
Machine Learning-Assisted Binary Code Analysis

Nathan Rosenblum1, Xiaojin Zhu1, Barton Miller1, and Karen Hunt2

1Computer Sciences Department, University of Wisconsin-Madison; {nater,jerryzhu,bart}@cs.wisc.edu
2DoD; huntkc@gmail.com

1 Introduction

Binary code analysis is a foundational technique in the ar-
eas of computer security, performance modeling, and pro-
gram instrumentation. In computer security, such analy-
sis can provide the basis for detecting, understanding and
controlling malicious code. Any analysis of malicious pro-
gram requires as a first step precisely locating the Func-
tion Entry Points (FEPs, the starting byte of each func-
tion) within the binary. When full symbol information is
available this is a trivial step. Malicious software authors,
however, are not known for helpfully providing debugging
symbols along with virus payloads. In addition, software
is often distributed without symbols, such as in many
Linux distributions.

In this paper, we consider the machine learning prob-
lem of identifying FEPs in binaries where symbols indicat-
ing function location are stripped. Our work is targeted
at the processing of binaries on a large scale such as is
needed in both network- and host-based analysis tools.
As a result, we must keep false positive rates extremely
low while trying to maximize recall. We consider binaries
for both Linux and Windows on the Intel IA32 architec-
ture.

Existing techniques have used recursive disassembly
parsing and heuristics to locate code in stripped bina-
ries [1–3, 6, 7]. Recursive disassembly parsing follows pro-
gram control (branches and calls) and finds all functions
reachable from the main program entry point. However,
it breaks down in the presence of indirect control flow
(pointer based) transfers that cannot be resolved stati-
cally: on a large set of binaries on our department Linux
server, approximately 40% of functions were unrecover-
able through recursive disassembly. These functions lie
in gaps between discovered functions. However, in these
gaps also lie jump tables, numeric and string constants,
padding bytes (both fixed-valued and random) and code
fragments. Functions may be aligned on a byte boundary
or on word or larger boundaries.

Several tools, including Dyninst [3] and IdaPro [2], use
a small number of manually created patterns to identify
FEPs. These patterns are initial instruction sequences
commonly found in known FEPs. For example, Dyninst
searches Intel IA32 binaries for a common function pream-
ble pattern that sets up a stack frame: (push ebp | mov
esp,ebp). While effective on some binaries, these heuris-
tic patterns cannot adapt to variations in compiler, opti-
mization level, and post-compilation optimization tools,
all of which may significantly perturb the initial instruc-
tion sequence in an FEP. This work extends the Dyninst

tool, adding a probabilistic model that classifies FEPs in
gaps.

Let P be the program binary code. Let x1:n repre-
sent all the byte offsets within P’s gaps. For each xi, we
can generate the disassembly starting at that byte offset.
Our task is binary classification: predicting xi as an FEP
(yi = 1) or not (yi = −1). Note the labels y1:n can be
correlated for several reasons: i) The instruction at xi can
span several bytes. If so, xi and xi+1 represent conflicting
(overlapping) parses, and are unlikely to be both FEPs;
ii) The disassembly starting from xi might contain a call
instruction that calls byte offset xj . If we believe xi is an
FEP, then xj should be one too. We therefore use both
“local” information (instruction sequence starting from
xi) and “global” information (instruction overlap, con-
trol flow graph, call graph) in making a global inference
over the entire set y1:n.

2 Model

Conceptually, our model is a Markov Random Field [4]
with nodes y1:n, and pairwise connections. We define the
joint probability of labels as P (y1:n|x1:n,P) =

1
Z

exp

 n∑
i=1

∑
u∈{I}

λufu(xi,yi,P)+
n∑

i,j=1

∑
b=o,c

λbfb(xi,xj ,yi,yj ,P)

where Z is the partition function, fu are unary features,
and fb are binary features. We consider the following
features:

1. Unary idiom features {fI}. An idiom I is a short
template sequence of instructions and a marker that indi-
cates whether the sequence precedes or follows xi. Wild
cards are allowed to match one or more instructions. For
instance, the idiom I1 =(push ebp | * | mov esp,ebp)
would match P at xi if the instruction sequence starting
at xi is (push ebp | insn+ | mov esp,ebp). Similarly,
I2 = (PRE: ret | int3) would match P at xi if the in-
struction sequence immediately preceding xi is (ret |
int3). We thus define a binary feature fI(xi, yi,P) = 1
if yi = 1 and idiom I matches P at xi, and 0 otherwise.
The intention is to capture common initial FEP instruc-
tions. We discuss idiom selection in Section 3.

2. Binary overlap feature fo. For any byte offset xi,
we can always assume that it is an FEP and perform dis-
assembly parsing to obtain the whole (assumed) function
starting at xi. We can do the same for xj . We call xi and
xj overlap, if their assumed functions share any bytes.
We then define fo(xi, xj , yi, yj ,P) = 1 if yi = yj = 1 and

1

xi, xj overlap, and 0 otherwise. This is a negative feature,
in that λo should be negative to discourage the labeling
yi = yj = 1 when xi, xj overlap.

3. Binary call-consistency feature fc. If we assume
yi = 1, and the assumed function starting at xi contains
a call instruction to xj , then it does not make sense to
let yj = −1 (the other 3 combinations of yi, yj are fine).
We thus define fc(xi, xj , yi, yj ,P) = 1 if yi = 1, yj = −1
and the function starting at xi calls xj , and 0 otherwise.
Again this is a negative feature.

3 Implementation

The Markov Random Field allows us to incorporate het-
erogeneous features to define our objective. However,
learning and inference on this large (up to 937,865 nodes
in a single binary) , highly connected graph is expensive
for large scale analysis. In this preliminary study, we
considerably simplify the learning and inference proce-
dure. The result is an efficient, approximate model that
can handle such binaries in under fifteen seconds. It has
three stages:

1. We start with only the unary idiom features in the
model. This is equivalent to logistic regression on the
idioms. We restrict an idiom to have at most three in-
structions. Even so, there are several tens of thousands
of candidate idioms to consider. We therefore perform
forward feature selection. Feature selection and model
training are conducted on data derived from a large cor-
pus of binaries we describe in Section 4. Our performance
measure during feature selection is F0.5, a harmonic mean
that weights precision twice as much as recall. By parti-
tioning the set of candidate idioms and staging jobs out
to the Condor high throughput computing system [5], we
keep feature selection time reasonable.

2. We then fix the parameters {λI}, and add overlap-
check. From the above model with only idioms, one can
compute P (yi = 1|xi,P). As an approximation, we con-
sider the score si of xi. Initially, si = P (yi = 1|xi,P)
where the probability is from the idiom-only model. If xi

and xj overlap and si > sj , we simply force the weaker
contender yj = −1 by setting sj ← 0.

3. We add call-consistency. The target of a call in-
struction is at least as likely to be a valid function as the
function that originated the call. Therefore if xj is called
by xi1, . . . , xik, we set sj ← max(sj , si1, . . . , sik).

The last two stages are iterated until a stationary solu-
tion of s is reached. Then si is treated as the approximate
marginal P (yi = 1|x1:n,P), and is thresholded to make a
binary prediction.

4 Preliminary Results

We tested our system on two different corpora of binaries.
The first consisted of 625 programs on our department
Linux server. Each of these binaries had full symbol in-
formation available as ground truth. Our second set con-
sisted of 443 binaries from the Microsoft Windows XP
SP2 distribution; for these binaries, symbol information
was obtained from the Microsoft’s online symbol server.

Training data were obtained by recursively parsing
from the main program entry point of each binary. Test
data were obtained by parsing from every byte in the
gaps left over after obtaining training data. There are

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Classifier Performance

Recall

P
re

ci
si

on

●

●

Linux Model
Windows Model
Linux IDA Pro
Windows IDA Pro
Linux Dyninst
Windows Dyninst

Figure 1: Precision-Recall curves of the classifiers on Linux
and Windows test sets.

8,020,828 training and 11,231,721 test examples on the
Windows platform; one Linux, we have 8,412,711 train-
ing and 22,806,449 test examples. Feature selection and
model training are performed using training data on the
whole corpus. Feature selection terminates when the in-
cremental improvement in F0.5 becomes small. We se-
lected two idiom features for Linux binaries, and twenty-
seven idiom features for Windows, and applied overlap-
check and call-consistency as in Section 3.

Our models achieve significantly higher precision and
recall than the baselines, as shown in Figure 1. Better
results on the Linux corpus for all tools reflects the over-
whelming uniformity of FEP instruction sequences in our
Linux binaries. In contrast, the Windows binaries we
tested contained significant entry point variation, which
is reflected both in the poorer performance of existing
techniques and the rapid reduction in precision in our
model. Incorporating additional information sources in
the binary to compensate for FEP variation is the focus
of ongoing work.

References

[1] Cifuentes, C., and Emmerik, M. V. UQBT: Adaptable
binary translation at low cost. Computer 33, 3 (2000), 60–
66.

[2] Data Rescue. IDA Pro Disassembler
http://www.datarescue.com/idabase.

[3] Hollingsworth, J. K., Miller, B. P., and Cargille,
J. Dynamic program instrumentation for scalable perfor-
mance tools. Tech. Rep. CS-TR-1994-1207, University of
Wisconsin-Madison, 1994.

[4] Kindermann, R., and Snell, J. L. Markov Random
Fields and Their Applications. American Mathematical
Society, 1980.

[5] Thain, D., Tannenbaum, T., and Livny, M. Dis-
tributed computing in practice: the Condor experience:
Research articles. Concurr. Comput. : Pract. Exper. 17,
2-4 (2005), 323–356.

[6] Theiling, H. Extracting safe and precise control flow from
binaries. In RTCSA ’00 (Washington, DC, USA, 2000),
IEEE Computer Society, p. 23.

2

[7] Vigna, G. Malware Detection. Advances in Information
Security. Springer, 2007, ch. Static Disassembly and Code
Analysis.

3

