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Classification on graphs
label propagation = harmonic functions = electric network
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Spike-flat pathology when n→∞
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n ≈ 1024 salt water molecules x distance in water dish

Pathology first noticed in [Nadler,Srebro,Zhou NIPS09]
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Alternative world: p-electric networks

p-Ohm’s law
vi − vj = sign(Iij)|Iij |p−1Rij

p-voltages:
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whose properties are not well-studied before.

Our world: p = 2

Suggested: p < p∗ := d
d−1 [Alamgir, von Luxburg NIPS11]

I As p→ 1, current concentrates itself on fewer paths
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In this paper

We prove that p-voltages are
I not spiky around labeled nodes
I not flat over unlabeled nodes

(p = 1.4)

computationally faster than alternatives such as p-resistance

has the potential for graph-based learning

but, empirically does not outperform state-of-the-art Iterated
Laplacian [Zhou,Belkin AISTATS11]

Bridle & Zhu (U. Wisconsin) p-voltages: Laplacian Regularization MLG 2013 4 / 4


