Online Manifold Regularization:
A New Learning Setting and Empirical Study

Andrew B. Goldberg', Ming Li?, and Xiaojin Zhu'

! Department of Computer Sciences, University of Wisconsin-Madison
Madison, WI, USA. {goldberg, jerryzhu}@cs.wisc.edu
2 National Key Laboratory for Novel Software Technology, Nanjing University
Nanjing, China. 1im@lamda.nju.edu.cn

Abstract. We consider a novel “online semi-supervised learning” set-
ting where (mostly unlabeled) data arrives sequentially in large volume,
and it is impractical to store it all before learning. We propose an on-
line manifold regularization algorithm. It differs from standard online
learning in that it learns even when the input point is unlabeled. Our
algorithm is based on convex programming in kernel space with stochas-
tic gradient descent, and inherits the theoretical guarantees of standard
online algorithms. However, naive implementation of our algorithm does
not scale well. This paper focuses on efficient, practical approximations;
we discuss two sparse approximations using buffering and online random
projection trees. Experiments show our algorithm achieves risk and gen-
eralization accuracy comparable to standard batch manifold regulariza-
tion, while each step runs quickly. Our online semi-supervised learning
setting is an interesting direction for further theoretical development,
paving the way for semi-supervised learning to work on real-world life-
long learning tasks.

1 Introduction

Consider a robot with a video camera. The robot continuously takes high frame-
rate video of its surroundings, and wants to learn the names of various objects
in the video. However, like a child learning in the real world, the robot receives
names from humans only very rarely. The robot is thus in a semi-supervised
learning situation: most objects are unlabeled, while only a few are labeled by
humans.

There are several challenges that distinguish this situation from standard
semi-supervised learning. The robot cannot afford to store the massive amount
of mostly unlabeled video before learning; it requires an “anytime classifier”
that is ready to use at all times, yet is continuously improving; training must
be cheap; and since the world is changing, it must adapt to non-stationarity in
classification.

These challenges are well-studied in online learning. However, our situation
is also different from standard online learning. Online learning (classification)
traditionally assumes that every input point is fully labeled; it cannot take ad-
vantage of unlabeled data. But in the robot case, the vast majority of the input

will be unlabeled. It seems wasteful to throw away the unlabeled input, as it
may contain useful information.

We address this situation by combining semi-supervised learning with on-
line learning. The resulting online semi-supervised learning algorithm is based
on convex programming with stochastic gradient descent in kernel space. This
combination is novel. To the best of our knowledge, the closest prior work is
the multiview hidden Markov perceptron ([1], Section 4), which heuristically
combines multiview learning with online perceptron. However, that work did
not enjoy the theoretical guarantees afforded by the online learning literature,
nor did it directly apply to other semi-supervised learning methods. In contrast,
our method can lift any batch semi-supervised learning methods with convex
regularized risks to the online setting. As a special case, we will discuss online
manifold regularization in detail.

The focus of the present work is to introduce a novel learning setting, and
to develop practical algorithms with experimental verification. It is important
to consider the efficiency issues, as we do in Section 3, for the algorithm to
be practically relevant. Our online semi-supervised learning algorithm inherits
no-regret bounds from online convex programming but does not provide new
bounds. It is our hope that the novel setting where most of the incoming data
stream is unlabeled will inspire future work on improved bounds. Some of the
future directions are laid out at the end of the paper.

2 Online Semi-Supervised Learning

We build online semi-supervised learning with two main ingredients: online con-
vex programming [2] and regularized risk minimization for semi-supervised learn-
ing (seec the overview in [3,4]). Although kernel-based online convex program-
ming is well-understood [5], we are not aware of prior application in the semi-
supervised learning setting.

Consider an input sequence z ...zp, where z; € R is the feature vector
of the t-th data point. Most (possibly even the vast majority) of the points are
unlabeled. Only occasionally is a point z; accompanied by its label y; €). This
setting differs dramatically from traditional online learning where all points are
labeled. Let K be a kernel over z and Hx the corresponding reproducing kernel
Hilbert space (RKHS) [6]. Our goal is to learn a good predictor f € Hx from
the sequence. Importantly, learning proceeds in an iterative fashion:

1. At time t an adversary picks x; and y;, not necessarily from any distribution
P(z,y) (although we will later assume iid for predicting future data). The
adversary presents x; to the learner.

2. The learner makes prediction f;(x;) using its current predictor f;.

3. With a small probability p;, the adversary reveals the label y;. Otherwise,
the adversary abstains, and z; remains unlabeled.

4. The learner updates its predictor to f;11 based on z; and the adversary’s
feedback y;, if any.

We hope the functions f;... fr “do well” on the sequence, and on future
input if the data is indeed iid. The exact performance criteria is defined below.

2.1 Batch Semi-Supervised Risks

Before introducing our online learning algorithm, we first review batch semi-
supervised learning, where the learner has access to the labeled and unlabeled
data all at once. A unifying framework for batch semi-supervised learning is risk
minimization with specialized “semi-supervised” regularizers. That is, one seeks
the solution f* = argmin ey, J (f), where the batch semi-supervised regularized
risk is

T
= D)) + 71+ 2 2A6),

where [is the number of labeled points, 6(y;) is an indicator function equal to 1
if y; is present (labeled) and 0 otherwise, ¢ is a convex loss function, A;, Ao are
regularizer weights, ||f||x is the RKHS norm of f, and {2 is the semi-supervised
regularizer which depends on f and x;...zp. Specific choices of (2 lead to fa-
miliar semi-supervised learning methods:

i) Manifold regularization [7-9]:

_ 1 a 2
77TZ= Ty)) Wt

The edge weights w,; define a graph over the T points, e.g., a fully connected
graph with Gaussian weights ws = e —lles—=:l*/20° I this case, {2 is known as
the energy of f on the graph. It encourages label smoothness over the graph:
similar examples (large w) tend to have similar labels.

it) Multiview learning [10-12] optimizes multiple functions fi ... fas simulta-
neously. The semi-supervised regularizer

2= ZZL) — f5(w))?

i,j=11t=1

penalizes differences among the learners’ predictions for the same point.
ili) Semi-supervised support vector machines (S3VMs) [13-15]:

T
= 27 D20 = 3 max(1 — |f(@0)] 0).

t=1

This is the average “hat loss” on unlabeled points. The hat loss is zero if f(x)
is outside (—1,1), and is the largest when f(xz) = 0. It encourages the deci-
sion boundary f(z) = 0 to be far away from any unlabeled points (outside the
margin), thus avoiding cutting through dense unlabeled data regions.

2.2 From Batch to Online

A key observation is that for certain semi-supervised learning methods, the batch
risk J(f) is the sum of convexr functions in f. These methods include mani-
fold regularization and multiview learning, but not S3VMs whose hat loss is
non-convex. For these convex semi-supervised learning methods, one can derive
a corresponding online semi-supervised learning algorithm using online convex
programming. The remainder of the paper will focus on manifold regularization,
with the understanding that online versions of multiview learning and other
convex semi-supervised learning methods can be derived similarly.

We follow the general approach in [2,5]. Recall the batch risk for our version
of manifold regularization in Section 2.1 is

T = 7 30 8elf) u) + S + 52 D2 () — Fa) s (1)

and f* is the batch solution that minimizes J(f). In online learning, the learner
only has access to the input sequence up to the current time. We thus define the
instantaneous regularized risk Jy(f) at time ¢ to be

t—1

T) = T @ow) + SN + 20 o (F) — fw)u ()

i=1

The last term in Ji(f) involves the graph edges from x; to all previous points
up to time t. The astute reader might notice that this poses a computational
challenge—we will return to this issue in Section 3. While T" appears in (2), Ji(f)
depends only on the ratio T'/l. This is the empirical estimate of the inverse label
probability 1/p;, which we assume is given and easily determined based on the
rate at which humans can label the data at hand.

All the J;’s are convex. They are intimately connected to the batch risk J:

Proposition 1 J(f) = 7 S T(f).

Our online algorithm constructs a sequence of functions fi... fr. Let fi = 0.
The online algorithm simply performs a gradient descent step that aims to reduce
the instantaneous risk in each iteration:

fror=fe—m ag}f)

3)

Tt

The step size 1; needs to decay at a certain rate, e.g., n; = 1/v/t. Under mild
conditions, this seemingly naive online algorithm has a remarkable guarantee
that on any input sequence, there is asymptotically “no regret” compared to the
batch solution f*. Specifically, let the average instantaneous risk incurred by

the online algorithm be Ju;, (T) = # thl Ji(ft). Note Juq involves a varying

sequence of functions f; ... fr. As a standard quality measure in online learning,
we compare Jg;, to the risk of the best fized function in hindsight:

Jair(T) - mfin % Z Jt(f)
t=1
= Jair(T) - mfin J(f) = Jair(T) - J(f*)7

where we used Proposition 1. This difference is known as the average regret. Ap-
plying Theorem 1 in [2] results in the no-regret guarantee lim supy_, o Joir (1) —
J(f*) < 0. Tt is in this sense that the online algorithm performs as well as the
batch algorithm on the sequence.

To compute (3) for manifold regularization, we first express the functions
fi ... fr using a common set of representers x ...z [16]

t—1
fo=> ol K(x;,). (4)
=1

The problem of finding f;11 becomes computing the coefficients agtﬂ), . ,agtﬂ).

Again, this will be a computational issue when T is large, and will be addressed
in Section 3. We extend the kernel online supervised learning approach in [5] to
semi-supervised learning by writing the gradient 0.J;(f)/0f in (3) as

TS (), 9 K) + A f ©
1200 S (F) — Fla)wn (K (w,7) — K (i,),
=1

where we used the reproducing property of RKHS in computing the derivative:
of(x)/0f = O(f, K(z,-))/0f = K(z,-). ¢ is the (sub)gradient of the loss func-
tion c. For example, when ¢(f(z),y) is the hinge loss max(1 — f(z)y,0), we may
define ¢/(f(x),y) = —y if f(z)y < 1, and 0 otherwise. Putting (5) back in (3),
and replacing f; with its kernel expansion (4), it can be shown that f;;1 has the
following coeflicients:

ol = (1 =)l — 2 da(filas) — fe(m))wi, i=1...t—1

o) = 2mda Y (i) — fler) s — e 3w (7)) (6)
=1

We now have a basic online manifold regularization algorithm; see Algorithm 1.

When the data is 7id, the generalization risk of the average function f =
1/T Zle f+ approaches that of f* [17]. The average function f involves all
representers x1,...,r7. For basic online manifold regularization, it is possible

to incrementally maintain the exact f as time increases. However, for the sparse

Algorithm 1 Online Manifold Regularization
Parameters: edge weight function w, kernel K, weights A1, A2, loss function ¢, label
ratio T'/1, step sizes n;
Initialize t =1, f1 =0
loop
receive x¢, predict fi(x¢) using (4)
(occasionally) receive y:
update f; to fiy1 using (6)
store x4, let t =t +1
end loop

approximations introduced below, the basis changes over time. Therefore, in
those cases f can be maintained only approximately using matching pursuit [18].
In our experiments, we compare the classification accuracy of f vs. f* on a
separate test set, which is of practical interest.

3 Sparse Approximations

Unfortunately, Algorithm 1 will not work in practice because it needs to store
every input point and soon runs out of memory; it also has time complexity
O(T?). In particular, the instantaneous risk (2) and the kernel representation (4)
both involve the sequence up to the current time. To be useful, it is imperative
to sparsify both terms. In this section, we present two distinct approaches for
this purpose: i) using a small buffer of points, and ii) constructing a random
projection tree that represents the manifold structure.

3.1 Buffering

Buffering (e.g., [19] and the references therein) keeps a limited number of points.
Let the buffer size be 7. The simplest buffering strategy replaces the oldest point
x¢—, in the buffer with the incoming point z;. With buffering, the approximate
instantaneous risk is

t—1

> (i) = f)wa, (7)

1=t—T

T A1 t
T) = T8 o)) + S + Ao
where the scaling factor ¢/7 keeps the magnitude of the graph regularizer com-
parable to the unbuffered version. In terms of manifold regularization, buffering
corresponds to a dynamic graph on the points in the buffer. Similarly, the kernel
expansion now has 7 terms:

t—1
fi=Y alVK(w,-).

i1=t—T

With buffering, the function update involves two steps. In the first step, we
update f; to an intermediate function f’ represented by a basis of 7+ 1 elements,
consisting of the old buffer and the new point x;:

t—1
f'=3" aiK(wi,) + o} K (s,)
i=t—T
o = (1= nmd)ad” — 2 ha(folws) — folw)wi, i=t—7.. . t—1
t—1
ai = 2779\2% Z (fe(@i) = fe(we))wis — nt§5(yt)cl(f(mt),yt). (8)

Second, we evict x;_, from the buffer, add x; to the buffer, and approximate f’
(which uses 7 + 1 basis functions) with f;41 (which uses 7 basis functions):

t
min ||~ foa]? st fra= Y ol VK ().)

(t+1)
« i=t—7+1

Intuitively, we “spread” a)__ K(z;_,,-) to the remaining points in the buffer, in
an attempt to minimize the change caused by truncation. We use kernel matching
pursuit [18] to efficiently find the approximate coefficients a**1) in (9). Matching
pursuit is a greedy function approximation scheme. It iteratively selects a basis
function on which to spread the residual in o} K (x_,-). The number of steps
(i.e., basis functions selected) can be controlled to trade-off approximation error
and speed. We run matching pursuit until the norm of the residue vector has
been sufficiently reduced. We call the above buffering strategy “buffer.” The
overall time complexity for buffering is O(T).

An alternative buffering strategy, “buffer-U,” evicts the oldest unlabeled
points in the buffer while keeping labeled points. This is motivated by the fact
that the labeled points tend to have larger « coefficients and exert more influence
on our learned function. The oldest labeled point is evicted from the buffer only
when it is filled with labeled points. Note this is distinct from batch learning:
the labeled points only form a better basis, but learning is still done via gradient
descent.

3.2 Random Projection Tree

Another way to improve Algorithm 1 is to construct a sparse representation of
the manifold. While many embedding techniques exist, we require one that is
fast and can be incrementally modified. Recently random projection has been
proposed as an efficient means to preserve the manifold structure (see e.g., [20,
21]). We build our algorithm upon the online version of the Random Projection
Tree (RPtree [22], Appendix I). An RPtree is a tree data structure with desirable
theoretical properties that asymptotically traces the manifold. The basic idea is
simple: as points arrive sequentially, they are spatially sorted into the RPtree
leaves. When enough points fall into a leaf, the RPtree grows by splitting the

Fig.1. A random projection tree on the Swiss roll data. Small dots represent data
points, line segments represent the random splits in the internal nodes of the RPtree,
polygons represent the regions governed by the leaves, and ellipses represent the Gaus-
sian distributions on the data points within each leaf. We exploit the fact that these
distributions follow the manifold structure of the data.

leaf along a hyperplane with random orientation. An RPtree can be regarded as
an efficient online clustering algorithm whose clusters grow over time and cover
the manifold, as shown in Figure 1. We refer the reader to [22] for details, while
presenting our extensions for semi-supervised learning below.

Let {L;}{_,,s < t denote the leaves in the RPtree at time ¢. To model the
data points that have fallen into each leaf, we maintain a Gaussian distribution
N (u;, X5) at each leaf L;, where p; and X; are estimated incrementally as the
data points arrive. We also keep track of n;, the number of points in leaf L;. With
an RPtree, we approximate the kernel representation of f; (4) by the means of the
Gaussian distributions associated with the tree leaves: f; = Y7, ﬁl-(t)K (i,).
We approximate the instantaneous risk (2) by

T) = 7O wdow) + SN + 2 D mal) = F ()P (10)

i=1

From a graph regularization point of view, this can be understood as having a
coarser graph over the RPtree leaves. We define the edge weight w,,,; between
incoming point x; and each leaf L; to be

||z — @ ?
Wyt = Ez~N(m,Ei) [exp <_%r2 (11)
— (2m) "% | Xy F | S| 7| T2
1 3 _ T
exp <—2 (HIEZ llin + x;rEO lxt - ulTEl/“‘%)) ’

where Yy = 02, % = (U7 4+ X5 iy = 27 s + Ygtay, and o s the
bandwidth of the (original point to point) weight. We call this weight scheme

“RPtree PPK” for its similarity to the probability product kernel [23]. An
even simpler approximation is to ignore the covariance structure by defining
Wyt = e~ llni=atl?/20” Tt has computational advantages at the price of precision.
We call this weight scheme “RPtree.”

With an RPtree, the function update occurs in three steps. As space pre-
cludes a detailed discussion, we present an outline here. In the first step, upon
receiving x;, we update f; to an intermediate function f’ using a basis of s + 1
elements: p1,...,us and x;. This is similar to (8) in the buffering case. In the
second step, the RPtree itself is adjusted to account for the addition of x;. The
adjustments include updating the Gaussian parameters for the leaf x; falls into,
and potentially splitting the leaf. In the latter case, the number of leaves s will
increase to s’, and each new leaf’s mean and covariance statistics are established.
In the third step, we approximate f’ by f;11 using the s’ new basis elements
Wiy pbs (88 = s if no split happened), similar to (9). The point x; is then
discarded.

4 Experiments

We present a series of experimental results as empirical evidence that online
manifold regularization (MR) is a viable option for performing fast MR on large
data sets. We summarize our findings as follows:

1. Online MR scales better than batch MR in time and space. Although recent
advances in manifold regularization greatly improve the feasible problem size
(e.g., [24]), we believe that it takes online learning to handle unlimited input
sequences and achieve life-long learning.

2. Online MR achieves comparable performance to batch MR. This is measured
by two criteria:

(a) Jair(T) approaches J(f*), both for the basic online MR algorithm, as
well as for the buffering and RPtree approximations.
(b) Generalization error of f approaches that of f* on test sets.

3. Online MR can handle concept drift (changes in P(z) and P(y|z)). The
online method (using a limited size buffer) can track a non-stationary distri-
bution and maintain good generalization accuracy, while the batch method
trained on all previous data fails to do so.

Our focus is on comparing online MR to batch MR, not semi-supervised
learning to supervised learning. It is known that semi-supervised learning does
not necessarily outperform supervised learning, depending on the correctness
of model assumptions. Thus, our experiments use tasks where batch MR has
proven beneficial in prior work, and we demonstrate that online MR provides a
useful alternative to batch MR on these tasks.

4.1 Data Sets and Protocol

We report results on three data sets. The first is a toy two-spirals data set. The
training sequences and test sets (of size 2000) are generated iid. The second is

the MNIST digit classification data set [25], and we focus on two binary tasks:
0 vs. 1 and 1 vs. 2. We scaled down the images to 16 x 16 pixels (256 features).
The training sequences are randomly shuffled subsets of the official training sets,
and we use the official test sets (of size 2115 for 0 vs. 1, and 2167 for 1 vs. 2). The
third is the 361-dimensional Extended MIT face vs. non-face image classification
data set (“Face”) [26]. We sampled a balanced subset of the data, and split this
into a training set and a test set. The same test set of size 2000 is used in all
experiments, while different training runs use different randomly shuffled subsets
of the training set. The labeled rate p; is 0.02 in all experiments, with points
assigned to each class with equal probability.
Our experimental protocol is the following:

1. Generate randomly ordered training sequences and test sets (for MNIST and
Face, the test sets are already given).
2. For batch MR, train separate versions on increasing subsequences (i.e., T =
500, 1000, 2000, . . .).
. For online MR, train once on the entire sequence.
4. For each T, compare the corresponding batch MR f* with the online classifier
trained up to 7.

w

All results are the average of five such trials. The error bars are +1 standard
deviation.

All experiments use hinge loss ¢ and RBF kernel K. The kernel bandwidth
parameter o, A1, A2, and the edge weight parameter o were all tuned for batch
MR using T' = 500. When using a limited size buffer, we set 7 = 300, and only
require that matching pursuit reduce the residue norm by 50%. We use a step
size of 1; = v/+/t, where v = 0.03 for the RPtree approximation, and 0.1 for all
other methods. We implemented all methods using MATLAB and CPLEX.

4.2 Online MR Scales Better than Batch MR

We illustrate this point by comparing runtime growth curves on the spirals and
MNIST 0 vs. 1 data sets. Figure 2(left) shows that, for the spirals data set, the
growth rates of batch MR and basic online MR are quadratic as expected (in fact,
online MR, has more overhead in our MATLAB implementation). Batch MR runs
out of memory after 7' = 5000, and we stop basic online MR at T = 4000 because
the runtime becomes excessive. On the other hand, online MR (buffered) and
online RPtree are linear. Though not included in the plot, online RPtree PPK has
a curve nearly identical to online MR (buffered). Figure 2(right) demonstrates
similar trends for the higher dimensional MNIST 0 vs. 1 data set.

4.3 Online MR Achieves Comparable Risks

We compare online MR’s average instantaneous risk J,;-(T) vs. batch MR’s risk
J(f*) on the training sequence. Our experiments support the theory that Ju.(T')

MNIST 0 vs. 1

Spirals
500 . == Batch MR
. = = = Online MR
% 400 : == Online MR (buffer)
2 » Online RPtree
8 »
8 300 :
° 0
2200 s e
= & .
100 K fon
LAY
.
10000

00 2000 4000 6000
T

Fig. 2. Runtime growth curves. Batch MR and basic online MR scale quadratically,
while the sparse approximations of buffering and RPtree scale only linearly.

= J(f*) Batch MR
177 - = =4, (T) Online MR
1.6 == J,(T) Online MR (buffer)
150 Jair(T) Online RPtree
1.4r
519) 38
i e,
1.2 Ty

14}
i
0.t

o8l }/

%7500 1000 1500 2oboT2500 3000 3500 4000 4500

Fig. 3. Online MR’s average instantaneous risk Jq:r(T") approaches batch MR’s risk

J(f*) as T increases.

converges to J(f*) as T increases. 3 Figure 3 compares these measures for basic
online MR and batch MR on the spirals data set. The two curves approach each
other. Ju;-(T) continues to decrease beyond T' = 4000 (not pictured). Figure 3
also shows that online MR (buffer) and online RPtree are good approximations

to basic online MR in terms of Jg;,..

4.4 Generalization Error of Online MR

The experiments in this section compare the averaged function f of online MR

and the batch solution f* in terms of generalization error on test sets. Figure 4
presents results for all the data sets. We observe that online MR buffer-U is the

best and consistently achieves test accuracy that is comparable to batch MR.
3 While the average regret approaches zero asymptotically, the step size of 7; = 1 /Vt
decays rapidly, potentially leading to slow convergence. Thus, it is possible that

long sequences (i.e., large T' values) would be required for the online algorithm to
compete with the best batch algorithm. Nevertheless, our experiments show this is

not actually a problem in practice.

o
IS

= Batch MR = Batch MR
0.3 - - = Online MR 035 = = = Online MR
T - Onl?ne MR (buffer)) == Online MR (buffer)
0.25} Online MR (buffer-U) Online MR (buffer-U)|
o <> Online RPtree o 03 ~C- Online RPtree
I Online RPtree (PPK) ©
S o2f ¢ 5 0.25] 1.
5 ‘ ® S N
5015— S o2r . o1 .o
I v '©0.15
(7] [
§ o1 i g
] wI S 01 x
o Iodoongonng
005 b 0.05
Yo 27
Rk T+ b & YIS ST
of A widposigizng ol ‘ ‘ ‘ ‘ ‘
0 1000 2000 3000 4000 5000 6000 7000 0 2000 4000 6000 8000 10000
T T
(a) Spirals (b) Face
0.4p, 0.4
= Batch MR —— Batch MR
[| === Online MR L === Online MR
03571 . Online MR (buffer) 0.35 == Online MR (buffer)
Online MR (buffer-U) b Online MR (buffer-U)|
o 037 <> Online RPiree 2 o 03 =C- Online RPtree
© . ~w ©
sozst oo | | . ‘ 5 0.5/
5 S 5
5 o02f { P § o02p
T 4- 2
N R4 N v
'S 0.15¢ P ‘B 0.15F |*
[[
2 2
[; [
O 0.1 ; G 041 %
0.05F [0.05 %"'é"%"@'""@"@ 'f"“’
S Sr SR Sl
o: ‘ --0--0--0:-0--0--0 o ‘ ‘ ‘ ‘ ‘
0 2000 4000 T 6000 8000 10000 0 2000 4000 T 6000 8000 10000
(¢) MNIST 0 vs. 1 (d) MNIST 1 vs. 2

Fig. 4. Generalization error of batch MR’s f* and online MR’s f as T increases. Online
MR buffer-U consistently achieves test accuracy comparable to batch MR.

From Figure 4(a), we observe that, for the spirals data set, all the online
methods perform nearly as well as batch MR. As is to be expected, batch MR,
makes the most efficient use of the data and reaches 0 test error first, while
the online methods require only a little additional data to reach this level (after
all, standard incremental learning usually needs multiple passes over the training
set). Buffering and RPtree perform as well as basic online MR, showing little sign
of approximation error. Panels (b), (c¢), and (d) in Figure 4 show that buffer-U
can be much better than buffer. This is understandable, since matching pursuit
may provide a poor approximation to the contributions of the discarded data
point. In high dimensional space, there may be few similar data points remain-
ing in the small buffer, so much of the weight assigned to discarded points is
lost. Under the buffer-U strategy, we alleviate this issue by preserving the larger
weights on labeled points, which approximate the function better. RPtree PPK
on these high dimensional data sets involves expensive inversion of (often singu-
lar) covariance matrices and is not included in the comparison. The performance
of RPtree is no better than buffer-U.

0.7} ——Batch MR
= = = Online MR (buffer)

Generalization error rate

0 1000 2000 3000 4000 5000 6000 7000
T

Fig. 5. Online MR (buffer) has much better generalization error than batch MR when
faced with concept drift in the rotating spirals data set.

4.5 Online MR Handles Concept Drift

Lastly, we demonstrate that online MR can handle concept drift. When the
underlying distributions, both P(z) and P(y|x), change during the course of
learning, using buffered online MR is extremely advantageous. For this experi-
ment, we “spin” the two spirals data set so that the spirals smoothly rotate 360°
in every 4000 points (Figure 5). All points in the space will thus change their
true labels during the sequence. We still provide only 2% of the labels to the
algorithms. The test set for a given T consists of 2000 points drawn from the
current underlying distribution.

For this experiment, we show the generalization error of batch MR’s f* vs. on-
line MR (buffer)’s fr, since the latest function is expected to track the changes
in the data. Figure 5 illustrates that online MR (buffer) is able to adapt to
the changing sequence and maintain a small error rate. In contrast, batch MR
uses all data points, which now tend to conflict heavily (i.e., newer data from
one class overlaps with older data from the other class). As expected, the single
batch classifier f* is inadequate for predicting such changing data.

5 Conclusions

We presented an online semi-supervised learning algorithm that parallels man-
ifold regularization. Our algorithm is based on online convex programming in
RKHS. We proposed two sparse approximations using buffering and online ran-
dom projection trees to make online MR practical. The original batch manifold
regularization algorithm has time complexity at least O(T?); so does the online

version without sparse approximation. In contrast, the RPtree approximation
has complexity O(T logT), where each iteration requires O(logT) leaf lookups
(the tree’s height is O(logT) because each leaf contains a constant maximum
number of points). Buffering has complexity O(T"). Experiments show that our
online MR algorithm has risk and generalization error comparable to batch MR,
but scales much better. In particular, online MR (buffer-U) tends to have the
best performance.

There are many interesting questions remaining in this online semi-supervised
learning setting. Future work will proceed along two directions. On the empiri-
cal side, we will further speed up online MR, for example by using fast neighbor
search to reduce the number of candidate basis elements in matching pursuit. We
also plan to study practical online algorithms for other semi-supervised learning
methods, in particular those with non-convex risks like S3VMs. On the theoreti-
cal side, we plan to investigate different regret notions that might be appropriate
for this setting, performance guarantees with concept drift, and models that do
not require all previous points.

Acknowledgements

A. Goldberg and X. Zhu were supported in part by the Wisconsin Alumni Re-
search Foundation. This work was completed while M. Li was a visiting re-
searcher at University of Wisconsin-Madison under a State Scholarship from the
Chinese Scholarship Council. The authors also thank Shuchi Chawla for helpful
discussions on online learning.

References

1. Brefeld, U., Biischer, C., Scheffer, T.: Multiview discriminative sequential learning.
In: European Conference on Machine Learning (ECML). (2005)

2. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient
ascent. In: ICML’03. (2003)

3. Chapelle, O., Zien, A., Scholkopf, B., eds.: Semi-supervised learning. MIT Press
(2006)

4. Zhu, X.: Semi-supervised learning literature survey. Technical Report 1530, De-
partment of Computer Sciences, University of Wisconsin, Madison (2005)

5. Kivinen, J., Smola, A.J., Williamson, R.C.: Online learning with kernels. IEEE
Transactions on Signal Processing 52(8) (2004) 2165-2176

6. Scholkopf, B., Smola, A.J.: Learning with Kernels. MIT Press (2002)

7. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. Journal of Machine Learn-
ing Research 7 (2006) 23992434

8. Sindhwani, V., Niyogi, P., Belkin, M.: Beyond the point cloud: from transductive
to semi-supervised learning. In: ICML’05. (2005)

9. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian
fields and harmonic functions. In: ICML’03. (2003)

10. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training.
In: COLT’98. (1998)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Sindhwani, V., Niyogi, P., Belkin, M.: A co-regularized approach to semi-supervised
learning with multiple views. In: ICML’05. (2005)

Brefeld, U., Gaertner, T., Scheffer, T., Wrobel, S.: Efficient co-regularized least
squares regression. In: ICML’06. (2006)

Joachims, T.: Transductive inference for text classification using support vector
machines. In: ICML’99. (1999)

Chapelle, O., Sindhwani, V., Keerthi, S.S.: Branch and bound for semi-supervised
support vector machines. In: NIPS’06. (2006)

Collobert, R., Sinz, F., Weston, J., Bottou, L.: Large scale transductive SVMs.
The Journal of Machine Learning Research 7(Aug) (2006) 1687-1712

Kimeldorf, G., Wahba, G.: Some results on Tchebychean spline functions. Journal
of Mathematics Analysis and Applications 33 (1971) 82-95

Cesa-Bianchi, N., Conconi, A., Gentile, C.: On the generalization ability of on-
line learning algorithms. IEEE Transactions on Information Theory 50(9) (2004)
20502057

Vincent, P., Bengio, Y.: Kernel matching pursuit. Machine Learning 48(1-3) (2002)
165-187

Dekel, O., Shalev-Shwartz, S., Singer, Y.: The forgetron: A kernel-based perceptron
on a fixed budget. In: NIPS’05. (2005)

Hegde, C., Wakin, M., Baraniuk, R.: Random projections for manifold learning.
In: NIPS’07. (2007)

Freund, Y., Dasgupta, S., Kabra, M., Verma, N.: Learning the structure of mani-
folds using random projections. In: NIPS’07. (2007)

Dasgupta, S., Freund, Y.: Random projection trees and low dimensional manifolds.
Technical Report CS2007-0890, University of California, San Diego (2007)
Jebara, T., Kondor, R., Howard, A.: Probability product kernels. Journal of
Machine Learning Research, Special Topic on Learning Theory 5 (2004) 819-844
Tsang, 1., Kwok, J.: Large-scale sparsified manifold regularization. In: NIPS’06.
(2006)

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied
to document recognition. Proceedings of the IEEE 86(11) (November 1998) 2278
2324

Tsang, .W., Kwok, J.T., Cheung, P.M.: Core vector machines: Fast svm training
on very large data sets. Journal of Machine Learning Research 6 (2005) 363-392

