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Abstract
Counting the number of social media posts on a
target phenomenon has become a popular method
to monitor a spatiotemporal signal. However, such
counting is plagued by biased, missing, or scarce
data. We address these issues by formulating sig-
nal recovery as a Poisson point process estimation
problem. We explicitly incorporate human popu-
lation bias, time delays and spatial distortions, and
spatiotemporal regularization into the model to ad-
dress the data quality issues. Our model produces
qualitatively convincing results in a case study on
wildlife roadkill monitoring.

1 Introduction
Many real-world phenomena can be represented by a spa-
tiotemporal signal: where, when, and how much. They can
be characterized by a real-valued intensity function f ∈ R≥0,
where the value fs,t quantifies the prevalence of the phe-
nomenon at location s and time t. Examples include wildlife
mortality, algal blooms, hail damage, and seismic intensity.
Direct instrumental sensing of f is often difficult and expen-
sive. Social media offers a unique sensing opportunity for
such signals, where users act as “sensors” with posts on the
target phenomenon (such as wildlife encounters). For in-
stance, “I saw a dead crow on its back in the middle of the
road.”

There are at least three challenges when using social media
users as sensors: (i) Social media posts are often ambiguous
due to its language and brevity. This makes identifying social
media posts on a target phenomenon extremely challenging.
(ii) Social media users (our sensors) cannot be directed or fo-
cused or maneuvered as we wish. Their distribution depends
on many factors unrelated to the sensing task at hand. (iii)
Location and time stamps associated with social media posts
may be erroneous or missing. Most posts do not include GPS
coordinates, and self-reported locations can be inaccurate or
false. Furthermore, there can be random delays between a
target event and the generation of its social media post.

∗The paper on which this extended abstract is based was the re-
cipient of the Best Paper on Knowledge Discovery Award of the
2012 European Conference on Machine Learning and Principles and
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Most prior work in social media event analysis has fo-
cused on the first challenge. They were interested in iden-
tifying emerging topics, grouping posts by topics [Allan,
2002], and analyzing the spatio-temporal variation of pop-
ular topics [Mei et al., 2006; Cataldi et al., 2010; Yin et al.,
2011]. Similarly, event detection aimed at identifying emerg-
ing events [Yang et al., 1998; Becker et al., 2011; Sakaki et
al., 2010]. Other work used social media as a data source
to answer scientific questions in linguistic, sociology and hu-
man interactions [Lazer et al., 2009; Eisenstein et al., 2010;
Gupte et al., 2011].

Our work differs from past work and focuses on the latter
two challenges. We are interested in a target phenomenon that
is given and fixed beforehand. We further assume the avail-
ability of a (perhaps imperfect) trained text classifier to iden-
tify target posts. The main concerns of this paper are to deal
with the highly non-uniform distribution of human sensors,
which profoundly affects our capabilities for sensing target
phenomena, and to cope with the uncertainties in the loca-
tion and time stamps associated with target posts. The main
contribution of the paper is a robust method for accurately es-
timate the spatiotemporal signal of the target phenomenon in
light of these two challenges.

2 The Socioscope
Consider spatiotemporal signals of interest f defined on dis-
crete spatiotemporal bins. For example, a bin (s, t) could
be a U.S. state s on day t, or a county s at hour t. The
task is to estimate fs,t from xs,t, the count of target social
media posts within that bin. For simplicity, we often denote
our signal by a vector f = (f1, . . . , fn)> ∈ Rn≥0, where fj
is a non-negative target phenomenon intensity in source bin
j = 1 . . . n. The mapping between index j and the aforemen-
tioned (s, t) is one-one and will be clear from context.

A commonly-used estimate is f̂s,t = xs,t, which can be
justified as the maximum likelihood estimate of a Poisson
model x ∼ Poisson(f). However, this estimate is unsatisfac-
tory since the counts xs,t can be noisy: 1) there is a population
bias – more target posts are generated when and where there
are more social media users; 2) the location of a target post is
frequently inaccurate or missing, making it difficult to assign
to the correct bin; and 3) target posts can be quite sparse even
though the total volume of social media is huge.



2.1 Penalized Poisson Likelihood Model
To address these issues, we propose Socioscope, a probabilis-
tic model that robustly recovers spatiotemporal signals from
social media data.

Correcting Human Population Bias
To account for the population bias, we define an “active so-
cial media user population intensity” (loosely called “human
population” below) g = (g1, . . . , gn)> ∈ Rn≥0. Let zj be
the count of all social media posts in bin j, the vast majority
of which are not about the target phenomenon. We assume
zj ∼ Poisson(gj). Since typically zj � 0, the maximum
likelihood estimate ĝj = zj is reasonable.

Importantly, we then define the target posts intensity in j-th
source bin with a link function η(fj , gj)

xj ∼ Poisson(η(fj , gj)). (1)

In this paper, we simply define η(fj , gj) = fj · gj , but other
more sophisticated link functions can be used, too.

Handling Noisy and Incomplete Data
In recent data we collected from Twitter, only about 3%
of tweets contain the latitude and longitude at which they
were created. Another 47% contain a well-formed user self-
declared location in his or her profile (e.g., “New York, NY”).
However, such location does not automatically change while
the user travels and thus may not be the true location at which
a tweet is posted. The remaining 50% do not contain any lo-
cation meta data. Clearly, we cannot reliably assign the latter
two kinds of tweets to a spatiotemporal source bin.1

To address this issue, we borrow an idea from Positron
Emission Tomography [Vardi et al., 1985]. In particular, we
define m detector bins which are conceptually distinct from
the n source bins. The idea is that an event originating in
some source bin goes through a transition process and ends
up in one of the detector bins, where it is detected. This tran-
sition is modeled by an m× n matrix P = {Pij} where

Pij = Pr(detector i | source j). (2)

P is column stochastic:
∑m
i=1 Pij = 1,∀j. We defer the

discussion of our specific P to a case study, but we mention
that it is possible to reliably estimate P directly from social
media data (more on this later). Recall that the target post
intensity at source bin j is η(fj , gj). We use the transition
matrix to define the target post intensity hi (note that hi can
itself be viewed as a link function η̃(f ,g)) at detector bin i:

hi =

n∑
j=1

Pijη(fj , gj). (3)

For the spatial uncertainty that we consider, we create three
detector bins for each source bin. For a source bin (s, t), the
first detector bin collects target posts at time t whose latitude
and longitude meta data is available and in s. The second de-
tector bin collects target posts at time t without latitude and
longitude meta data, but whose user self-declared profile lo-
cation is in s. The third detector bin collects target posts at

1It may be possible to recover location information from the text
for some tweets, but the overall problem still exists.

time t without any location information. Note this detector
bin is shared by all source bins (∗, t). For example, if we had
n = 50T source bins corresponding to the 50 US states over
T days, there would be m = (2× 50 + 1)T detector bins.

Critically, our observed target counts x are now with re-
spect to the m detector bins instead of the n source bins:
x = (x1, . . . , xm)>. We also denote the count sub-vector for
the first kind of detector bins by x(1), the second kind x(2),
and the third kind x(3). The same is true for the population
counts z. The target counts x are modeled as independently
Poisson distributed random variables:

xi ∼ Poisson(hi), for i = 1 . . .m. (4)

The log likelihood factors as

`(f) = log

m∏
i=1

hxii e
−hi

xi!
=

m∑
i=1

(xi log hi − hi) + c, (5)

where c is a constant. In (5) we treat g as given.
Poisson intensity f is non-negative, necessitating a con-

strained optimization problem in a maximizing likelihood
procedure. It is more convenient to work with an uncon-
strained problem. To this end, we work with the exponential
family natural parameters of Poisson. Specifically, let

θj = log fj , ψj = log gj . (6)

Our specific link function becomes η(θj , ψj) = eθj+ψj . The
detector bin intensities become hi =

∑n
j=1 Pijη(θj , ψj).

Addressing Data Scarcity
Target posts may be scarce in some detector bins. This
problem can be mitigated by the fact that many real-world
phenomena are spatiotemporally smooth, i.e., “neighboring”
source bins in space or time tend to have similar intensities.
We therefore adopt a penalized likelihood approach by con-
structing a graph-based regularizer. The undirected graph is
constructed so that the nodes are the source bins. Let W be
the n × n symmetric non-negative weight matrix. The edge
weights are such that Wjk is large if j and k tend to have
similar intensities. Since W is domain specific, we defer its
construction to the case study.

Our graph-based regularizer applies to θ directly:

Ω(θ) =
1

2
θ>Lθ, (7)

where L is the combinatorial graph Laplacian [Chung, 1997]:
L = D−W, and D is the diagonal degree matrix withDjj =∑n
k=1Wjk.
Finally, Socioscope solves the following penalized likeli-

hood optimization problem:

min
θ∈Rn

−
m∑
i=1

(xi log hi − hi) + λΩ(θ), (8)

where λ is a positive regularization weight.



2.2 Optimization and Parameter Tuning

We solve the Socioscope optimization problem (8) with
BFGS, a quasi-Newton method [Nocedal and Wright, 1999].
We initialize θ with the following heuristic. Given counts
x and the transition matrix P , we compute the least-squared
projection η0 to ‖x − Pη0‖2, and force positivity by setting
η0 ← max(10−4, η0) element-wise, where the floor 10−4

ensures that log η0 > −∞. From the definition η(θ, ψ) =
exp(θ + ψ), we then obtain the initial parameter

θ0 = log η0 − ψ. (9)

The choice of the regularization parameter λ has a pro-
found effect on the smoothness of the estimates. Select-
ing these parameters using a cross-validation (CV) procedure
gives us a data-driven approach to regularization. For theo-
retical reasons beyond the scope of this paper, we do not rec-
ommend leave-one-out CV [Van Der Laan and Dudoit, 2003;
Cornec, 2010]. We construct the hold-out set by simply sub-
sampling events from the total observation uniformly at ran-
dom. This produces a partial data set of a subset of the counts
that follows precisely the same distribution as the whole set,
modulo a decrease in the total intensity per the level of sub-
sampling. The complement of the hold-out set is what re-
mains of the full dataset, and we use it as the training set. We
select the λ that maximizes the (unregularized) log-likelihood
on the hold-out set.

2.3 Theoretical Considerations

The natural measure of signal-to-noise in this problem is
the number of counts in each bin. If we directly observe
xi ∼ Poisson(hi), then the normalized error E[(xi−hihi

)2] =

h−1i ≈ x
−1
i . So larger counts, due to larger underlying inten-

sities, lead to small errors on a relative scale.
We recall the following minimax lower bound, which fol-

lows from the results in [Donoho et al., 1996; Willett and
Nowak, 2007].

Theorem 1 Let f be a Hölder α-smooth d-dimensional in-
tensity function and suppose we observe N events from the
distribution Poisson(f). Then there exists a constant Cα > 0
such that

inf
f̂

sup
f

E[‖f̂ − f‖21]

‖f‖21
≥ CαN

−2α
2α+d ,

where the infimum is over all possible estimators. It is pos-
sible to show that our regularized estimators, with adaptively
chosen bin sizes and appropriate regularization parameter set-
tings, could nearly achieve this bound. This gives useful in-
sight into the minimal data requirements of our methods. For
example, consider just two spatial dimensions (d = 2) and
α = 1 which corresponds to Lipschitz smooth functions.
Then the error is proportional to N−1/2. Note that the bound
depends on the regularity of the underlying function f . As
f becomes increasingly smooth (as α gets larger), we need
fewer counts for the same level of error.

(i) scaled x(1) 14.11
(ii) scaled x(1)/z(1) 46.73
(iii) Socioscope with x(1) 0.17
(iv) Socioscope with x(1) + x(2) 1.83
(v) Socioscope with x(1), x(2) 0.16
(vi) Socioscope with x(1), x(2), x(3) 0.12

Table 1: Relative error of different estimators

3 A Synthetic Experiment
We conduct a synthetic experiment whose known ground-
truth intensity f allows us to quantitatively evaluate Socio-
scope. With the exception of f , all settings match our case
study in the next section. We design the ground-truth target
signal f to be temporally constant but spatially varying. Fig-
ure 1(a) shows the ground-truth f spatially where lighter color
means higher intensity. It is a mixture of two Gaussian distri-
butions discretized at the state level. With P, g from our case
study and this f , we generate the observed target post counts
for each detector bin by a Poisson random number genera-
tor: xi ∼ Poisson(

∑n
j=1 Pi,jfjgj), i = 1 . . .m. The sum of

counts in x(1) is 56, in x(2) 1106, and in x(3) 1030. Since we
have 2376 detector bins, the counts are very sparse.

We compare the relative error ‖f − f̂‖2/‖f‖2 of several es-
timators in Table 1: (i) f̂ = x(1)/(ε1

∑
z(1)), where ε1 is

the fraction of tweets with precise location stamp (discussed
later in case study). Scaling matches it to the other estimators.
Figure 1(b) shows this simple estimator, aggregated spatially.
It is a poor estimator: besides being non-smooth, it contains
32 “holes” (states with zero intensity, colored in blue) due to
data scarcity. (ii) Naively correcting the population bias by
f̂ = x

(1)
j /(ε1z

(1)
j ) is even worse, because naive bin-wise cor-

rection magnifies the variance due to the sparsity of x(1). (iii)
Socioscope-with-x(1)-only simulates the practice of discard-
ing noisy or incomplete data, but regularizing for smooth-
ness. The relative error was reduced dramatically. (iv) Same
as (iii) but replace the values of x(1) with x(1) + x(2). This
simulates the practice of ignoring the noise in x(2) and pre-
tending it is precise. The result is worse than (iii), indicat-
ing that simply including noisy data may hurt the estimation.
(v) Socioscope with x(1) and x(2) separately, where x(2) is
treated as noisy by P. It reduces the relative error further,
and demonstrates the benefits of treating noisy data specially.
(vi) Socioscope with the full x. It achieves the lowest rela-
tive error among all methods, and is the closest to the ground
truth (Figure 1(c)). Compared to (v), this demonstrates that
even counts x(3) without location can also help us to recover
f better.

4 Case Study: Roadkill
We report a case study on the spatiotemporal intensity of
roadkill for several wildlife species within the continental
U.S. We collected data from Twitter during September 22–
November 30, 2011 and aggregated them into 24 hour-of-day.
Our source bins are state×hour-of-day. Let s index the 48
continental US states plus District of Columbia. Let t index



(a) ground-truth f (b) scaled x(1) (c) Socioscope

Figure 1: The synthetic experiment

(a) ĝ (b) x(1) + x(2) (c) Socioscope f̂

Figure 2: Raw counts and Socioscope results for chipmunks.
The x-axis is hour of day and y-axis is the states, ordered by
longitude from east (top) to west (bottom).

the hours from 1 to 24. This results in |s| = 49, |t| = 24,
n = |s||t| = 1176, m = (2|s|+ 1)|t| = 2376.

4.1 Data Preparation
Given a target post classifier and a geocoding database, it is
straightforward to generate the counts x and z. As it is not
the focus of this paper we omit the details here, but refer the
reader to [Xu et al., 2012; Settles, 2011].

In this study, P characterizes the fraction of tweets which
were actually generated in source bin (s, t) that end up in the
three detector bins: precise location st(1), potentially noisy
location st(2), and missing location t(3). We define P as fol-
lows: P(s,t)(1),(s,t) = 0.03, and P(r,t)(1),(s,t) = 0 for ∀r 6= s

to reflect the fact that we know precisely 3% of the target
posts’ location. P(r,t)(2),(s,t) = 0.47Mr,s for all r, s. M is
a 49 × 49 user declaration matrix. Mr,s is the probability
that a user self-declares in her profile that she is in state r,
but her post is in fact generated in state s. We estimated M
from a separate large set of tweets with both coordinates and
self-declared profile locations. Pt(3),(s,t) = 0.50. This aggre-
gates tweets with missing information into the third kind of
detector bins.

Our regularization graph has two kinds of edges. Tempo-
ral edges connect source bins with the same state and adja-
cent hours by weight wt, and spatial edges connect source
bins with the same hour and adjacent states by weight ws.
The regularization weight λ was absorbed into wt and ws.
We tuned the weights wt and ws with CV on the 2D grid
{10−3, 10−2.5, . . . , 103}2.

4.2 Results
We present results on armadillo and chipmunk. Perhaps sur-
prisingly, precise roadkill intensities for these animals are ap-
parently unknown to science (this serves as a good example of
the value Socioscope may provide to wildlife scientists). In-
stead, domain experts were only able to provide a range map
of each animal, see the left column in Figure 3. These maps
indicate presence/absence only, and were extracted from Na-
tureServe [Patterson et al., 2007]. In addition, the experts

(a) armadillo (Dasypus novemcinctus)

(b) chipmunk (Tamias striatus)

Figure 3: Socioscope estimates match animal habits well.
(Left) range map from NatureServe, (Middle) Socioscope f̂

aggregated spatially, (Right) f̂ aggregated temporally.

defined armadillo as nocturnal and chipmunk as diurnal. Due
to the lack of quantitative ground-truth, our comparison will
necessarily be qualitative in nature.

Socioscope provides sensible estimates on these animals.
Figure 2(a) shows the estimated ĝ. We clearly see that hu-
man population intensity varies greatly both spatially and
temporally. Figure 2(b) shows counts x(1) + x(2) for chip-
munks which is very sparse (the largest count in any bin is
3), and Figure 2(c) the Socioscope estimate f̂ . In addition, we
present the state-by-state intensity maps in the middle column
of Figure 3 by aggregating f̂ spatially. The Socioscope results
match the range maps well for these animals. The right col-
umn in Figure 3 shows the daily animal activities by aggre-
gating f̂ temporally. These curves match the animals’ diurnal
patterns well, too. The Socioscope estimates are superior to
the baseline methods in Table 1. The spatial and temporal
patterns recovered by the baseline methods tend to have spu-
rious peaks due to the population bias. In addition, as shown
in Figure 1, they also produce many states with zero intensity
due to data scarcity.

5 Future Work
Using social media as a data source for spatiotemporal sig-
nal recovery is an emerging area. Socioscope represents a
first step toward this goal. There are many open questions.
For example, users may not post a squirrel encounter on the
road until she arrives at home later; the local and time meta
data of posts only reflect tweet-generation at home. There
usually is an unknown time delay and spatial shift between
the phenomenon and the post generation. Estimating an ap-
propriate transition matrix P from social media data so that
Socioscope can handle such “point spread functions” remains
future work.

Acknowledgments
We thank Megan K. Hines from Wildlife Data Integration
Network for providing guidance on wildlife. This work is
supported in part by NSF IIS-1216758, IIS-1148012, and
the Global Health Institute at the University of Wisconsin-
Madison.



References
[Allan, 2002] James Allan. Topic Detection and Tracking:

Event-Based Information Organization. Kluwer Aca-
demic Publishers, Norwell, MA, 2002.

[Becker et al., 2011] Hila Becker, Naaman Mor, and Luis
Gravano. Beyond trending topics: Real-world event iden-
tification on twitter. In Proceedings of the 5th Interna-
tional AAAI Conference on Weblogs and Social Media,
pages 438–441, Barcelona, Spain, 2011.

[Cataldi et al., 2010] Mario Cataldi, Luigi Di Caro, and
Claudio Schifanella. Emerging topic detection on twitter
based on temporal and social terms evaluation. In Proceed-
ings of the 10th International Workshop on Multimedia
Data Mining, pages 4:1–4:10, Washington, D.C., 2010.

[Chung, 1997] Fan RK Chung. Spectral graph theory.
Regional Conference Series in Mathematics. American
Mathematical Society, Providence, RI, 1997.

[Cornec, 2010] Matthieu Cornec. Concentration inequalities
of the cross-validation estimate for stable predictors. Arxiv
preprint arXiv:1011.5133, 2010.

[Donoho et al., 1996] David L Donoho, Iain M Johnstone,
Gérard Kerkyacharian, and Dominique Picard. Density es-
timation by wavelet thresholding. The Annals of Statistics,
24:508–539, 1996.

[Eisenstein et al., 2010] Jacob Eisenstein, Brendan
O’Connor, Noah A. Smith, and Eric P. Xing. A la-
tent variable model for geographic lexical variation. In
Proceedings of the 2010 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1277–1287,
Cambridge, MA, 2010.

[Gupte et al., 2011] Mangesh Gupte, Pravin Shankar, Jing
Li, S. Muthukrishnan, and Liviu Iftode. Finding hierarchy
in directed online social networks. In Proceedings of the
20th International Conference on World Wide Web, pages
557–566, Hyderabad, India, 2011.

[Lazer et al., 2009] David Lazer, Alex (Sandy) Pentland,
Lada Adamic, Sinan Aral, Albert Laszlo Barabasi, De-
von Brewer, Nicholas Christakis, Noshir Contractor,
James Fowler, Myron Gutmann, Tony Jebara, Gary King,
Michael Macy, Deb Roy, and Marshall Van Alstyne. Life
in the network: the coming age of computational social
science. Science, 323(5915):721–723, 2009.

[Mei et al., 2006] Qiaozhu Mei, Chao Liu, Hang Su, and
ChengXiang Zhai. A probabilistic approach to spatiotem-
poral theme pattern mining on weblogs. In Proceedings
of the 15th International Conference on World Wide Web,
pages 533–542, Edinburgh, UK, 2006.

[Nocedal and Wright, 1999] Jorge Nocedal and Stephen J
Wright. Numerical optimization. Springer series in op-
erations research. Springer, New York, NY, 1999.

[Patterson et al., 2007] B. D. Patterson, G. Ceballos,
W. Sechrest, M. F. Tognelli, T. Brooks, L. Luna, P. Ortega,
I. Salazar, and B. E. Young. Digital distribution maps
of the mammals of the western hemisphere, version 3.0.
Technical report, NatureServe, Arlington, VA, 2007.

[Sakaki et al., 2010] Takeshi Sakaki, Makoto Okazaki, and
Yutaka Matsuo. Earthquake shakes twitter users: real-time
event detection by social sensors. In Proceedings of the
19th International Conference on World Wide Web, pages
851–860, Raleigh, NC, 2010.

[Settles, 2011] Burr Settles. Closing the Loop: Fast, Inter-
active Semi-Supervised Annotation With Queries on Fea-
tures and Instances. In Proceedings of the 2011 Confer-
ence on Empirical Methods in Natural Language Process-
ing, pages 1467–1478, Edinburgh, UK, 2011.

[Van Der Laan and Dudoit, 2003] Mark J Van Der Laan and
Sandrine Dudoit. Unified cross-validation methodol-
ogy for selection among estimators and a general cross-
validated adaptive epsilon-net estimator: Finite sample or-
acle inequalities and examples. U.C. Berkeley Division of
Biostatistics Working Paper Series, pages 130–236, 2003.

[Vardi et al., 1985] Y. Vardi, L. A. Shepp, and L. Kauf-
man. A statistical model for positron emission tomog-
raphy. Journal of the American Statistical Association,
80(389):8–37, 1985.

[Willett and Nowak, 2007] Rebecca M Willett and Robert D
Nowak. Multiscale poisson intensity and density es-
timation. IEEE Transactions on Information Theory,
53(9):3171–3187, 2007.

[Xu et al., 2012] Jun-Ming Xu, Aniruddha Bhargava, Robert
Nowak, and Xiaojin Zhu. Socioscope: Spatio-temporal
signal recovery from social media. In Proceedings of
the 2012 European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in
Databases, pages 644–659, Bristol, UK, 2012.

[Yang et al., 1998] Yiming Yang, Tom Pierce, and Jaime
Carbonell. A study of retrospective and on-line event de-
tection. In Proceedings of the 21st Annual International
ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 28–36, Melbourne, Aus-
tralia, 1998.

[Yin et al., 2011] Zhijun Yin, Liangliang Cao, Jiawei Han,
Chengxiang Zhai, and Thomas Huang. Geographical topic
discovery and comparison. In Proceedings of the 20th In-
ternational Conference on World Wide Web, pages 247–
256, Hyderabad, India, 2011.


