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A Typical Human Category Learning Experiment

training:

key key . . .

stimulus x

f(x) feedback y

test: key key . . .
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One Goal of Cognitive Psychology

. . . is to identify the algorithm in our mind

CogSci Machine Learning

stimulus feature vector x
category feedback class y

stimulus with feedback labeled data (x, y)
stimulus without feedback unlabeled data x

response classification f(x)
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Human Semi-Supervised Learning?

training: key key . . .
stimulus x feedback

A computer can hold a trained classifier f fixed during testing.

A human may not

test: key key . . .
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Test-Item Effect

This work answers two questions:
1 Will unlabeled test items change the classifier in humans mind?

(yes)
I Two identical people A,B receiving exactly the same training data
I The test data (without label feedback) is different
I Because of this difference, they disagree on certain test items

2 How to model test-item effect? (3 semi-supervised models)
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Test-Item Effect 1: Order of Test Items

1D feature space

10 labeled items, five pairs of (x, y) = (−2, 0), (2, 1)
Two conditions, 20 subjects each:

I L to R: test item -2,-1.95,-1.9, . . . , 2
I R to L: reverse order.

−2 −1 0 1 2
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0.6
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1

x
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(y
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1|
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L to R
R to L

Subjects in “L to R” classify more test items as y = 0, and vice versa.

For test items in [-1.2, 0.1], a majority-vote among subjects will
classify them in opposite ways in these two conditions.
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Test-Item Effect 2: Distribution of Test Items [AAAI 07]

Same feature space

20 labeled items, ten pairs of (x, y) = (−1, 0), (1, 1)
22 subjects. Test items drawn from two-component GMM. Two
conditions:

I L shifted: GMM µ1 = −1.43, µ2 = 0.57
I R shifted: GMM µ1 = −0.57, µ2 = 1.43
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early L−shifted
early R−shifted
late L−shifted
late R−shifted

Early (in first 50 test items) decision boundaries the same

Late (after 700 test items) boundaries shifted according to condition
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Test-Item Effect as Semi-Supervised Learning

Standard human category learning models in psychology cannot explain
test-item effects

1 exemplar model ≈ nonparametric kernel regression

2 prototype model ≈ Gaussian mixture model

3 rational model of categorization ≈ Dirichlet process mixture model

We propose semi-supervised extensions to these models

incremental (online) learning to better fit human experience

minimum number of parameters to prevent overfitting
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Model 1: Semi-Supervised Exemplar Model

Extends the generalized context model (Nosofsky, 1986)

Self-training Nadaraya-Watson kernel estimator

Parameter: kernel bandwidth h
for n = 1, 2, . . . do

Receive xn, predict its label by thresholding

r(xn) =
∑n−1

i=1
K(

xn−xi
h

)Pn−1
j=1 K(

xn−xj
h

)
ŷi at 0.5

Receive yn (may be unlabeled), update model:
if yn is unlabeled then

ŷn = r(xn)
else

ŷn = yn

end if
end for
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Model 2: Semi-Supervised Prototype Model

Extends prototype models (Posner & Keele, 1968)

Incremental EM on GMM (Neal & Hinton, 1998), but without
revisiting old items

Track parameters of GMM via sufficient statistics
I If input (x, y) labeled, its contribution to sufficient statistics is

φ̃(x, y) = (1− y, (1− y)x, (1− y)x2, y, yx, yx2)
I If input x unlabeled, it is

Ey∼q[φ̃(x, y)] =
∑

y=0,1

q(y)φ̃(x, y)

where q(y) = p(y|x, θ) is the label posterior under the current model
I Initialize sufficient statistics as φ = (n0, 0, n0, n0, 0, n0): n0 pseudo

items with mean 0 and variance 1.
I n0 is the only parameter.
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Model 3: Semi-Supervised Rational Model of
Categorization (RMC)

Extends RMC (Anderson 1990, Griffiths et al. 2008)

Dirichlet Process Mixture Model (DPMM) marginalizd over y

I stack [x; y] and use a single global DPMM (key difference to Aclass
(Mansinghka et al. 2007))

I G ∼ DP (G0, α2)
F base measure G0 = Normal-Gamma × Beta (conjugate priors for

Normal and binomial)
F α2 is the only parameter

I θ1 . . . θn ∼ G, where θ = (µ, λ, p)
F µ, λ the mean and precision of a Gaussian for the x component
F p the “head” probability for the y component

I (xi, yi) ∼ F (x, y|θi), F = Gaussian × Bernoulli
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Particle Filtering for Semi-Supervised RMC

Introduce cluster index z
Integrate out θ and G via particle filtering
Each particle is a vector of indices z1:n−1

“Grow” particle by zn, weight proportional to likelihood

P (yn−1 | z1:n−1, y1:n−2)P (zn | z1:n−1)P (xn | zn, z1:n−1, x1:n−1)

For semi-supervised DPMM, the y term is a beta-binomial with
marginalization

P (yn−1 | z1:n−1, y1:n−2) =
c1 + α1

c0 + c1 + α1 + β1

I If yn−1 unlabeled, define the probability to be 1
I If some of y1:n−2 unlabeled, skip them in counting

c1 =
n−2∑
i=1

δ(zi, zn−1)δ(yi, 1) c0 =
n−2∑
i=1

δ(zi, zn−1)δ(yi, 0)
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Parameter Tuning for All Three Models

Divide subjects into training and test groups

Maximize training group human prediction likelihood:

θ∗ = arg max
θ

`tr(θ) ≡
∑
s∈tr

∑
n

log P (f(xn)[s] | x[s]
1:n, y

[s]
1:n−1, θ)

where θ is h, n0, α2 for the three models, respectively.
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Model Fitting Results

Performance comparison on test group:

SSL SSL SSL
exemplar prototype RMC

θ∗ h = 0.6 n0 = 12 α2 = 0.3
`te(θ∗) -3727 -2460 -2169

Semi-supervised RMC has the best fit, semi-supervised exemplar model the
worst.
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Attempts to Save Semi-Supervised Exemplar Model
What if we down-weight unlabeled items?

r(x) =
n∑

i=1

wiK(x−xi
h )∑n

j=1 wiK(x−xj

h )
yi

wi = 1 if xi labeled, wi = w otherwise

Learned w = 0.2. Test group loglik -2934, still worse.
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Conclusions

Contributions

Test-item effects in humans

Semi-supervised extension of exemplar, prototype, and ration model
of categorization

I All three models exhibit test-item effects
I Semi-supervised RMC the best

Take home message: cognitive psychology ideal application for
machine learning.

I Coming soon: Cognitive Modeling Repository
http://www.cmr.osu.edu/
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