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Summary

Latent topic models have emerged as a versatile tool for 
data exploration.  Researchers often extend the base Latent 
Dirichlet Allocation (LDA) [1] model in order to capture 
domain knowledge or side information relevant to a 
particular application, but constructing these extensions is 
non-trivial.  We propose a general framework for encoding 
domain knowledge as First-Order Logic (FOL), allowing users 
to adapt topic modeling to their needs. 
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The user encodes domain knowledge into a 
knowledge base (KB) of weighted logic rules.  As 
in Markov Logic Networks (MLNs) [2], these rules 
are then grounded, and each grounding is 
associated with a potential function.  The learned 
topics will then reflect both the document-word 
statistics (as in LDA) and the user-defined rules 
(as in MLNs).  This model can be considered an 
instance of a Hybrid MLN [3], specialized for 
topic modeling. 

A biological expert is interested in 
expanding a set of seed terms 
related to human developmental 
biology.  The table below shows blind 
relevance accuracy judgments on the 
Top 50 recovered words for both 
standard LDA and several different 
KBs.  Exploiting expert knowledge 
and sentence annotations (FULL-KB) 
leads to improved results.

The combinatorial explosion in rule groundings is a 
challenge, as in general MLNs.  We use a continuous 
relaxation scheme along with random sampling of 
groundings to do stochastic Mirror Descent (Mir) over 
the latent topic assignments affected by logic rules. 

https://github.com/davidandrzej/LogicLDA


