(2)

Theorem 1 allows us to estimate the expectation in (1) with random samples, which is of practical
importance. It remains to compute the supremum in (1). In Section 3, we will discuss our procedure
to approximate the supremum in the case of human learning.

Generalization Error Bound. We state a generalization error bound by Bartlett and Mendelson
(Theorem 5 in [1]) as an important application of Rademacher complexity. Consider any binary
classification task of predicting a label inY = {−1, 1} for x ∈ X . For example, the labely could be
the emotional valence (positive=1 vs. negative=-1) of a wordx. In general, a binary classification
task is characterized by a joint distributionPXY on X × {−1, 1}. Training data and future test

data consist of instance-label pairs(x, y) iid∼ PXY . Let F be a set of binary classifiers that map
X to {−1, 1}. For f ∈ F , let (y 6= f(x)) be an indicator function which is 1 ify 6= f(x), and 0
otherwise. On a training sample{(xi, yi)}n

i=1 of sizen, the observed training sample error off is
ê(f) = 1

n

∑n
i=1(yi 6= f(xi)). The more interesting quantity is the true error off , i.e., how well

f can generalize to future test data:e(f) = E
(x,y)

iid∼PXY
[(y 6= f(x))]. Rademacher complexity

allows us to bound the true error using training sample error as follows.

Theorem 2. (Bartlett and Mendelson) LetF be a set of functions mappingX to {−1, 1}. Let
PXY be a probability distribution onX × {−1, 1} with marginal distributionPX on X . Let

{(xi, yi)}n
i=1

iid∼ PXY be a training sample of sizen. For any δ > 0, with probability at least
1− δ, every functionf ∈ F satisfies

e(f)− ê(f) ≤ R(F ,X , PX , n)
2

+

√
ln(1/δ)

2n
. (3)

The probability1 − δ is over random draws of the training sample. That is, if one draws a large
number of training samples of sizen each, then (3) is expected to hold on1 − δ fraction of those
samples. The bound has two factors, one from the Rademacher complexity and the other from
the confidence parameterδ and training sample sizen. When the bound is tight, training sample
error is a good indicator of true error, and we can be confident that overfitting is unlikely. A tight
bound requires the Rademacher complexity to be close to zero. On the other hand, if the Rademacher
complexity is large, orn is too small, or the requested confidence1−δ is overly stringent, the bound
can be loose. In that case, there is a danger of overfitting. We will demonstrate this generalization
error bound on four different human classification tasks in Section 4.

3 Measuring Human Rademacher Complexity by Learning the Noise

Our aim is to measure the Rademacher complexity of the human learning system for a given stimulus
spaceX , distribution of instancesPX , and sample-sizen. By “human learning system,” we mean
the set of binary classification functions that an average human subject can come up with on the
domainX , under the experiment conditions described below. We will denote this set of functionsF
with Ha, that is, “average human.”

We make two assumptions. The first is the assumption of universality [2]: every individual has the
sameHa. It allows us to pool subjects together. This assumption can be loosened in the future.
For instance,F could be defined as the set of functions thata particular individual or groupcan
employ in the learning task, such as a given age-group, education level, or other special population.
A second assumption is required to compute the supremum onHa. Obviously, we cannot measure
and compare the performance of every single function contained inHa. Instead, we assume that,
when making their classification judgments, participants use the best function at their disposal–so
that the errors they make when tested on the training instances reflect the error generated by the
best-performing function inHa, thus providing a direct measure of the supremum. In essence, the
assumption is that participants are doing their best to perform the task.
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With the two assumptions above, we can compute human Rademacher complexity for a given
stimulus domainX , distributionPX , and sample sizen, by assessing how well human partici-
pants are able to learn randomly-assigned labels. Each participant is presented with a training
sample{(xi, σi)}n

i=1 where theσ’s are random±1 labels, and asked to learn the instance-label
mapping. The subject is not told that the labels are random. We assume that the subject will
search withinHa for the best hypothesis (“rule”), which is the one that minimizes training error:
f∗ = argmaxf∈Ha

∑n
i=1 σif(xi) = argminf∈Ha

ê(f). We do not directly observef∗. Later, we
ask the subject to classify the same training instances{xi}n

i=1 using what she has learned. Her clas-
sification labels will bef∗(x1), . . . , f∗(xn), which we do observe. We then approximate the supre-
mum as follows:supf∈Ha

∣∣ 2
n

∑n
i=1 σif(xi)

∣∣ ≈ ∣∣ 2
n

∑n
i=1 σif

∗(xi)
∣∣. For the measured Rademacher

complexity to reflect actual learning capacity on the setHa, it is important to prevent participants
from simply doing rote learning. With these considerations, we propose the following procedure to
estimate human Rademacher complexity.

Procedure. Given domainX , distributionPX , training sample sizen, and number of subjectsm,
we generatem random samples of sizen each: {(x(1)

i , σ
(1)
i )}n

i=1, . . . , {(x
(m)
i , σ

(m)
i )}n

i=1, where

x
(j)
i

iid∼ PX andσ
(j)
i

iid∼ Bernoulli( 1
2 , 1

2 ) with value±1, for j = 1 . . .m. The procedure is paper-
and-pencil based, and consists of three steps:

Step 1. Participantj is shown a printed sheet with the training sample{(x(j)
i , σ

(j)
i )}n

i=1, where

each instancex(j)
i is paired with its random labelσ(j)

i (shown as “A” and “B” instead of -1,1 for
convenience). the participant is informed that there are only two categories; the order does not mat-
ter; they have three minutes to study the sheet; and later they will be asked to use what they have
learned to categorize more instances into “A” or “B”.

Step 2. After three minutes the sheet is taken away. To prevent active maintenance of training
items in working memory the participant performs a filler task consisting of ten two-digit addi-
tion/subtraction questions.

Step 3. The participant is given another sheet with the same training instances{x(j)
i }n

i=1 but no
labels. The order of then instances is randomized and different from step 1. The participant is not
told that they are the same training instances, and is asked to categorize each instance as “A” or “B”
and is encouraged to guess if necessary. There is no time limit.

Let f (j)(x(j)
1 ), . . . , f (j)(x(j)

n ) be subject j’s answers (encoded as±1). We estimate

R(Ha,X , PX , n) by 1
m

∑m
j=1

∣∣∣ 2
n

∑n
i=1 σ

(j)
i f (j)(x(j)

i )
∣∣∣. We also conduct a post-experiment inter-

view where the subject reports any insights or hypotheses they may have on the categories.

Materials To instantiate the general procedure, one needs to specify the domainX and an associated
marginal distributionPX . For simplicity, in all our experimentsPX is the uniform distribution over
the corresponding domain. We conducted experiments on example domains. They are not of spe-
cific interest in themselves but nicely illustrate many interesting properties of human Rademacher
complexity: (1) The “Shape” Domain. X consists of 321 computer-generated 3D shapes [3]. The
shapes are parametrized by a real numberx ∈ [0, 1], such that smallx produces spiky shapes, while
largex produces smooth ones. A few instances and their parameters are shown in Figure 1(a). It
is important to note that this internal structure is unnecessary to the definition or measurement of
Rademacher complexityper se. However, in Section 4 we will define some classification tasks that
utilize this internal structure. Participants have little existing knowledge about this domain.(2) The
“Word” Domain . X consists of 321 English words. We start with the Wisconsin Perceptual At-
tribute Ratings Database [18], which contains words rated by 350 undergraduates for their emotional
valence. We sort the words by their emotion valence, and take the 161 most positive and the 160
most negative ones for use in the study. A few instances and their emotion ratings are shown in
Figure 1(b). Participants have rich knowledge about this domain. The size of the domain for shapes
and words was matched to facilitate comparison.

Participants were 80 undergraduate students, participating for partial course credit. They were
divided evenly into eight groups. Each group ofm = 10 subjects worked on a unique combination
of the Shape or the Word domain, and training sample sizen in 5, 10, 20, or 40, using the procedure
defined previously.
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Figure 1: Human Rademacher complexity on the “Shape” and “Word” domains.

Results. Figures 1(c,d) show the measured human Rademacher complexities on the domains
X=Shape and Word respectively, with distributionPX=uniform, and with different training sam-
ple sizesn. The error bars are 95% confidence intervals. Several interesting observations can be
made from the data:

Observation 1: human Rademacher complexities in both domains decrease asn increases. This is
anticipated, as it should be harder to learn a larger number of random labels. Indeed, whenn = 5,
our interviews show that, in both domains, 9 out of 10 participants offered some spurious rules
of the random labels. For example, one subject thought the shape categories were determined by
whether the shape “faces” downward; another thought the word categories indicated whether the
word contains the letter T. Such beliefs, though helpful in learning the particular training samples,
amount to over-fitting the noise. In contrast, whenn = 40, about half the participants indicated that
they believed the labels to be random, as spurious “rules” are more difficult to find.

Observation 2: human Rademacher complexities are significantly higher in the Word domain than
in the Shape domain, for n = 10, 20, 40 respectively (t-tests,p < 0.05). The higher complexity
indicates that, for the same sample sizes, participants are better able to find spurious explanations of
the training data for the Words than for the Shapes. Two distinct strategies were apparent in the Word
domain interviews: (i) Some participants created mnemonics. For example, one subject received the
training sample (grenade, B), (skull, A), (conflict, A), (meadow, B), (queen, B), and came up with
the following story: “a queen was sitting in a meadow and then a grenade was thrown (B = before),
then this started a conflict ending in bodies & skulls (A = after).” (ii) Other participants came up
with idiosyncratic, but often imperfect, rules. For instance, whether the item “tastes good,” “relates
to motel service,” or “physical vs. abstract.” We speculate that human Rademacher complexities on
other domains can be drastically different too, reflecting the richness of the participant’s pre-existing
knowledge about the domain.

Observation 3: many of these human Rademacher complexities are relatively large. This means that
under thoseX , PX , n, humans have a large capacity to learn arbitrary labels, and so will be more
prone to overfit on real (i.e., non-random) tasks. We will present human generalization experiments
in Section 4. It is also interesting to note that both Rademacher complexities atn = 5 are less than 2:
under our procedure, participants are not perfect at remembering the labels of merely five instances.

4 Bounding Human Generalization Errors

We reiterate the interpretation of human Rademacher complexity for psychology. It does not predict
ê (how well humans perform when training for a given task). Instead, Theorem 2 boundse − ê,
the “amount of overfitting” (sometimes also called “instability”) when the subject switches from
training to testing. A tight (close to 0) bound guarantees no severe overfitting: humans’ future
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Table 1: Human learning performance abides by the generalization error bounds.

condition ID ê bounde e
Shape-+ 81 0.00 1.35 0.05
n=5 82 0.00 1.35 0.22

83 0.00 1.35 0.10
84 0.00 1.35 0.09
85 0.00 1.35 0.07

Shape-+ 86 0.05 0.39 0.04
n=40 87 0.03 0.36 0.14

88 0.03 0.36 0.03
89 0.00 0.34 0.04
90 0.00 0.34 0.01

Shape-+- 91 0.00 1.35 0.23
n=5 92 0.00 1.35 0.27

93 0.00 1.35 0.21
94 0.00 1.35 0.40
95 0.20 1.55 0.18

Shape-+- 96 0.12 0.46 0.16
n=40 97 0.32 0.66 0.50

98 0.15 0.49 0.08
99 0.15 0.49 0.11

100 0.03 0.36 0.10

condition ID ê bounde e
WordEmotion 101 0.00 1.43 0.58
n=5 102 0.00 1.43 0.46

103 0.00 1.43 0.04
104 0.00 1.43 0.03
105 0.00 1.43 0.31

WordEmotion 106 0.70 1.23 0.65
n=40 107 0.00 0.53 0.04

108 0.00 0.53 0.00
109 0.62 1.15 0.53
110 0.00 0.53 0.05

WordLength 111 0.00 1.43 0.46
n=5 112 0.00 1.43 0.69

113 0.00 1.43 0.55
114 0.00 1.43 0.26
115 0.00 1.43 0.57

WordLength 116 0.12 0.65 0.51
n=40 117 0.45 0.98 0.55

118 0.00 0.53 0.00
119 0.15 0.68 0.29
120 0.15 0.68 0.37

test performancee will be close to their training performancêe. This does not mean they will do
well: ê could be large and thuse is similarly large. A loose bound, in contrast, is a warning sign for
overfitting: good training performance (smallê) may not reflect learning of the correct categorization
rule, and so does not entail good performance on future samples (i.e.,e can be much larger than̂e).
We now present four non-random category-learning tasks to illustrate these points.

Materials. We consider four very different binary classification tasks to assess whether Theorem 2
holds for all of them. The tasks are:(1) Shape-+: Recall the Shape domain is parametrized by
x ∈ [0, 1]. The task has a linear decision boundary atx = 0.5, i.e.,P (y = 1|x) = 0 if x < 0.5,
and1 if x ≥ 0.5. It is well-known that people can easily learn such boundaries, so this is a fairly
easy task on the domain.(2) Shape-+-: This task is also on the Shape domain, but with a nonlinear
decision boundary. The negative class is on both ends while the positive class is in the middle:
P (y = 1|x) = 0 if x ∈ [0, 0.25) ∪ (0.75, 1], and1 if x ∈ [0.25, 0.75]. Prior research suggests that
people have difficulty learning nonlinearly separable categories [28, 7], so this is a harder task. Note,
however, that the two shape tasks share the same Rademacher complexity, and therefore have the
same bound for the samen. (3) WordEmotion: This task is on the Word domain.P (y = 1|x) = 0
if word x has a negative emotion rating in the Wisconsin Perceptual Attribute Ratings Database, and
P (y = 1|x) = 1 otherwise. (4) WordLength: P (y = 1|x) = 0 if word x has 5 or less letters,
andP (y = 1|x) = 1 otherwise. The two word tasks are drastically different in that one focuses on
semantics and the other on orthography, but they share the same Rademacher complexity and thus
the same bound (for the samen), because the underlying domain is the same.

Procedure. The procedure is identical to that in Section 3 except for two things: (i) Instead

of random labelsσ, we sample labelsy
iid∼ P (y|x) appropriate for each task. (ii) In step 3,

in addition to the training instances{x(j)
i }n

i=1, the jth subject is also given 100 test instances

{x(j)
i }n+100

i=n+1, sampled fromPX . The order of the training and test instances is randomized.
The true test labelsy are sampled fromP (y|x). We compute the participant’s training sam-

ple error asê(f (j)) = 1/n
∑n

i=1

(
yi 6= f (j)(x(j)

i )
)

, and estimate her generalization error as

e(f (j)) = 1/100
∑n+100

i=n+1

(
yi 6= f (j)(x(j)

i )
)

.

Participants were 40 additional students, randomly divided into 8 groups of five each. Each group
worked on one of the four tasks, with training sample sizen=5 or 40.

Results. We present the performance of individual participants in Table 1:ê is the observed train-
ing error for that subject, “bounde” is the 95% confidence (i.e.,δ = 0.05) bound on test error:
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ê(f) + R(F ,X , PX , n)/2 +
√

ln(1/δ)/2n, ande is the observed test error. We also present the
aggregated results across subjects and tasks in Figure 2, comparing the bound one− ê (the “amount
of overfitting,” RHS of (3)) vs. the observede− ê, as the underlying Rademacher complexity varies.
We make two more observations:

Observation 4: Theorem 2 holds for every participant. Table 1 provides empirical support that our
application of computational learning theory to human learning is viable. In fact, for our choice of
δ = 0.05, Theorem 2 allows the bound to fail on about two (5% of 40) participants – which did
not happen. Of course, some of the “bounde” are vacuous (greater than 1) as it is well-known that
bounds in computational learning theory are not always tight [14], but others are reasonably tight
(e.g., on Shape-+ withn = 40).

Observation 5: the larger the Rademacher complexity, the worse the actual amount of overfitting
e − ê. Figure 2 shows that asR increases,e − ê increases (solid line; error bar±standard error;
averaged over the two different tasks with the same domain andn, as noted in the graph). The bound
on e − ê (dotted line; RHS of (3)) has the same trend, although, being loose, it is higher up. This
seems to be true regardless of the classification task. For example, the Word domain andn = 5 has
a large Rademacher complexity 1.76, and both task WordLength and task WordEmotion severely
overfit: In task WordLength withn = 5, all subjects had zero training error but had large test error,
suggesting that their good performance on the training items reflects overfitting. Accordingly, the
explanations offered during the post-test interviews for this group spuriously fit the training items
but did not reflect the true categorization rule. Subject 111 thought that the class decision indicated
“things you can go inside,” while subject 114 thought the class indicated an odd or even number of
syllables. Similarly, on task WordEmotion withn = 5, three out of five subjects overfit the training
items. Subject 102 received the training items (daylight, 1), (hospital, -1), (termite, -1), (envy, -1),
(scream, -1), and concluded that class 1 is “anything related to omitting[sic] light,” and proceeded
to classify the test items as such.

5 Discussions and Future Work

Is our study onmemoryor learning? This distinction is not necessarily relevant here, as we adopt
an abstract perspective which analyzes the human system as a black box that produces labels, and
both learning and memory contribute to the process being executed in that black box. We do have
evidence from post-interviews that Figure 1 does not merely reflect list-length effects from memory
studies: (i) participants treated the study as a category-learning and not a memory task – they were
not told that the training and test items are the same when we estimateR; (ii) the memory load was
identical in the shape and the word domains, yet the curves differ markedly; (iii) participants were
able to articulate the “rules” they were using to categorize the items.

Much recent research has explored the relationship between the statistical complexity of some cate-
gorization task and the ease with which humans learn the task [7, 5, 9, 11]. Rademacher complexity
is different: it indexes not the complexity of theX 7→ Y categorization task, but the sophistication
of the learner in domainX (noteY does not appear in Rademacher complexity). Greater complex-
ity indicates, not a more difficult categorization task, but a greater tendency to overfit sparse data.
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On the other hand, our definition of Rademacher complexity depends only on the domain, distribu-
tion, and sample size. In human learning, other factors also contribute to learnability, such as the
instructions, motivation, time to study, and should probably be incorporated into the complexity.

Human Rademacher complexity has interesting connections to other concepts. The VC-
dimension [27, 25, 12] is another capacity measure. Let{x1, . . . , xm} ⊆ X be a subset of
the domain. Let(f(x1), . . . , f(xm)) be a±1-valued vector which is the classifications made
by somef ∈ F . If F is rich enough such that its members can produce all2m vectors:
{(f(x1), . . . , f(xm)) : f ∈ F} = {−1, 1}m, then we say that the subset is shattered byF . The
VC-dimension ofF is the size of the largest subset that can be shattered byF , or∞ if F can shatter
arbitrarily large subsets. Unfortunately, human VC-dimension seems difficult to measure experi-
mentally: First, shattering requires validating an exponential (2m) number of classifications on a
given subset. Second, to determine that the VC-dimension ism, one needs to show that no subset
of sizem + 1 can be shattered. However, the number of such subsets can be infinite. A variant,
“effective VC-dimension”, may be empirically estimated from a training sample [26]. This is left
for future research. Normalized Maximum Likelihood (NML) uses a similar complexity measure
for a model class [21], the connection merits further study ([23], p.50).

Human Rademacher complexity might help to advance theories of human cognition in many ways.
First, human Rademacher complexity can provide a means of testing computational models of hu-
man concept learning. Traditionally, such models are assessed by comparing their performance to
human performance in terms of classification error. A new approach would be to derive or empiri-
cally estimate the Rademacher complexity of the computational models, and compare that to human
Rademacher complexity. A good computational model should match humans in this regard.

Second, our procedure could be used to measure human Rademacher complexity in individuals or
special populations, including typically and atypically-developing children and adults. Relating in-
dividual Rademacher complexity to standard measures of learning ability or IQ may shed light on
the relationship between complexity, learning, and intelligence. Many IQ tests measure the partici-
pant’s ability to generalize the pattern in words or images. Individuals with very high Rademacher
complexity may actually perform worse by being “distracted” by other potential hypotheses.

Third, human Rademacher complexity may help explain the human tendency to discern patterns in
random stimuli, such as the well-known Rorschach inkblot test, “illusory correlations” [4], or “false-
memory” effect [22]. These effects may be viewed as spurious rule-fitting to (or generalization of)
the observed data, and Human Rademacher complexity may quantify the possibility of observing
such an effect.

Fourth, cognitive psychologists have long entertained an interest in characterizing the capacity of
different mental processes such as, for instance, the capacity limitations of short-term memory [19,
6]. In this vein, our work suggests a different kind of metric for assessing the capacity of the human
learning system.

Finally, human Rademacher complexity can help experimental psychologists to determine the
propensity of overfitting in their stimulus materials. We have seen that human Rademacher complex-
ity can be much higher in some domains (e.g. Word) than others (e.g. Shape). Our procedure could
be used to measure the human Rademacher complexity of many standard concept-learning materials
in cognitive science, such as the Greebles used by Tarr and colleagues [8] and the circle-and-line
stimuli of McKinley & Nosofsky [17].
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