Incorporating Domain Knowledge into Topic Modeling via Dirichlet Forest Priors

David Andrzejewski, Xiaojin Zhu, Mark Craven

University of Wisconsin-Madison

ICML 2009

Andrzejewski (Wisconsin)

- 89,574 New Year's wishes (NYC Times Square website)
- Example wishes:
 - Peace on earth
 - own a brewery
 - I hope I get into Univ. of Penn graduate school.
 - The safe return of my friends in Iraq
 - find a cure for cancer
 - To lose weight and get a boyfriend
 - I Hope Barack Obama Wins the Presidency
 - To win the lottery!

- 89,574 New Year's wishes (NYC Times Square website)
- Example wishes:
 - Peace on earth
 - own a brewery
 - I hope I get into Univ. of Penn graduate school.
 - The safe return of my friends in Iraq
 - find a cure for cancer
 - To lose weight and get a boyfriend
 - I Hope Barack Obama Wins the Presidency
 - To win the lottery!

- 89,574 New Year's wishes (NYC Times Square website)
- Example wishes:
 - Peace on earth
 - own a brewery
 - I hope I get into Univ. of Penn graduate school.
 - The safe return of my friends in Iraq
 - find a cure for cancer
 - To lose weight and get a boyfriend
 - I Hope Barack Obama Wins the Presidency
 - To win the lottery!

- 89,574 New Year's wishes (NYC Times Square website)
- Example wishes:
 - Peace on earth
 - own a brewery
 - I hope I get into Univ. of Penn graduate school.
 - The safe return of my friends in Iraq
 - find a cure for cancer
 - To lose weight and get a boyfriend
 - I Hope Barack Obama Wins the Presidency
 - To win the lottery!

- 89,574 New Year's wishes (NYC Times Square website)
- Example wishes:
 - Peace on earth
 - own a brewery
 - I hope I get into Univ. of Penn graduate school.
 - The safe return of my friends in Iraq
 - find a cure for cancer
 - To lose weight and get a boyfriend
 - I Hope Barack Obama Wins the Presidency
 - To win the lottery!

- 89,574 New Year's wishes (NYC Times Square website)
- Example wishes:
 - Peace on earth
 - own a brewery
 - I hope I get into Univ. of Penn graduate school.
 - The safe return of my friends in Iraq
 - find a cure for cancer
 - To lose weight and get a boyfriend
 - I Hope Barack Obama Wins the Presidency
 - To win the lottery!

- 89,574 New Year's wishes (NYC Times Square website)
- Example wishes:
 - Peace on earth
 - own a brewery
 - I hope I get into Univ. of Penn graduate school.
 - The safe return of my friends in Iraq
 - find a cure for cancer
 - To lose weight and get a boyfriend
 - I Hope Barack Obama Wins the Presidency
 - To win the lottery!

- 89,574 New Year's wishes (NYC Times Square website)
- Example wishes:
 - Peace on earth
 - own a brewery
 - I hope I get into Univ. of Penn graduate school.
 - The safe return of my friends in Iraq
 - find a cure for cancer
 - To lose weight and get a boyfriend
 - I Hope Barack Obama Wins the Presidency
 - To win the lottery!

Topic 13	go school cancer into well free cure college	
	graduate law surgery recovery	

Use topic modeling to understand common wish themes

- Topic 13 mixes college and illness wish topics
- Want to split [go school into college] and [cancer free cure well]
- Resulting topics separate these words,

Topic 13	go school cancer into well free cure college	
	graduate law surgery recovery	

- Use topic modeling to understand common wish themes
- Topic 13 mixes *college* and *illness* wish topics
- Want to split [go school into college] and [cancer free cure well]
- Resulting topics separate these words,

Topic 13	go school cancer into well free cure college	
	graduate law surgery recovery	

- Use topic modeling to understand common wish themes
- Topic 13 mixes *college* and *illness* wish topics
- Want to split [go school into college] and [cancer free cure well]
- Resulting topics separate these words,

Topic 13	go school cancer into well free cure college	
	graduate law surgery recovery	

Topic 13(a)	job go school great into good college	
	business graduate finish grades away law accepted	
Topic 13(b)	mom husband cancer hope free son well	
	full recovery surgery pray heaven pain aids	

- Use topic modeling to understand common wish themes
- Topic 13 mixes *college* and *illness* wish topics
- Want to **split** [go school into college] and [cancer free cure well]
- Resulting topics separate these words, as well as related words

Topic 13	go school cancer into well free cure college	
	graduate law surgery recovery	

Topic 13(a)	job go school great into good college	
	business graduate finish grades away law accepted	
Topic 13(b)	mom husband cancer hope free son well	
	full recovery surgery pray heaven pain aids	

- Use topic modeling to understand common wish themes
- Topic 13 mixes *college* and *illness* wish topics
- Want to **split** [go school into college] and [cancer free cure well]
- Resulting topics separate these words, as well as related words

- Topics may not correspond to meaningful concepts
- Topics may not align well with user modeling goals
- Possible sources of domain knowledge:
 - Human guidance (separate "school" from "cure")
 - Structured sources (encode Gene Ontology term "transcription factor activity")

Topic Modeling with Domain Knowledge

- Topics may not correspond to meaningful concepts
- Topics may not align well with user modeling goals
- Possible sources of domain knowledge:
 - Human guidance (separate "school" from "cure")
 - Structured sources (encode Gene Ontology term "transcription factor activity")

- Topics may not correspond to meaningful concepts
- Topics may not align well with user modeling goals
- Possible sources of domain knowledge:
 - Human guidance (separate "school" from "cure")
 - Structured sources (encode Gene Ontology term "transcription factor activity")

- Topics may not correspond to meaningful concepts
- Topics may not align well with user modeling goals
- Possible sources of domain knowledge:
 - Human guidance (separate "school" from "cure")
 - Structured sources (encode Gene Ontology term "transcription factor activity")

- Why domain knowledge?
 - Topics may not correspond to meaningful concepts
 - Topics may not align well with user modeling goals
- Possible sources of domain knowledge:
 - Human guidance (separate "school" from "cure")
 - Structured sources (encode Gene Ontology term "transcription factor activity")

- Why domain knowledge?
 - Topics may not correspond to meaningful concepts
 - Topics may not align well with user modeling goals
- Possible sources of domain knowledge:
 - Human guidance (separate "school" from "cure")
 - Structured sources (encode Gene Ontology term "transcription factor activity")

Word Preferences within Topics Inspired by constrained clustering (Basu, Davidson, & Wagstaff 2008)

• Need a suitable "language" for expressing our preferences

● Pairwise "primitives" → higher-level operations

- Need a suitable "language" for expressing our preferences
- Pairwise "primitives" → higher-level operations

Operation	Meaning
Must-Link (school,college)	\forall topics <i>t</i> , <i>P</i> (<i>school</i> <i>t</i>) \approx <i>P</i> (<i>college</i> <i>t</i>)

- Need a suitable "language" for expressing our preferences
- \bullet Pairwise "primitives" \rightarrow higher-level operations

Operation	Meaning
Must-Link (school,college)	\forall topics <i>t</i> , <i>P</i> (<i>school</i> <i>t</i>) \approx <i>P</i> (<i>college</i> <i>t</i>)
Cannot-Link (school,cure)	no topic <i>t</i> has <i>P</i> (<i>school</i> <i>t</i>) and
	P(cure t) both high

Operation	Meaning
Must-Link (school,college)	\forall topics <i>t</i> , <i>P</i> (<i>school</i> <i>t</i>) \approx <i>P</i> (<i>college</i> <i>t</i>)
Cannot-Link (school,cure)	no topic t has $P(school t)$ and
	<i>P</i> (<i>cure</i> <i>t</i>) both high

[go school into college] vs [cancer free cure well]		
split	ightarrow Must-Link among words for each concept	
	\rightarrow Cannot-Link between words from different concepts	

Operation	Meaning
Must-Link (school,college)	\forall topics <i>t</i> , $P(school t) \approx P(college t)$
Cannot-Link (school,cure)	no topic <i>t</i> has <i>P</i> (<i>school</i> <i>t</i>) and
	P(cure t) both high

split	[<i>go school into college</i>] vs [<i>cancer free cure well</i>] → Must-Link among words for each concept
	\rightarrow Cannot-Link between words from different concepts
merge	[love marry together boyfriend] in one topic
	[married boyfriend engaged wedding] in another
	\rightarrow Must-Link among concept words

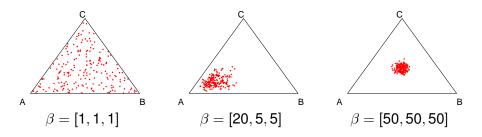
Word Preferences within Topics

Inspired by constrained clustering (Basu, Davidson, & Wagstaff 2008)

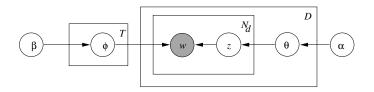
Operation	Meaning
Must-Link (school,college)	\forall topics <i>t</i> , $P(school t) \approx P(college t)$
Cannot-Link (school,cure)	no topic t has $P(school t)$ and
	P(cure t) both high

split	$\begin{array}{l} [\underline{\textit{go school into college}}] \text{ vs } [\underline{\textit{cancer free cure well}}] \\ \rightarrow \text{Must-Link among words for each concept} \\ \rightarrow \text{Cannot-Link between words from different concepts} \end{array}$
merge	[<i>love marry together boyfriend</i>] in one topic [<i>married boyfriend engaged wedding</i>] in another → Must-Link among concept words
isolate	[<i>the year in 2008</i>] in many wish topics → Must-Link among words to be isolated → Cannot-Link vs other Top N words for each topic

- $P(\phi|\beta)$ for K-dimensional multinomial parameter ϕ
- *K*-dimensional hyperparameter β ("pseudocounts")



Blei, Ng, and Jordan 2003



```
For each topic t

\phi_t \sim \text{Dirichlet}(\beta)

For each doc d

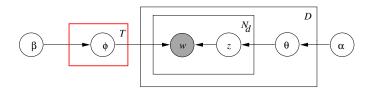
\theta_d \sim \text{Dirichlet}(\alpha)

For each word w

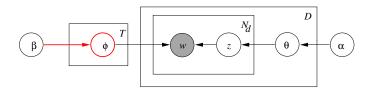
z \sim \text{Multinomial}(\theta_d)

w \sim \text{Multinomial}(\phi_z)
```

Blei, Ng, and Jordan 2003



Blei, Ng, and Jordan 2003



```
For each topic t

\phi_t \sim \text{Dirichlet}(\beta)

For each doc d

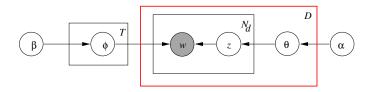
\theta_d \sim \text{Dirichlet}(\alpha)

For each word w

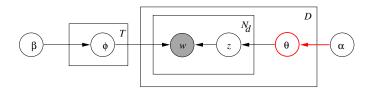
z \sim \text{Multinomial}(\theta_d)

w \sim \text{Multinomial}(\phi_z)
```

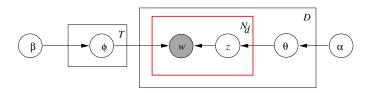
Blei, Ng, and Jordan 2003



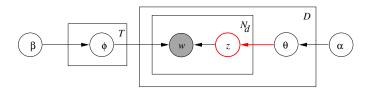
Blei, Ng, and Jordan 2003



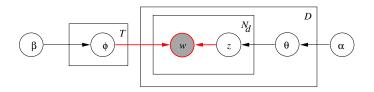
Blei, Ng, and Jordan 2003



Blei, Ng, and Jordan 2003

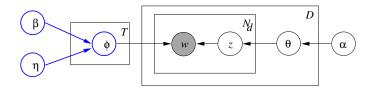


Blei, Ng, and Jordan 2003



LDA with Dirichlet Forest Prior

This work



```
For each topic t

\phi_t \sim \text{Dirichlet}(\beta) \phi_t \sim \text{DirichletForest}(\beta, \eta)

For each doc d

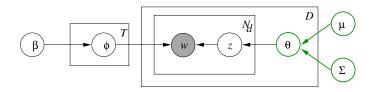
\theta_d \sim \text{Dirichlet}(\alpha)

For each word w

z \sim \text{Multinomial}(\theta_d)

w \sim \text{Multinomial}(\phi_z)
```

Related work: Correlated Topic Model (CTM) Blei and Lafferty 2006



```
For each topic t

\phi_t \sim \text{Dirichlet}(\beta)

For each doc d

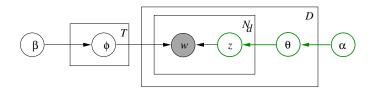
\theta_d \sim \text{Dirichlet}(\alpha) \theta_d \sim \text{LogisticNormal}(\mu, \Sigma)

For each word w

z \sim \text{Multinomial}(\theta_d)

w \sim \text{Multinomial}(\phi_z)
```

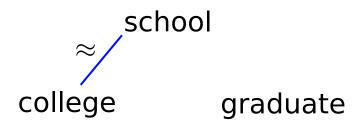
Related work: Pachinko Allocation Model (PAM) Li and McCallum 2006



For each topic t $\phi_t \sim \text{Dirichlet}(\beta)$ For each doc d $\theta_d \sim \text{Dirichlet}(\alpha)$ Pachinko $(\theta_d) \sim \text{Dirichlet-DAG}(\alpha)$ For each word w $z \sim \text{Multinomial}(\theta_d) z \sim \text{Pachinko}(\theta_d)$ $w \sim \text{Multinomial}(\phi_z)$

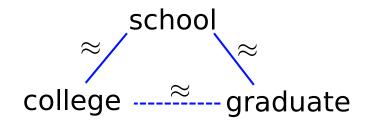
Must-Link (college, school)

- $\forall t$, we want $P(college|t) \approx P(school|t)$
- Must-Link is transitive
- Cannot be encoded by a single Dirichlet



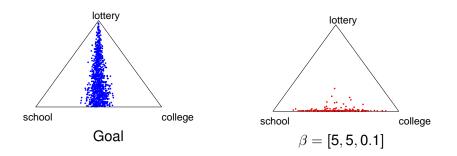
Must-Link (college, school)

- $\forall t$, we want $P(college|t) \approx P(school|t)$
- Must-Link is transitive
- Cannot be encoded by a single Dirichlet



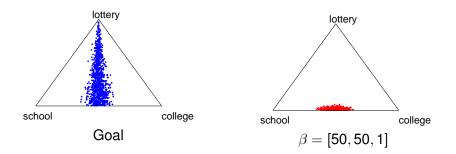
Must-Link (*college,school*)

- $\forall t$, we want $P(college|t) \approx P(school|t)$
- Must-Link is transitive
- Cannot be encoded by a single Dirichlet



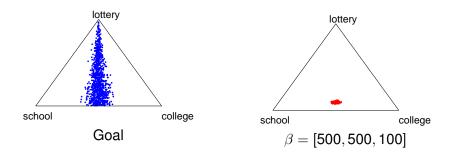
Must-Link (college, school)

- $\forall t$, we want $P(college|t) \approx P(school|t)$
- Must-Link is transitive
- Cannot be encoded by a single Dirichlet



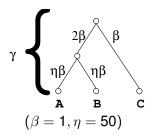
Must-Link (*college,school*)

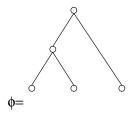
- $\forall t$, we want $P(college|t) \approx P(school|t)$
- Must-Link is transitive
- Cannot be encoded by a single Dirichlet



Dirichlet Tree ("dice factory 2.0") Dennis III 1991, Minka 1999

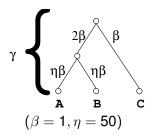
- Control variance of subsets of variables
 - Sample Dirichlet(γ) at parent, distribute mass to children
 - Mass reaching leaves are final multinomial parameters ϕ
 - Δ(s) = 0 for all internal node s → standard Dirichlet (for our trees, true when η = 1)
 - Conjugate to multinomial, can integrate out ("collapse") ϕ

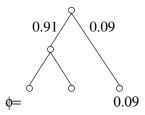




Dirichlet Tree ("dice factory 2.0") Dennis III 1991, Minka 1999

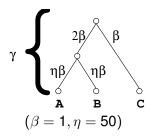
- Control variance of subsets of variables
 - Sample Dirichlet(γ) at parent, distribute mass to children
 - Mass reaching leaves are final multinomial parameters ϕ
 - Δ(s) = 0 for all internal node s → standard Dirichlet (for our trees, true when η = 1)
 - Conjugate to multinomial, can integrate out ("collapse") ϕ

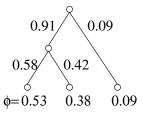




Dirichlet Tree ("dice factory 2.0") Dennis III 1991, Minka 1999

- Control variance of subsets of variables
 - Sample Dirichlet(γ) at parent, distribute mass to children
 - Mass reaching leaves are final multinomial parameters ϕ
 - Δ(s) = 0 for all internal node s → standard Dirichlet (for our trees, true when η = 1)
 - Conjugate to multinomial, can integrate out ("collapse") ϕ





- Control variance of subsets of variables
 - Sample Dirichlet(γ) at parent, distribute mass to children
 - Mass reaching leaves are final multinomial parameters ϕ
 - Δ(s) = 0 for all internal node s → standard Dirichlet (for our trees, true when η = 1)
 - Conjugate to multinomial, can integrate out ("collapse") ϕ

$$\mathcal{P}(\phi|\gamma) = \left(\prod_{k}^{L} \phi^{(k)\gamma^{(k)}-1}\right) \left(\prod_{s}^{I} \frac{\Gamma\left(\sum_{k}^{C(s)} \gamma^{(k)}\right)}{\prod_{k}^{C(s)} \Gamma\left(\gamma^{(k)}\right)} \left(\sum_{k}^{L(s)} \phi^{(k)}\right)^{\Delta(s)}\right)$$

- Control variance of subsets of variables
 - Sample $Dirichlet(\gamma)$ at parent, distribute mass to children
 - Mass reaching leaves are final multinomial parameters ϕ
 - Δ(s) = 0 for all internal node s → standard Dirichlet (for our trees, true when η = 1)
 - Conjugate to multinomial, can integrate out ("collapse") ϕ

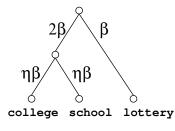
$$\mathcal{P}(\phi|\gamma) = \left(\prod_{k}^{L} \phi^{(k)\gamma^{(k)}-1}\right) \left(\prod_{s}^{I} \frac{\Gamma\left(\sum_{k}^{C(s)} \gamma^{(k)}\right)}{\prod_{k}^{C(s)} \Gamma\left(\gamma^{(k)}\right)} \left(\sum_{k}^{L(s)} \phi^{(k)}\right)^{\Delta(s)}\right)$$

- Control variance of subsets of variables
 - Sample $Dirichlet(\gamma)$ at parent, distribute mass to children
 - Mass reaching leaves are final multinomial parameters ϕ
 - Δ(s) = 0 for all internal node s → standard Dirichlet (for our trees, true when η = 1)
 - Conjugate to multinomial, can integrate out ("collapse") ϕ

$$p(\mathbf{w}|\gamma) = \prod_{s}^{l} \left(\frac{\Gamma\left(\sum_{k}^{C(s)} \gamma^{(k)}\right)}{\Gamma\left(\sum_{k}^{C(s)} (\gamma^{(k)} + n^{(k)})\right)} \prod_{k}^{C(s)} \frac{\Gamma\left(\gamma^{(k)} + n^{(k)}\right)}{\Gamma(\gamma^{(k)})} \right)$$

Must-Link (school, college) via Dirichlet Tree

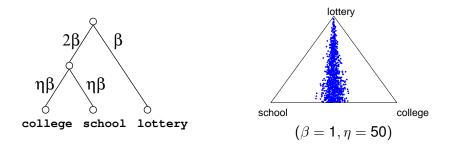
- Place (school, college) beneath internal node
- Large edge weights beneath this node (large η)



 $(\beta = 1, \eta = 50)$

Must-Link (school, college) via Dirichlet Tree

- Place (school, college) beneath internal node
- Large edge weights beneath this node (large η)



Cannot-Link (school, cancer)

- Do not want words to co-occur as high-probability for any topic
- No topic-word multinomial $\phi_t = P(w|t)$ should have:
 - High probability *P*(*school*|*t*)
 - High probability *P*(*cancer*|*t*)
- Cannot-Link is non-transitive

cancer

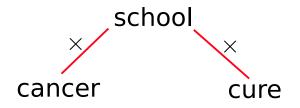
- Cannot be encoded by single Dirichlet/DirichletTree
- Will require mixture of Dirichlet Trees (Dirichlet Forest)

school

cure

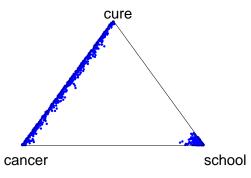
Cannot-Link (school, cancer)

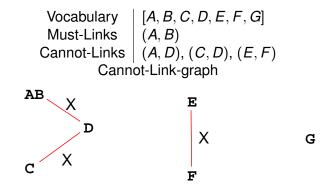
- Do not want words to co-occur as high-probability for any topic
- No topic-word multinomial $\phi_t = P(w|t)$ should have:
 - High probability *P*(*school*|*t*)
 - High probability *P*(*cancer*|*t*)
- Cannot-Link is non-transitive
- Cannot be encoded by single Dirichlet/DirichletTree
- Will require mixture of Dirichlet Trees (Dirichlet Forest)

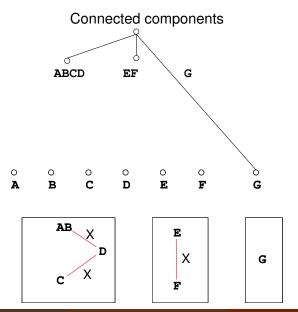


Cannot-Link (school, cancer)

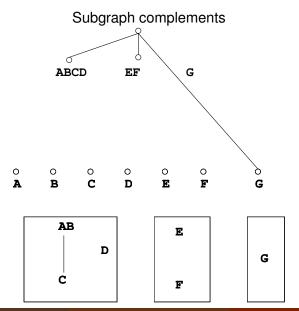
- Do not want words to co-occur as high-probability for any topic
- No topic-word multinomial $\phi_t = P(w|t)$ should have:
 - High probability *P*(*school*|*t*)
 - High probability *P*(*cancer*|*t*)
- Cannot-Link is non-transitive
- Cannot be encoded by single Dirichlet/DirichletTree
- Will require mixture of Dirichlet Trees (Dirichlet Forest)



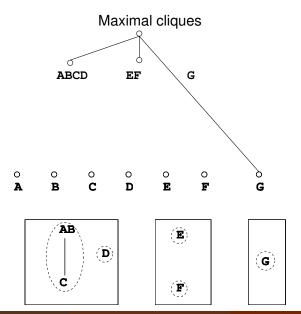




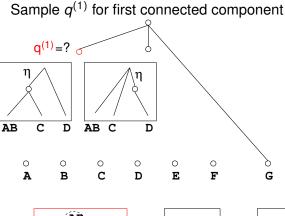
Andrzejewski (Wisconsin)



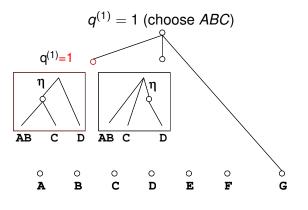
Andrzejewski (Wisconsin)

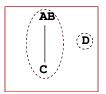


Andrzejewski (Wisconsin)

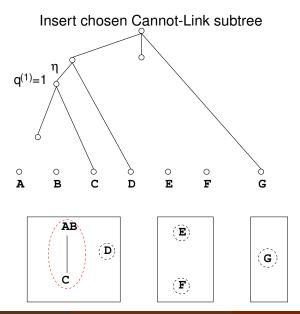


Andrzejewski (Wisconsin)

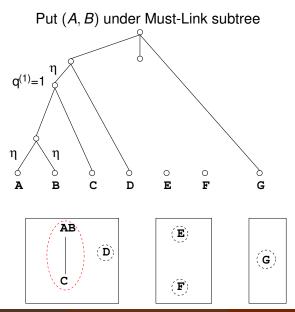




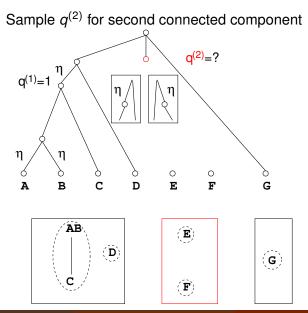
Andrzejewski (Wisconsin)



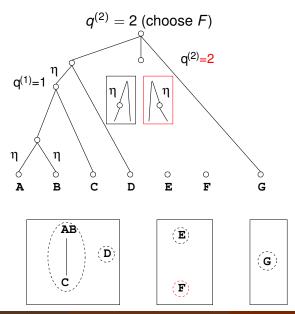
Andrzejewski (Wisconsin)



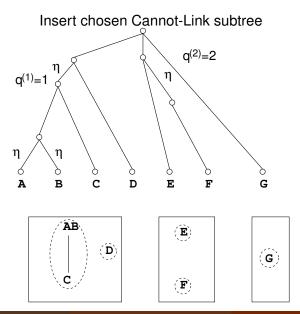
Andrzejewski (Wisconsin)



Andrzejewski (Wisconsin)

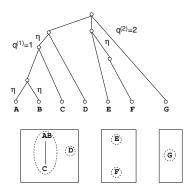


Andrzejewski (Wisconsin)



LDA with Dirichlet Forest Prior

For each topic $t = 1 \dots T$ For each Cannot-Link-graph connected component $r = 1 \dots R$ Sample $q_t^{(r)} \propto$ clique sizes $\phi_t \sim \text{DirichletTree}(\mathbf{q}_t, \beta, \eta)$ For each doc $d = 1 \dots D$ $\theta_d \sim \text{Dirichlet}(\alpha)$ For each word w $z \sim \text{Multinomial}(\theta_d)$ $w \sim \text{Multinomial}(\phi_z)$



Collapsed Gibbs Sampling of (z, q)

Complete Gibbs sample: $z_1 \dots z_N, q_1^{(1)} \dots q_1^{(R)}, \dots, q_T^{(1)} \dots q_T^{(R)}$ Sample z_i for each word position *i* in corpus

$$p(z_i = v | \mathbf{z}_{-i}, \mathbf{q}_{1:T}, \mathbf{w}) \propto (n_{-i,v}^{(d)} + \alpha) \prod_{s}^{l_v(\uparrow i)} \frac{\gamma_v^{(C_v(s \downarrow i))} + n_{-i,v}^{(C_v(s \downarrow i))}}{\sum_{k}^{C_v(s)} \left(\gamma_v^{(k)} + n_{-i,v}^{(k)}\right)}$$

Sample $q_i^{(r)}$ for each topic *j* and component *r*

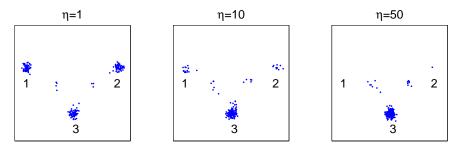
$$\boldsymbol{\rho}(\boldsymbol{q}_{j}^{(r)} = \boldsymbol{q}' | \boldsymbol{z}, \boldsymbol{q}_{-j}, \boldsymbol{q}_{j}^{(-r)}, \boldsymbol{w}) \propto$$

$$\left(\sum_{k}^{M_{rq'}} \beta_{k} \right) \prod_{s}^{l_{j,r=q'}} \left(\frac{\Gamma\left(\sum_{k}^{C_{j}(s)} \gamma_{j}^{(k)}\right)}{\Gamma\left(\sum_{k}^{C_{j}(s)} (\gamma_{j}^{(k)} + n_{j}^{(k)})\right)} \prod_{k}^{C_{j}(s)} \frac{\Gamma(\gamma_{j}^{(k)} + n_{j}^{(k)})}{\Gamma(\gamma_{j}^{(k)})} \right)$$

Synthetic Data - Must-Link (B,C)

- Prior knowledge: B and C should be in the same topic
- Corpus: ABAB, CDCD, EEEE, ABAB, CDCD, EEEE
- Standard LDA topics $[\phi_1, \phi_2]$ do *not* put (B, C) together

• As η increases, Must-Link (B,C) \rightarrow [$\phi_1 = ABCD, \phi_2 = E$]



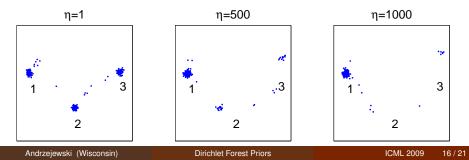
Synthetic Data - isolate(B)

- Prior knowledge: B should be isolated from [A,C]
- Corpus: ABC, ABC, ABC, ABC
- Standard LDA topics $[\phi_1, \phi_2]$ do *not* isolate *B*

$$[\phi_1 = AC, \phi_2 = B]
 [\phi_1 = A \phi_2 = BC]
 [\phi_1 = AB, \phi_2 = C]$$

• As η increases, Cannot-Link (A,B)+Cannot-Link (B,C)

$$\rightarrow [\phi_1 = AC, \phi_2 = B]$$



Original Wish Topics

Topic	Top words sorted by $\phi = p(word topic)$
0	love i you me and will forever that with hope
1	and health for happiness family good my friends
2	year new happy a this have and everyone years
3	that is it you we be t are as not s will can
4	my to get job a for school husband s that into
5	to more of be and no money stop live people
6	to our the home for of from end safe all come
7	to my be i find want with love life meet man
8	a and healthy my for happy to be have baby
9	a 2008 in for better be to great job president
10	i wish that would for could will my lose can
11	peace and for love all on world earth happiness
12	may god in all your the you s of bless 2008
13	the in to of world best win 2008 go lottery
14	me a com this please at you call 4 if 2 www

Original Wish Topics

Topic	Top words sorted by $\phi = p(word topic)$
0	love i you me and will forever that with hope
1	and health for happiness family good my friends
2	year new happy a this have and everyone years
3	that is it you we be t are as not s will can
4	my to get job a for school husband s that into
5	to more of be and no money stop live people
6	to our the home for of from end safe all come
7	to my be i find want with love life meet man
8	a and healthy my for happy to be have baby
9	a 2008 in for better be to great job president
10	i wish that would for could will my lose can
11	peace and for love all on world earth happiness
12	may god in all your the you s of bless 2008
13	the in to of world best win 2008 go lottery
14	me a com this please at you call 4 if 2 www

Topic	Top words sorted by $\phi = p(word topic)$
0	love forever marry happy together mom back
1	health happiness good family friends prosperity
2	life best live happy long great time ever wonderful
3	out not up do as so what work don was like
4	go school cancer into well free cure college
5	no people stop less day every each take children
6	home safe end troops iraq bring war husband house
7	love peace true happiness hope joy everyone dreams
8	happy healthy family baby safe prosperous everyone
9	better job hope president paul great ron than person
10	make money lose weight meet finally by lots hope married
Isolate	and to for a the year in new all my 2008
12	god bless jesus loved know everyone love who loves
13	peace world earth win lottery around save
14	com call if 4 2 www u visit 1 3 email yahoo
Isolate	i to wish my for and a be that the in

Topic	Top words sorted by $\phi = p(word topic)$					
0	love forever marry happy together mom back					
1	health happiness good family friends prosperity					
2	life best live happy long great time ever wonderful					
3	out not up do as so what work don was like					
MIXED	go school cancer into well free cure college					
5	no people stop less day every each take children					
6	home safe end troops iraq bring war husband house					
7	love peace true happiness hope joy everyone dreams					
8	happy healthy family baby safe prosperous everyone					
9	better job hope president paul great ron than person					
10	make money lose weight meet finally by lots hope married					
Isolate	and to for a the year in new all my 2008					
12	god bless jesus loved know everyone love who loves					
13	peace world earth win lottery around save					
14	com call if 4 2 www u visit 1 3 email yahoo					
Isolate	i to wish my for and a be that the in					

split([cancer free cure well],[go school into college])

0	love forever happy together marry fall
1	health happiness family good friends
2	life happy best live love long time
3	as not do so what like much don was
4	out make money house up work grow able
5	people no stop less day every each take
6	home safe end troops iraq bring war husband
7	love peace happiness true everyone joy
8	happy healthy family baby safe prosperous
9	better president hope paul ron than person
10	lose meet man hope boyfriend weight finally
Isolate	and to for a the year in new all my 2008
12	god bless jesus loved everyone know loves
13	peace world earth win lottery around save
14	com call if 4 www 2 u visit 1 email yahoo 3
Isolate	i to wish my for and a be that the in me get
Split	job go school great into good college
Split	mom husband cancer hope free son well

love forever happy together marry fall
health happiness family good friends
life happy best live love long time
as not do so what like much don was
out make money house up work grow able
people no stop less day every each take
home safe end troops iraq bring war husband
love peace happiness true everyone joy
happy healthy family baby safe prosperous
better president hope paul ron than person
lose meet man hope boyfriend weight finally
and to for a the year in new all my 2008
god bless jesus loved everyone know loves
peace world earth win lottery around save
com call if 4 www 2 u visit 1 email yahoo 3
i to wish my for and a be that the in me get
job go school great into good college
mom husband cancer hope free son well

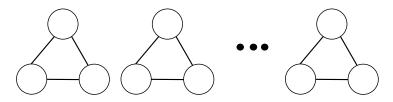
merge([love ... marry...],[meet ... married...]) (10 words total)

Topic	Top words sorted by $\phi = p(word topic)$					
Merge	love lose weight together forever marry meet					
success	health happiness family good friends prosperity					
life	life happy best live time long wishes ever years					
-	as do not what someone so like don much he					
money	out make money up house work able pay own lots					
people	no people stop less day every each other another					
iraq	home safe end troops iraq bring war return					
joy	love true peace happiness dreams joy everyone					
family	happy healthy family baby safe prosperous					
vote	better hope president paul ron than person bush					
Isolate	and to for a the year in new all my					
god	god bless jesus everyone loved know heart christ					
peace	peace world earth win lottery around save					
spam	com call if u 4 www 2 3 visit 1					
Isolate	i to wish my for and a be that the					
Split	job go great school into good college hope move					
Split	mom hope cancer free husband son well dad cure					

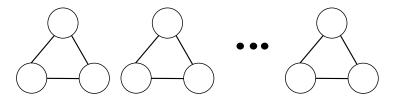
- Conclusions
 - DF prior expresses pairwise preferences among words
 - Can efficiently sample from DF-LDA posterior
 - Topics obey preferences, capture structure
- Future work
 - Hierarchical domain knowledge
 - Quantify benefits on tasks
 - Other application domains
- Code
 - http://www.cs.wisc.edu/~andrzeje/research/df_lda.html
- Funding
 - Wisconsin Alumni Research Foundation (WARF)
 - NIH/NLM grants T15 LM07359 and R01 LM07050
 - ICML student travel scholarship

● Maximal cliques of complement graph ↔ independent sets

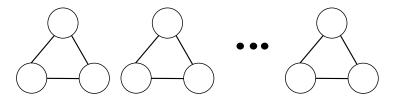
- Worst-case: 3^{n/3} (Moon & Moser 1965)
- We are only concerned with *connected* graphs, but still $O(3^{\frac{n}{3}})$ (Griggs et al 1988)
- Find cliques with Bron-Kerbosch (branch-and-bound)



- Maximal cliques of complement graph ↔ independent sets
- Worst-case: 3ⁿ/₃ (Moon & Moser 1965)
- We are only concerned with *connected* graphs, but still $O(3^{\frac{n}{3}})$ (Griggs et al 1988)
- Find cliques with Bron-Kerbosch (branch-and-bound)



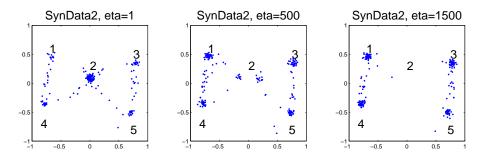
- Maximal cliques of complement graph ↔ independent sets
- Worst-case: 3^{n/3} (Moon & Moser 1965)
- We are only concerned with *connected* graphs, but still O(3^{^{''}/₃}) (Griggs et al 1988)
- Find cliques with Bron-Kerbosch (branch-and-bound)



- Sampling q involves Γ(·) evaluations
- "logsumexp" trick (*x_m* is largest value)
- Evaluate and normalize in log-domain before sampling

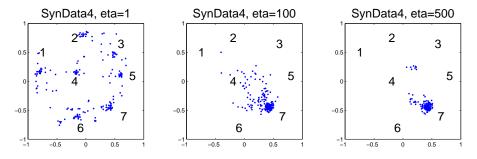
$$\log(\sum e^{x}) = \log(e^{x_m}(\sum e^{x-x_m})) = x_m + \log(\sum e^{x-x_m})$$

- Corpus: ABCCABCC, ABDDABDD (x2)
- Standard LDA topics (*T* = 3)
 - Posterior 5-way split, permutations of AB || C || D
- Cannot-Link (A,B) $\rightarrow AB \parallel C \parallel D$



Synthetic 4 - split

- Corpus: ABCDEEEE, ABCDFFFF (x3)
- Standard LDA topics (*T* = 3)
 - Posterior concentrated at *ABCD* || *E* || *F* (not shown)
- Standard LDA topics (T = 4)
 - Posterior dispersed (shown)
- $T = 4 \text{ split}(AB,CD) \rightarrow AB \parallel CD \parallel E \parallel F$



Andrzejewski (Wisconsin)

Knowledge-based Topic Modeling: Yeast Corpus

- 18,193 MEDLINE abstracts
- Queries on yeast genes

Domain Knowledge from the Gene Ontology (GO)

- Processes: transcription, translation, replication
- Phases: initiation, elongation, termination
- split the process concepts
- split the phase concepts
- Idea: want meaningful process+phase "composite" topics

DF-LDA (right) more aligned with target concepts

	1234567	78 o	123	456	78910
transcription	• ••	1	•	•	•
transcriptional	• ••	2	•	•	•
template	•	1	•	•	•
translation		• •	•		•
translational		•	•		•
tRNA		1	•		•
replication	•	2		٠	• •
cycle	••			٠	• •
division	•	3		•	• •
initiation	• •••	•	•	• •	•
start	•• •		•	• •	•
assembly	•	• 7	•	• •	•
elongation	•	• 1			•
termination		• •	•		
disassembly			•		
release		2	•		
stop		•	•		

- Goal: understand DF prior on very simple data
- Well-mixed samples (label-switching, stable proportions)
- Label-switching \rightarrow heuristic ϕ "alignment"
- Observe changes as "strength" parameter η varies
- Visualize ϕ samples with PCA