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Abstract

Sharing data between widely distributed intrusion de-
tection systems offers the possibility of significant im-
provements in speed and accuracy over isolated sys-
tems. In this paper, we describe and evaluate DOMINO
(Distributed Overlay for Monitoring InterNet Outbreaks);
an architecture for a distributed intrusion detection
system that fosters collaboration among heterogeneous
nodes organized as an overlay network. The overlay de-
sign enables DOMINO to be heterogeneous, scalable, and
robust to attacks and failures. An important component of
DOMINO’s design is the use of active sink nodes which re-
spond to and measure connections to unused IP addresses.
This enables efficient detection of attacks from spoofed IP
sources, reduces false positives, enables attack classifica-
tion and production of timely blacklists.

We evaluate the capabilities and performance of
DOMINO using a large set of intrusion logs collected
from over 1600 providers across the Internet. Our anal-
ysis demonstrates the significant marginal benefit ob-
tained from distributed intrusion data sources coordi-
nated through a system like DOMINO. We also evalu-
ate how to configure DOMINO in order to maximize per-
formance gains from the perspectives of blacklist length,
blacklist freshness and IP proximity. We perform a retro-
spective analysis on the 2002 SQL-Snake and 2003 SQL-
Slammer epidemics that highlights how information ex-
change through DOMINO would have reduced the reac-
tion time and false-alarm rates during outbreaks. Finally,
we provide preliminary results from our prototype active
sink deployment that illustrates the limited variability in
the sink traffic and the feasibility of efficient classification
and discrimination of attack types.

1 Introduction

Internet intrusions and large-scale attacks can have a
catastrophic affect, including stolen or corrupted data,

wide-spread denial-of-service attacks, huge financial
losses and even disruption of essential services. For exam-
ple, it has been estimated that the CodeRed I virus infected
more than 359, 000 hosts, resulting in financial losses of
over $2 billion [16, 28]. Given their potentially profound
impact, detecting network intrusions and attacks is an im-
portant goal.

However, protecting networks from nefarious intrusions
and attacks remains challenging for a number of reasons.
First, and perhaps the foremost, is the fact that the problem
is a constantly moving target due to continued innovation,
easy access to new portscanning tools and the Internet’s
basic vulnerability to widespread intrusions from different
classes of worms [44]. Second, even when new exploits
are identified, the primary means for propagating this in-
formation is through organizations, such as CERT [8],
which can result in unacceptably slow response times for
installing countermeasures. Third, while infrastructures
such as IP-supported traceback [41] or pushback [26] of-
fer promise in combating intrusions and attacks, these and
other similar measures are not yet widely deployed.

Current best practice for protecting against intrusions is
through the use of firewalls or network intrusion detection
systems (NIDS) [31]. Firewalls are choke points that filter
traffic at network gateways based on local security poli-
cies [6]. NIDS systems are monitors residing at end sys-
tems that passively observe the local network traffic and
react to specific signatures (misuse detection) or statistical
anomalies (anomaly detection). Examples of NIDS that
employ misuse detection are Snort [39] and Bro [34]. One
of the fundamental weaknesses of misuse-detection-based
NIDS is their inability to detect new types of intrusions.
Anomaly detection techniques establish statistical profiles
of network traffic and flag any traffic deviating from the
profile as anomalous. The high variability common in
network packet traffic limits the effectiveness of this ap-
proach [23]. In general, current NIDS suffer from two
major drawbacks: high false alarm rates and perspective
from a single vantage point, which limits their ability to
detect distributed or coordinated attacks.

One promising approach to addressing the above-
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mentioned shortcomings is through the use of distributed
network intrusion detection systems (DNIDS). In this en-
vironment, alerts from different NIDS are combined to
address above-mentioned shortcomings. Valdes and Skin-
ner [47] show that “merging” alerts from different NIDSs
deployed in a single administrative domain can reduce the
overall false alarm rate. Improvements even from this lim-
ited perspective indicate the potential for DNIDS.

1.1 Contributions

The first contribution of this paper is in the descrip-
tion of a new architecture for distributed intrusion in-
formation sharing. The DOMINO architecture enables
NIDS deployed at diverse locations to securely share in-
trusion information. DOMINO’s overlay design facilitates
scalable data sharing, heterogeneous participation and ro-
bustness to nodes joining and leaving the infrastructure.
DOMINO’s data sharing architecture describes the meth-
ods of transfer and summarization of information between
nodes. This architecture is flexible so as to enable consid-
eration of local policies.

An important part of DOMINO’s architecture are nodes
that monitor unused IP addresses. We call the collection of
these nodes the DOMINO active sinks. These data sources
are devoid of false positives since they monitor unused IP
addresses. The active sinks provide better mechanisms to
detect spoofed sources and allow for efficient classifica-
tion of attack packets into well defined categories. There
is an important additional benefit in monitoring unused IP
addresses in that there may be fewer privacy concerns as-
sociated with collecting this data.

The second contribution of this paper is in the eval-
uation of the DOMINO’s design and performance char-
acteristics. Our evaluation is based on the use of a set
of intrusion logs gathered from over 1600 different net-
works across the Internet over a four month period. To
our knowledge, this is the first evaluation of the DNIDS
capability using a large, distributed dataset, and it provides
key insights into effectiveness of distributed intrusion de-
tection. We have completed an architectural specification
of DOMINO and implementation is ongoing. Monitoring
components have been developed while the implementa-
tion of message passing components are ongoing. There-
fore, we performed an ex post facto analysis based on
DOMINO’s specification. We also evaluate data from a
prototype active sink deployment. Our experiments fo-
cused on evaluating the following aspects of DOMINO:

• The marginal utility of adding measurement nodes
in detecting worst offenders and creating port sum-
maries.

• Ideal configuration parameters for the DOMINO ar-
chitecture focused on blacklist size (a sorted list of

the worst offending sources) and frequency of black-
list generation.

• The reaction time in identifying worm outbreaks.

• The effect on false alarm rates.

• The effectiveness of DOMINO in identifying slow
scanners.

• The variability in payload distributions in active sink
data.

1.2 Results

There are several important results of our experimental
investigation:

• Improved summaries: Through our marginal utility
experiments we demonstrate that through a small net-
work of collaborating peers (approximately 40), individ-
ual networks can significantly improve their perspective
on global attack behavior. The size of the individual peer-
ing nodes is less significant than the number of collabo-
rating peers.
• Blacklists (Worst Offender List): We show that few
(approximately tens) attack sources are responsible for a
significant portion of all scans on any given day and that
substantial benefit can be achieved even through relatively
stale blacklists.
• Decreased reaction time: We evaluate the reaction time
of our system using data from two different outbreaks:
SQL-Snake 2002 and SQL-Sapphire 2003 [27]. We pro-
vide examples of rules that DOMINO could employ to re-
act favorably to each of these scenarios without significant
false alarms. We demonstrate that reaction time to exploit
recognition can be substantially reduced in DOMINO un-
der each of these conditions.
• Slow Scanners: Our results suggest that relatively small
daily blacklists of around 40 sources can have a significant
impact in deterring slow scanners.
• Utility of active sink data: We provide preliminary re-
sults from our active sink deployment that highlight the
limited variability in observed payloads of malicious traf-
fic and motivate our approach towards building a robust
classifier.

Our results have a number of important implications.
First, the DOMINO architecture demonstrates a frame-
work within which systems from different administrative
domains can participate in coordinated intrusion detec-
tion. Second, the clear improvements in ability to iden-
tify intrusions through coordinated data sharing should
make this a compelling consideration for network admin-
istrators. Third, the deployment of active sink nodes on
unused address space in the Internet would significantly



increase the fidelity and speed of alert generation in in-
trusion detection systems. As a widely deployed infras-
tructure, DOMINO itself must be considered a target for
attacks. To be effective, DOMINO must be resilient to
a variety of attacks. A discussion of possible threats and
corresponding mitigating measures in DOMINO are dis-
cussed in appendix 5.

2 Related Work

There are several techniques for intrusion detection,
such as misuse detection [34, 38], statistical anomaly de-
tection [25, 43, 48], information retrieval [4], data min-
ing [22], and inductive learning [45]. For a survey of in-
trusion detection reader can consult existing literature on
this topic [1, 31, 33]. A classification of intrusion detec-
tion systems appears in [18, Section II].

Several researchers have started investigating dis-
tributed network intrusion detection [5, 11, 19]. Our gen-
eral architecture for the DOMINO DNIDS is presented in
Section 3. In [2], the authors propose COVERAGE, a co-
operative virus response mechanism that reacts to highly
virulent viruses. Indra [19] proposes a fully peer-to-peer
approach to intrusion detection. Its organization is com-
pletely ad-hoc, does not take locality into account and
the infrastructure serves primarily as a rule dissemination
mechanism. DOMINO’s design uses a combination of
peer-to-peer and hierarchical components providing sig-
nificant advantages over a purely hierarchical architecture.
These advantages include simplified information sharing,
scalability and fault tolerance.

Currently, DOMINO uses a “flat tuple space” to ex-
press various alerts. Several researchers are developing
languages to express alerts [12]. As these languages are
standardized, we plan to incorporate them into DOMINO.
Merging alerts from various sources has also been studied
by various researchers [10, 47]. The merging algorithm in
DOMINO is influenced by our experimental results. We
are also investigating algorithms from data fusion [14] for
this purpose. The goal of intention recognition is to cor-
relate alerts (possibly emerging from different sources) to
infer the plan of the adversary [11, 21]. In the context of
DOMINO we are not working on this problem. However,
we plan to incorporate an existing intention recognition
module into DOMINO. We are also investigating the use
of structures to reason about sequences of attacks, such as
privilege graphs [13] and attack graphs [42], for the pur-
poses of intention recognition.

Our work is also influenced by empirical studies of in-
trusion and attack activity. Moore et al. [30] examined the
prevalence of denial-of-service attacks using backscatter
analysis. In [28], the authors analyze the details of the
CodeRed worm outbreak and provide important perspec-
tive on the speed of worm propagation. In a follow-on

work, Moore et al. [29] provide insights on the speed at
which counter measures would have to be installed to in-
hibit the spread of worms like Code Red. The work that
is perhaps most closely associated with DOMINO is [50].
In that paper, we explore the statistical characteristics of
Internet intrusion activity from a global perspective. That
work informs DOMINO’s design from the perspective of
the potential use of multiple sites in coordinated intrusion
detection.

3 DOMINO Architecture

3.1 DOMINO Overview

A DOMINO network is a dynamic infrastructure com-
posed of a diverse collection of nodes located in a net-
work spanning the Internet. The objective of this sys-
tem is to provide a framework for information sharing
aimed at improving intrusion detection capability for all
participants. There are several overarching requirements,
properties and challenges in organization of this network.
These requirements are not unlike those of other large in-
formation sharing infrastructures and include the follow-
ing:

• Availability: Since all networks are prone to system
failures, congestion and attacks, the infrastructure must be
resilient to temporary network instabilities. Furthermore,
it is crucial that the network remain available in the face
of worm outbreaks, denial-of-service attacks and other In-
ternet catastrophes.
• Scalability: The success and utility of this network for
its participants relies on its ability to scale gracefully to a
large number of nodes.
• Decentralization: A decentralized architecture pro-
vides for greater flexibility and eliminates any single point
of failure.
• Pervasiveness: The network would be most effective in
identifying attack trends and characterizing global Inter-
net intrusion phenomenon, if it obtains representative par-
ticipants across a “moderate size” portion of IP address
space.
• Privacy: The network should not reveal data that indi-
vidual participants consider sensitive. It should also not
increase the likelihood of attack against individual partic-
ipants.
• Heterogeneity: The network must be able to harmo-
nize systems from disparate networks of varying sizes
that run a wide range of NIDS and firewall technologies.
This would allow DOMINO to overcome any weaknesses
associated with individual NIDS rules or organizational
topologies.
• Inducement: Finally there must be an incentive (a di-
rect benefit) for networks to join this infrastructure. The
critical mass of participants required for obtaining imme-



Figure 1. DOMINO Node Organization. Axis
Nodes participate in a peer to peer overlay.

diate benefit should be reasonably low.
As shown in Figure 1, a DOMINO network is com-

prised of three sets of participants: axis overlay, satel-
lite communities and terrestrial contributers. We describe
each of these in the following sections. All communica-
tion between the axis overlay nodes and the satellites is
encrypted. We provide a brief description of the key dis-
tribution strategy in Section 3.3.

3.1.1 Axis Overlay

The axis nodes are the central component of the DOMINO
architecture. They are responsible for the bulk of the in-
trusion information sharing. Hence, their scalability and
availability is vital to the resilience of the infrastructure.
Two important requirements are 1) resilience to failure of
axis nodes and 2) the ability to quickly detect and adapt
to topological changes resulting from nodes joining and
leaving.

Overlay networks have been shown to be highly re-
silient to disruption and possess the ability to deliver mes-
sages even during large-scale failures and network parti-
tions [3]. In order to enhance robustness and extend the
availability of the architecture, external connectivity (from
nodes not participating in DOMINO) to the axis overlay
is maintained through a set of DOMINO access points
(DAP). Participation at the axis node level in DOMINO is
achieved through an administrative procedure, described
in Section 3.3.

Each axis node in the overlay is described in terms of
its following components:
Intrusion Data Collection: Axis nodes will act as intru-
sion data collection points in DOMINO. Axis nodes typ-
ically belong to large and well-managed networks since
there is a high level of trust required to participate at
this level. Each of these networks NIDS and/or firewalls
and/or active sinks are deployed.

NIDS/Firewall: NIDS and firewall logs provide data
on specific intrusion signatures and on rejected packets.
Both of these are fundamental intrusion data sources in
DOMINO.
Active sinks: A sink hole is a large chunk of un-
used (but advertised) IP address space. An active sink
sniffs traffic bound to these addresses addresses and sim-
ulates virtual machines by supporting some level of in-
teraction. A naive instantiation of an active sink is a
LaBrea tarpit [24]. LaBrea was developed as a mech-
anism for slowing CodeRed I propagation by creating a
“sticky honey-pot” or persistent connections over sink-
holes. These cause the infecting machines to temporarily
get stuck thus slowing propagation of an outbreak. Other
examples of active sinks include honeyd (a highly cus-
tomizable low-interaction honeypot) and isink (a scalable
sink hole responder) [36, 49].

This approach to monitoring has important auxiliary
benefits to DOMINO that includes the following:

• Active sinks enable examination of the payload pack-
ets. This helps in associating an attack with a particular
vulnerability. For example, examination of the “GET”
request helps distinguish between CodeRed, Nimda and
other variants. This is not possible in traditional NIDS
unless you have a service running on that port.
• Spoofed sources behave differently to an active sink re-
sponse. They do not send the payload packet. Instead,
they respond with a reset or simply drop the SYN/ACK
received from the sink. Thus any source that sends a pay-
load to the active sink can be considered to be malicious or
misconfigured. This enables creation of high confidence
blacklists and attachment of greater accountability to the
attack sources.

To assess the feasibility and scalability of a large scale
active sink deployment, we have been running a version
of an active sink (analogous to a tarpit) on 3 class B net-
works over 4 weeks. The number of monitored IPs were
increased from around 50,000 to 100,000 during the mea-
surement period. Characterization and analysis of data
captured at the sink is discussed in appendix D.

Each axis node ideally maintains both an NIDS and an
active sink over large unused IP address space. Our ex-
perience with similar datasets, as discussed in Section 4,
indicates that a collection of around 20 such data sources
is sufficient to identify global attack characteristics with a
high degree of accuracy. Hence, we expect the number of
axis nodes to be consistently over 20 in order to maximize
effectiveness of the system.
Activity Database: The schema of the axis database has
five important relations: packet logs, local and global
summaries, vulnerabilities and alerts.
DOMINO Summary Exchange Protocol: The



DOMINO axis nodes in the overlay participate in a
periodic exchange of intrusion information. We refer to
the data sets exchanged as summaries - the actual format
of the summaries is described later in this section. The
summaries are exchanged at three levels of granularities:
hourly, daily and monthly. A summary exchange involves
the following steps:

1. Pulling data from the satellites. Alternatively this
could also be implemented as a periodic push. The
choice is left to the satellites.

2. Generation of the summary data and multicast to
other axis nodes.

3. Executing the store operation to enable persistent
availability of this data.

DOMINO Query Engine: The DOMINO axis nodes ex-
port a queriable interface that can be used to tune fire-
wall parameters and to expeditiously react to outbreaks.
Queries from external sources are directed through the
DAPs and their accessibility is controlled to protect the in-
tegrity of the infrastructure. Finally, the query engine also
supports a “trigger” mechanism that allows the axis nodes
to pull data from the satellites on a real-time basis. Such
mechanisms can prove extremely valuable for gathering
fine-grained information for analyzing new outbreaks.

3.1.2 Satellite Communities

Satellite communities are smaller networks of satellite
nodes that implement a local version of the DOMINO pro-
tocol. There is potentially a wide disparity in the sizes and
underlying NIDS and firewall software running in these
networks, and extensions to provide support for DOMINO
would be implemented as plug-ins for these systems.

The satellite nodes are organized in a hierarchy such
that each node routes all communication with the larger
network through a parent node that is either another
DOMINO satellite or an axis node. Data collected at the
satellite nodes is transmitted to the axis nodes through a
combination of push and pull mechanisms. The data ob-
tained from satellites is considered to be less trustworthy
than what is collected at the axis nodes.

The satellites have the potential to generate a large vol-
ume of spontaneous alerts. Due to their limited perspec-
tive, these nodes may also be incapable of performing
local analysis or classification of attack severity. Hence,
these nodes are organized into ad-hoc hierarchies that al-
lows for efficient clustering of neighboring alerts and ro-
bust construction of pertinent digests. Preserving hierar-
chical attributes towards the edges of the DOMINO over-
lay also facilitates efficient data aggregation, intelligent
routing of queries and responses, establishment of trust
levels and simplifies administrative demands.

Axis nodes and satellites enjoy a symbiotic relation-
ship. The representation of the satellites allows the net-
work wider coverage across the IP space. The induce-
ment for the satellites is a global vantage point that allows
for rapid outbreak recognition, dynamic content filtering
and application specific source blacklisting to protect their
networks in a timely manner.

3.1.3 Terrestrial Contributers

The terrestrial contributers form the least trustworthy but
potentially a very large source of data. These nodes do
not implement the DOMINO protocol, may not have ac-
tive sinks and are not bound to any particular software in-
stallation. Rather, these nodes could run any firewall or
NIDS software and simply supply daily summaries of port
scan data. Terrestrial contributers are simply a means for
expanding coverage by including intrusion data sets from
outside of the infrastructure.

3.1.4 DOMINO Messages

To foster interoperability and maximize extensibility the
DOMINO protocol messages are represented in XML. We
extend the schema proposed by the IDWG (Intrusion De-
tection Working Group) in the IDMEF (Intrusion Detec-
tion Message Exchange Format) draft [17]. Our schema
adds five new message types to the two provided by the
IDMEF (alerts and hearbeats). The seven message cate-
gories in DOMINO are as follows: 1) Alerts 2) Summary
Messages 3) Heartbeats 4) Topology Messages 5) Queries
6) DB Updates and 7) Triggers. A description of each
of these message types and their formats is given in Ap-
pendix A.

3.2 Information Sharing

Every axis node maintains a local and global view of in-
trusion and attack activity. The local view considers activ-
ity in its own network and its satellites. Axis nodes period-
ically receive summaries from their peers which are then
used to create the view of global activity. Issues in cre-
ating these views include scalability, timeliness and trust.
Each axis node can employ its own strategy for creating
both local and global views. Strategies for data aggre-
gation to create local and global views are discussed in
appendix B.

3.3 Authentication

The axis nodes in DOMINO are associated with a high
degree of trust so authenticating all inter-axis communi-
cation is vital. We currently use public-key cryptography
(specifically RSA [37]) for this purpose. However, other
schemes for source authentication could also be used. We
do not anticipate the number of axis nodes to scale at the



same rate as the overall DOMINO infrastructure, so key
distribution among these nodes is not envisioned as a big
hurdle. In fact, there could easily be a special certificate
authority (CA) for the DOMINO network, and when a
new axis node joins DOMINO, it can engage in a key dis-
tribution protocol with the DOMINO CA.

When an axis node multicasts an intrusion summary, it
first computes a SHA-1 hash of the summary and appends
the digital signature of the hash to the summary which
is verified by all recipients. This approach is scalable in
DOMINO because axis nodes broadcast summaries rela-
tively infrequently and the summaries are lightweight (or-
der of KBs). For example, in our current implementation
the broadcasting period is approximately one hour. How-
ever, we plan to undertake an experimental evaluation of
the overhead of computing digital signatures in the context
of DOMINO. We are also investigating other mechanisms
for source authentication (eg. [35, 40]), including elliptic-
curve based public-key systems [20]. The public-key of an
axis node can also be used for authentication using a stan-
dard challenge-response protocol (for example, see [32]).

Finally, authentication schemes based on secret key ex-
changes could also be considered. We chose not to pursue
an authentication scheme based on sharing secret keys,
since this would entail sharing a secret key between every
pair of axis nodes. This approach would be less scalable
and require more maintenance than our choice of using a
public-key system.

4 Results

In this section, we first provide background results that
demonstrate the utility of sharing intrusion information.
In particular, we measure the amount of information that is
gained by adding additional measurement nodes. We next
investigate temporal attributes like the stability of black-
lists, effectiveness of blacklist in terms of its size and the
similarity of blacklists with respect to destination IP prox-
imity. We also explore an how information sharing infras-
tructure would affect reaction times during a worm out-
break. The aforementioned results are all based on data
obtained from DSHIELD [46]. We used a set of fire-
wall and NIDS logs of portscans collected over a 4 month
period from over 1600 firewall administrators distributed
throughout the globe as the basis for analysis. Detailed
description of the data appears in appendix C. Descrip-
tion and analysis of the data captured at the active sink is
given in appendix D.

4.1 Marginal Utility

We use an information theoretic approach to quantify
the additional information that is gained by adding new
nodes in a distributed intrusion detection framework. Our
approach utilizes the well known Kullback-Leibler [15]

distance metric for probability distributions to measure the
information gain.

A framework for evaluating the marginal benefit of em-
ploying additional measurement sites in the context of In-
ternet topology discovery has been presented in [7]. They
presented two methodologies for quantifying the marginal
benefit obtained by incorporating results from an addi-
tional experiment: online and offline marginal utility met-
ric. The offline metric considers the benefit of each ex-
periment on an ex post facto basis, measuring each ex-
periment’s usefulness after all the experiments have been
conducted. In our study, each experiment corresponds to
an additional intrusion log submitted from a different net-
work and we choose the offline metric as we are not con-
cerned with the order in which the logs are submitted.

Assume that we have n intrusion logs S1, · · · , Sn. Each
log Si defines a distribution P i over the source ports that
originate a scan, i.e., P i(s) is the probability that a scan
originated from port s given the intrusion log Si. We
rank the intrusion logs by the entropy of the correspond-
ing distribution, i.e., for i < j, P i has higher entropy than
P j . Intuitively, a probability distribution with higher en-
tropy contributes “more” to the overall distribution. Let
P [1,···,i] be the distribution when the information in the
logs S1, · · · , Si are combined and let P be the overall dis-
tribution (when all the intrusion logs are combined). The
marginal utility of Si (denoted by U(Si)) is:

U(Si) = dKL(P [1,···,i]
, P )

=
∑

s

P
[1,···,i](s) log

(

P [1,···,i](s)

P (s)

)

In the equation given above, the sum ranges over all the
source ports that appear in the intrusion log.

We use this framework to measure the effectiveness of
sharing logs in identifying the worst offenders and the ef-
fectiveness of identifying the most frequently scanned tar-
get ports. For each day in the month of June, we randomly
selected 100 /24’s and 100 /16’s from the DSHIELD logs
to determine the number of participating networks that are
required to obtain a stable distribution.

Figure 2(a) depicts the diminishing marginal benefit of
adding additional network logs for developing port sum-
maries. The curves for /16 and /24 networks show a very
similar trend with the additional benefit declining to al-
most zero at 20 and 40 networks respectively. The mes-
sage here is that there is some benefit to having a bigger
measurement networks, but clearly it is more important to
have measurements from multiple vantage points.

The graph of the marginal benefit for developing worst
offender list (or blacklist) is given in Figure 2(b). The
message is even more pronounced in this graph; clearly
size does not matter, but more is better! Together the



(a) Utility of additional subnets for detecting worst offender. (b) Utility of additional subnets for detecting top target port.

Figure 2. Marginal Utilities

graphs imply that a collaboration of 40-60 networks is ad-
equate to develop port summaries and blacklists with a
high degree of confidence. It is also interesting to note
that the actual marginal utility values for worst offenders
is higher than that for port summaries. This suggests that
it is more important to add additional sites for developing
blacklists than it is for creating port summaries.
Summary: Marginal utility of information used to detect
target and source ports (for port scans) is minimal after 40
nodes. This suggests that with respect to identifying target
ports and the worst offenders for port scans, a DOMINO
network with approximately 40 axis nodes will suffice.

4.2 Blacklist Effectiveness

One of the crucial operational parameters for the
DOMINO overlay is the size of the blacklists that are
exchanged between the participants. The DOMINO axis
nodes develop and exchange service specific blacklists at
multiple granularities.

To study this, we generated a combined blacklist for
all the DSHIELD providers at three different granulari-
ties (daily, weekly and monthly). Figure 3(a) illustrates
the relationship between the blacklist length and its effec-
tiveness in terms of the percentage of all scans blocked.

The graph shows that at any given hour, around 90%
of all scanning activity can be attributed to about 1024
source IPs. More surprisingly, a global daily blacklist of
16 sources, account for more than 60% of all scans. Simi-
lar benefits can be achieved by a stale (monthly) blacklist
of around 250 sources.
Summary: Few sources are responsible for a large fraction
of all scans and many sources persist. Therefore, the size
of the blacklists in the DOMINO network does not have
to be very large.

4.3 Blacklist Aging

Figure 3(b) provides another means to visualize the ag-
ing of blacklists. We again create blacklist of the top 60
sources at multiple granularities and graph the “average

daily number of scans” generated by each rank. For the
higher ranks (top 10), the hourly blacklists clearly deliver
superior performance. However, for the lower ranks there
are instances where the monthly blacklist performs as well
or better than the daily blacklist. This validates the need
for maintaining blacklists at multiple granularities, and
suggests that at lower granularities there is greater bene-
fit to creating longer blacklists.

4.4 IP Address Proximity

IP address proximity is an important consideration in
the organization of the DOMINO topology. There are two
conflicting issues that must be resolved in the allocation
of satellites to axis nodes. First, to minimize false alarms
and to effectively cluster related scans and attack episodes,
it would be beneficial to organize nearby nodes (or net-
works) under the same hierarchy (since scanning and at-
tack tools are often designed to sequentially traverse IP
space). However, for every axis node to obtain a compos-
ite view of the attack activity, it would be ideal to have
data from a diverse set of IP blocks. We would like to
understand the appropriate granularity of aggregation that
maximizes this tradeoff.

We randomly selected 100 /24 networks and measured
the similarity in their monthly blacklists for June 2002.
We defined the IP distance between two networks A.B.C
and X.Y.Z as follows:

Dist = |A − X| ∗ 2562 + |B − Y | ∗ 256 + |C − Z|

To express the similarity between blacklists of two net-
works, we needed a metric that provides greater weight
for a match of higher rank. The asymmetric similarity
of list B2 to B1 is denoted by sim(B1, B2). The sym-
metric similarity between lists B1 and B2 (denoted by
SymSimilar(B1, B2)) is the average of sim(B1, B2) and
sim(B2,B1). Formally, the similarity metrics are defined
as follows (l denotes the length of the lists B1 and B2):
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Figure 3. Effectiveness of Blacklists.

sim(B1, B2) =
∑

si∈B1∩B2

[l − rank(si, B2)]

SymSimilar(B1, B2) =
sim(B1, B2) + sim(B2, B1)

2

Figure 4 shows the similarity between blacklists as a
function of the IP distance between two networks. The
figure clearly shows that there is a high degree of simi-
larity between the blacklists of /24 networks that are close
together (in the same /16) and little similarity farther away.

Summary: Similarity of the two blacklists is positively
correlated with the IP distance between their respective
networks. This observation has several consequences in
the context of DOMINO. First, satellite nodes in the same
/16 IP address should be organized under a single axis
node and that the set of /16 address spaces should be ran-
domly distributed among the axis participants. Second,
when an axis node generates its version of global sum-
mary, simple aggregation would be likely to work just as
well as weighted merging.

4.5 Retrospective Analysis: SQL Snake

In this section, we perform a retrospective analysis on
the SQL-Snake Outbreak from May 2002. Unlike its
precedents (CodeRed and Nimda) SQL-Snake was a rel-
atively slow-spreading worm, due to the small size of the
susceptible population and its mode of propagation (TCP).
We wanted to measure how information sharing through
a system like DOMINO would affect reaction time and

alarm rate during such an outbreak. We randomly se-
lected 100 /24 networks and trained them with the port
summary data of port 1433 (used by MS-SQL server) for
the first two weeks of May. In particular, for each network
we measured the hourly average number of scans and the
average number of sources.

Figure 5 shows the hourly scanning rate in terms of the
number of scans and the number of distinct sources scan-
ning port 1433 during the 48 hours surrounding the out-
break. We denote the first visually apparent point of an
outbreak (5/21, 00:00) as the inflection point.

We simulated 100 random iterations of DOMINO net-
works of axis nodes and in each iteration we measured the
number of outbreak alarms generated in networks of of
size ranging from 1 to 100 nodes. We assumed that the
DOMINO nodes exchange hourly summaries of scanning
activity but did not have any triggers that fired appropriate
spontaneous alerts. In this experiment, we used a voting
scheme to generate an outbreak alarm, i.e., an outbreak
alarm is generated if atleast 20% of the nodes vote for an
alarm. A node votes for an alarm if the following holds:1

• 200% increase in number scans from the hourly av-
erage, and

• 100% increase in the number of sources from hourly
average, and

• number of sources is greater than five.

1We could have chosen a more complicated rule for generating
alarms (for example, one based on statistical anomaly detection). How-
ever, this simple rule suffices to illustrate our point.
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Figure 4. Similarity of Blacklists with IP prox-
imity.

The reaction time is defined as the elapsed time between
the inflection point and the first alarm after that point. Fig-
ure 6 shows the decrease in observed reaction time from
an average of more than an hour with a single node to al-
most zero as we add sufficient axis nodes (approximately
50). Figure 7 displays the average number of alarms,
which decreases with topology size and stabilizes at about
8. These alarms are not false alarms, but correspond ex-
actly to the 8 preceding hours before the inflection point
that show a gradual increase in the source rates and are
points when the outbreak could have been predicted ear-
lier by DOMINO. The oscillatory behavior of the alarm
rate is an artifact of the rule that requires at least an inte-
gral 20% of the participants to vote for an outbreak.
Summary: By adding sufficient nodes, outbreaks can be
detected early with minimal reaction time and few false
alarms.

4.6 Retrospective Analysis: SQL-Sapphire

The SQL-Sapphire worm also known as SQL-Slammer
was released in January 2003, and wreaked significant
havoc on the networking infrastructures in under ten min-
utes. The worm distinguished itself from its predecessors
by its small payload size (single UDP packet of 404 bytes)
that enabled a rapid propagation rate in spite of a small
susceptible population (75000) [27]. The reality of such
high speed worms [44] implies that distributed architec-
tures, such as DOMINO, might have the best opportunity
to detect and react to such worm outbreaks.

Figure 8(a) shows the exponential increase in the num-
ber of scans and number of sources in the minutes follow-
ing the outbreak. For such epidemics, alarms generated
through hourly axis summaries do not suffice. DOMINO’s
mechanism to deal with such scenarios are spontaneous
alerts that are issued through triggers.

Whenever possible, DOMINO nodes associate related
packets with episodes, e.g., horizontal scan episode (se-
quential scan of several machines in the same subnet
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Figure 5. Scan Rate of 48 hrs surrounding
SQL-Snake outbreak.

Figure 6. Reduction in Reaction Time as we
add more networks

aimed at the same target port), vertical scan episode (scan
of multiple ports of single IP to survey several vulnerabil-
ities), and a coordinated scan episode (distributed scan of
a subnet through multiple sources). For episodes on ev-
ery port, DOMINO nodes maintain the average number of
scans, the average number of attack sources and the dura-
tion. A trigger for a spontaneous alert can be defined as
an episode that deviates from the average as follows:2

• number of sources is > 5, and

• the number of scans is > 10 times the average, or

• the number of sources is > 10 times the average, or

• the duration is > 10 times the average.

We recognize the existence of an outbreak when at least
10% (rule 1), 20% (rule 2) or 30%(rule 3) of the partic-
ipants generate a spontaneous alert in the last hour. We
repeated the previous experiment with 100 random iter-
ations. In each iteration, we picked 100 random class-C
subnets and used the data from first 2 weeks of January

2As in the previous subsection, we can use a more sophisticated rule
to generate a spontaneous alert. However, a simple rule will suffice to
illustrate our point.



Figure 7. Change in Alarm Rate as we add
more networks.

to train the system. We measured episode rates, simu-
lated spontaneous alerts and then cataloged the change re-
action time as we add additional subnets under each of the
3 rules. Figure 8(b) shows that by adding sufficient nodes,
the reaction time can be reduced to a few seconds. The
goal of DOMINO is not outbreak containment but rather
outbreak recognition and insulation of maximal number
of participants [29].

In [51] the authors show that the worm infection rate
and susceptibility can be accurately predicted by observ-
ing data collected from a single network that spans a small
fraction of the entire address space.

4.7 Slow Scanners: Blacklist Evasion

In this section we evaluate the ability of slow scan-
ners to evade blacklists generated by the infrastruc-
ture. DOMINO axis nodes periodically exchange blacklist
summaries which contain a finite list of Top-N local worst
offenders and their volume of activity. For simplicity, we
assume that summaries are generated at networks on the
order of /16-s. To ensure that a source does not appear in
a global blacklist, it must ensure that it does not appear in
any of the local blacklist summaries.

The optimal strategy for an omniscient adversary would
be to simultaneously scan all subnets, such that the rate at
each /16 would be below the blacklist threshold (volume
of the N-th offender). In this scenario, the time to com-
pletely scan a single subnet would essentially be the same
as the time required to scan the entire IP address space.
The utility of DOMINO in such scenarios is in its ability
to prolong this scanning process.

We perform a worst case analysis using logs from
DSHIELD. We built hourly and daily blacklists on a /16
for an entire month and computed the 90-th percentile
values as the basis for blacklist thresholds for N from 1-
100. Figure 9 shows the blacklist thresholds and how
the time to scan an entire subnet (or IPv4 address space)
changes with the blacklist size (N) and granularity (hourly,

daily). There are several noteworthy characteristics in
these graphs.

First, hourly and daily blacklists can be an effective de-
terrant for evasive scanners. For example, to evade a daily
blacklist of 100 sources it would take almost 1000 days
(little less than 3 years) and more than a year to evade an
hourly blacklist of top 40 sources. Secondly, for larger
values of N, daily blacklists seem to be more effective
than hourly blacklists. Finally, the staircase behavior of
the hourly blacklist is due to the heavy tailed nature of
hourly sources. For example, between N=60-100 we have
sources that have exactly 4 scans during the hour, N=50-
60 corresponds to 5 scans and so on. The flat region be-
tween N=0-20 in the daily blacklist corresponds to sources
that horizontally scan the entire /16 exactly once (65K
scans).

5 Threat Vulnerability

As a widely deployed infrastructure, DOMINO itself
must be considered a target for attacks. To be effec-
tive, DOMINO must be resilient to a variety of attacks.
While its design is robust, we have not attempted to ad-
dress all possible vulnerabilities of DOMINO to attack.
By virtue of the fact that its architecture enables hetero-
geneous client participation, it may well be infeasible to
address all possible vulnerabilities. We address threats to
DOMINO through a model that considers the most likely
forms of attacks that may be attempted. These include
attacks intent upon denying service in the infrastructure,
attempts to infiltrate the infrastructure, and attacks intent
upon reducing DOMINO’s effectiveness.

5.1 Denial of Service

Threat: An attempt to effectively remove node(s) through
DoS attack from systems outside of DOMINO.
Remedy: In the face of standard packet flood attacks, it is
certainly possible that some set of DOMINO nodes could
be effectively removed from the infrastructure. In fact, it is
a non-goal of the infrastructure to protect nodes from DoS
attack. However, the distributed, coordinated nature of
the infrastructure makes it robust to the removal of nodes
through failures or attacks.
Threat: A compromised DOMINO node begins sending
large amounts of what appears to be legitimate data in an
attempt to mount a DoS attack on another axis node.
Remedy: An axis nodes can apply filters to incoming data
such that data sent by any node or set of nodes cannot ex-
ceed a specified threshold. The configuration of filters will
be dependent both upon system resources and upon histor-
ical variability. If multiple axis nodes have been compro-
mised, then filtering could cease to be effective.
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5.2 Infiltration

Threat: An attempt to gain unauthorized access to an axis
node.
Remedy: DOMINO is not specifically concerned with in-
dividual system security. We assume that standard best
practices for hardening networked systems to intrusions,
such as keeping up with operating system patches and
closing all unused services, will be employed. Further-
more, we expect that the vulnerability of DOMINO spe-
cific software such as buffer-overrun exploits can be lim-
ited through best practices of software engineering.
Threat: An attempt to masquerade as an axis node.
Remedy: As discussed in Section 3.3 an axis node can be
authenticated by other axis nodes. We assume that axis
nodes are intermittently forced to participate in a mutual
authentication protocol by other axis nodes. If an axis
node N fails the authentication protocol initiated by a spe-
cific axis node, it broadcasts a message to axis nodes in
the DOMINO network informing them that axis node N

might be compromised.

5.3 Obfuscation

Threat: A compromised node sends data (perhaps large
amounts) that is supposed to be real in an attempt to ob-
fuscate some other activity.
Remedies: There are two remedies for this threat. First,
nodes attach SHA-1 digest with each block of data. The
collision resistant property of SHA-1 will make it very
hard for the adversary to tamper with the data sent by an
axis node. The second remedy stems from the distributed
nature of DOMINO. When results are forwarded between
axis nodes, filters can be applied during the data fusion
process such that no single node has the ability to skew
results through simply increasing data volume. Filtering
within a node set below an axis node can also be applied at
the discretion of the axis node. The effect will be the same
as the axis level filter. For obfuscation attacks not based
on volume, the fusion process is designed to emphasize
the coordinated perspective which significantly reduces or
eliminates the effectiveness of this attack.
Threat: Attempts at stealthy and/or coordinated scan-
ning.
Remedy: Perhaps the most important strength of
DOMINO is the enhanced perspective afforded through
coordination of multiple sites. This enhanced perspective
can expose both stealthy and coordinated scans at much
finer granularity than detection at a single site. However,
if the adversary is willing to sufficiently slow their scan-
ning or employs sufficiently many nodes in a coordinated
fashion, they could still elude detection in DOMINO. The
remedy is to include enough nodes in DOMINO to make
the threshold on stealthy or coordinated scanning high

enough to render this alternative infeasible.
Threat: An attempt to avoid active sink nodes.
Remedy: The most basic function of active sink nodes is
to track scanning activity on unused IP addresses. In this
sense, they will always be useful even if some adversaries
can isolate their use to specific networks or IP addresses
within networks. The combined use of an NIDS (on live
IP addresses) and active sinks (unused IP addresses) will
mean that all intrusion attempts have the possibility of be-
ing tracked. A simple way to confuse active sink iden-
tification is to employ probabilistic responses. Namely,
instead of responding to all SYN packets in an IP block,
only respond to some number of them.

We believe that as long as attackers spoof source ad-
dresses and active sink nodes monitor significant fraction
of the unused IP space, traffic captured by the sinks will
provide valuable insight into network intrusions.

6 Conclusions and Future Work

In this paper, we describe and evaluate DOMINO, a
cooperative intrusion detection system. DOMINO is de-
signed to enable intrusion information sharing in a glob-
ally distributed network consisting of: 1) trusted axis
nodes organized in a peer-to-peer overlay, 2) satellite
nodes associated with each axis node that are hierarchi-
cally arranged, 3) terrestrial nodes, which are deployed at
the leaves of the infrastructure, that provide daily intrusion
summaries. DOMINO’s design is based on heterogeneous
data collection through NIDS, firewalls and active sinks.
This architecture enables DOMINO to be secure, scalable,
fault-tolerant, and facilitates data sharing.

Our evaluation of DOMINO is based on data from two
sources. The first is a set of intrusion logs collected over a
four month period from over 1600 networks world wide.
The second is from a prototype sink implementation on a
single network which monitors over 100K IP addresses.
Our evaluation clearly demonstrates the utility of sharing
information between multiple nodes in a cooperative in-
frastructure. We use an information- theoretic approach
to show that perspective on intrusions can be greatly en-
hanced by cooperation of a relatively small number of
nodes. Using the 2002 and 2003 SQL-worm outbreaks,
we demonstrate that false-alarm rates can be significantly
reduced in DOMINO and that reaction time for outbreak
detection can be similarly reduced. Finally, we provide an
initial evaluation of the effectiveness of active sinks in dis-
criminating between types of attacks based on examining
payload data. Our results clearly demonstrate that active
sinks provide important insight in this regard. Based on
these analysis, we conclude that DOMINO offers a signif-
icant opportunity to improve intrusion and outbreak de-
tection capability in the Internet.

We intend to pursue future work in a number of direc-



tions. First, we plan to develop more interactive sink-hole
responders that would further enhance attack discrimina-
tion capability. Secondly, we plan to deploy an opera-
tional DOMINO infrastructure. This will enable us to test
and further develop the DOMINO topology creation and
maintenance protocols. As we expand, the infrastructure
will enable case studies of future intrusion and outbreak
activity. We also plan to investigate alternative methods
for information merging and sharing with the goal of im-
proving efficiency and precision. Finally, we plan to de-
velop tools for automating firewall rule generation.
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A DOMINO Messages

To foster interoperability and maximize extensibility
the DOMINO protocol messages are represented in XML.

We extend the schema proposed by the IDWG (Intrusion
Detection Working Group) in IDMEF (Intrusion Detec-
tion Message Exchange Format) draft [17]. Our schema
adds five new message types to the two provided by the
IDMEF (alerts and hearbeats). The seven message cate-
gories in DOMINO are as follows:

Alerts - Alerts are spontaneous responses to events as de-
fined by NIDS and firewall or custom policies. Most alerts
are generated at the small networks or satellites, however
they might get propagated to the axis level depending on
the pervasiveness and severity. Alert clustering and sup-
pression is a very challenging problem and vital to the op-
erational success of the infrastructure. The IDMEF draft
defines a few alert classifications: tool alert, correlation
alert and overflow alert. The DOMINO axis nodes also ex-
change alerts when there is a significant deviation from the
periodic summaries. For example, outbreak alerts, black-
list alerts and denial-of-service attack alerts. The DTD for
an alert is as follows:

<!ELEMENT Alert (CreateTime, DetectTime?,
AnalyzerTime?, Classification, Source*, Target*,
AdditionalData?)>

<!ATTLIST Alert version CDATA #FIXED ’1’, ident
CDATA #REQUIRED, impact CDATA ’unknown’>

Summary Messages - DOMINO summaries are typi-
cally exchanged by the axis peers in one of three pos-
sible formats relating to the type of information being
transmitted. The summary message types include: Port
Summaries, Source Summaries and Cluster Summaries.
DOMINO also defines three levels of trust (low, medium
and high) for summary messages based on their source
(axis/satellite). The choice of three levels of trust is some-
what arbitrary and are used as cues for intelligent aggre-
gation. The DTD for summary messages is as follows:

<!ELEMENT Summary (CreateTime, SummaryDuration,
IPBlockSummary+)>

<!ATTLIST Summary version CDATA #FIXED ’1’, ident
CDATA #REQUIRED>

<!ELEMENT IPBlockSummary (MinIP, MaxIP, IPCount,
TrustLevel, PortSummary?, SourceSummary?,
ClusterSummary?)>

<!ELEMENT PortSummary (VulnID/PortNum, NumUniqSrcIP,
NumUniqDestIP, ScanCount>)

<!ELEMENT SourceSummary (VulnID/PortRange, ScanCount,
AggregateScanCount, NumUniqTargets)>

<!ELEMENT ClusterSummary(SrcIPList, DestIPList,
VulnID/PortRange, ScanCount)>

Heartbeats - In DOMINO the Satellite Nodes periodi-
cally exchange heartbeat messages with the parent nodes.
These are used to indicate the current status to higher level
nodes and vice-versa. These interval of heartbeats is left
up to the satellites, it could be say every 10 minutes or
every hour.

<!ELEMENT Heartbeat (CreateTime, AnalyzerTime,
AdditionalData*)>

<!ATTLIST Heartbeat ident CDATA #REQUIRED>



Topology Messages - There are four different types of
topology messages: adopt, detour, recall, and divorce.
When a satellite node is disconnected from its parent, it
tries to reconnect through the normal heartbeat exchange
protocol. If this fails, it issues an adopt message to a DAP
that is then multicast to the overlay of axis nodes. An axis
node might forward the adopt message to any applicable
children. The satellite analyzes the acknowledgments and
responds with a detour message to the most eligible par-
ent. When an axis or satellite parent restarts, it issues a
recall message to all its children. The child can accept
the invitation to rejoin by issuing a divorce message to the
foster parent and a simultaneous detour message to the
original parent.

<!ELEMENT TopologyMessage (CreateTime, Type,
IPBlockSummary?>)

<!ATTLIST TopologyMessage version CDATA #FIXED
’1’, ident CDATA #REQUIRED>}

Queries - The DOMINO Query Messages are exchanged
in XQuery format. Since the axis nodes maintain a con-
sistent schema inter-axis queries could be done in SQL.
However, we chose to use XQuery to maximize interop-
erability with satellites. We provide an example query
which is to create a top 10 blacklist for port 1433 between
two specified times:

for $src in distinct(document("scans.xml"))//source
let $scan := document("scans.xml")//:scan[source = $src]
let $time := $scan/timestamp, $port = $scan/port

where $port = 1433 and $time > 1044206900
and $time < 1044206960

return
<blacklist>

<source> {$src} </source>
<num_scans> {sum{$scan/count}} </numscans>

</blacklist>
} sortby {sum{$scan/count}} limit 10

DB Updates - The DOMINO protocol also provides an
automatic mechanism for updating NIDS rulesets and the
axis vulnerability database. This can also be considered
as a means for dispensing timely content based filters to
the satellites. The format of these messages is straightfor-
ward.

<!ELEMENT DBUpdate (CreateTime, VulnerabilityID,
Signature)>

<!ATTLIST DBUpdate version CDATA #FIXED ’1’, ident
CDATA #REQUIRED, description CDATA>

<!ELEMENT Signature (TargetPorts+, Payload?,
SourcePort*, Protocol+, Seqno?)>

Triggers - Triggers can be issued by DOMINO axis and
Satellites to nodes that are lower in the hierarchy. A trig-
ger has three components 1) Query 2) Constraint and 3)
Action. We define two types of actions: alerts and fil-
ter rules. An example of an trigger is the generation of an
outbreak alert when the number of scans exceeds a certain
threshold.

<!ELEMENT Trigger (CreateTime, Query, Constraint, Action)>
<!ATTLIST Trigger version CDATA #FIXED ’1’, ident

CDATA #REQUIRED, description CDATA>
<!ELEMENT Action (Alert?, Filter?)>

B Information Sharing

Potential strategies for information sharing include the
following:
Local aggregation: Once intrusion information has been
gathered at the satellite nodes, the next step is to consider
how to organize and refine the data to create a coherent
picture of malicious activities. Moreover, if satellite nodes
send “raw alerts”, the axis nodes will get overwhelmed.
Therefore, alerts from the satellite nodes need to be “ag-
gregated” before they are communicated to the axis nodes.
Cuppens [12] describes a cooperative intrusion detection
module or CRIM as a means for combining alerts from
different IDSs. DOMINO adopts and extends this design
for the purposes of aggregating “raw alerts”.
Global aggregation: The most straight-forward way to
merge logs from multiple sites is through a simple ad-
dition or average across each dimension of data. While
this approach provides a simple means for organizing and
summarizing data, it also has the risk of inaccuracy. As an
example, consider the case of a Port Summary. It seems
logical to add the the number of scans and the number of
unique destinations, but simply adding the set of unique
sources across axis nodes is almost certainly not appro-
priate. DOMINO currently performs simple aggregation
for Port Summaries (but does not consider the results for
sources).
Weighted merging: A potentially important considera-
tion in fusing summaries is IP address proximity. In par-
ticular, summaries generated from “neighboring” IP ad-
dress blocks might be more germane than those gener-
ated in a “distant” network (since it is not uncommon for
scans or attacks to proceed horizontally through IP space).
A weighted merging approach that emphasizes proximity
might be more appropriate. DOMINO currently performs
a very simple weighted merging of blacklists.
Sampling: Sampling is the standard method for reducing
the scale of measurement data. The goal in any sampling
approach is to balance quantity of data with precision of
measurement. In the case of DOMINO, this is challeng-
ing since intrusions can take the form of attacks (which
would be easy to sample) and stealthy scans (rare events
which are hard to sample). Any sampling method used in
DOMINO would have to poses the ability to expose both
types of events. We are investigating the feasibility of em-
ploying sampling as a technique for data sharing.

A related issue that is important in DOMINO is the ag-
ing of local data. The packet data accumulated in large
sinks could be on the order of 100’s of Megabytes per
day. Summaries, however, are meant to be light weight so



Table 1. Monthly summary of DSHIELD logs
Month No: Scans No: Dest IPs

May. 2002 48 million 375,323
June. 2002 61 million 382,224
July. 2002 68 million 402,050

simply purging data older than a certain number of days
might be a reasonable approach in practice. However,
care must be taken to ensure that periodic patterns, such
as the monthly rise and fall of the CodeRed worm, are
not lost. At present, we propose that DOMINO maintain
summaries at several granularities and uses weighted av-
eraging to merge older summaries with more timely data.

C Intrusion Trace Data

We use a set of firewall and NIDS logs of portscans col-
lected over a 4 month period from over 1600 firewall ad-
ministrators distributed throughout the globe as the basis
for analysis of DOMINO. The logs provide a condensed
summary (lowest common denominator) of portscan ac-
tivity obtained from various firewall and NIDS platforms.
Some of the platforms supported include BlackIce De-
fender, CISCO PIX, ZoneAlarm, Linux IPchains, Port-
sentry and Snort. This approach significantly increases
the coverage and reduces reliance on individual NIDS’s
interpretation of events.

Table 2 illustrates the format of a typical log entry.
The date and time fields are standardized to GMT and
the provider hash allows for aggregation of destination
IP addresses that belong to the same administrative net-
work. Table 1 provides a high level summary of the data
that was used in this analysis3. The dataset was obtained
from DSHIELD.ORG – a research effort funded by the
SANS Institute as part of their Internet Storm Center [46].
The goals of DSHIELD include detection and analysis of
new worms and vulnerabilities, notification to ISPs of ex-
ploited systems, publishing blacklists of worst offenders
and feedback to submitters to improve firewall rulesets.
The data is comprised of logs submitted by a diverse set
of networks and includes 5 Class B networks, over 45
Class C sized networks and a large number of smaller
sub-networks. The networks represented in this data set
are widely distributed both geographically and topologi-
cally in the autonomous system space. This provides a
unique perspective on global intrusion activity highlighted
by DSHIELD’s contribution in the detection and early
analysis of CodeRed, Nimda and SQL worm(s) outbreaks.

3We also used DSHIELD data for port 1433 from January, 2003 for
our SQL-Sapphire analysis.

D Preliminary Results from the Active Sink

Figures 10 and 11 show the number of packets and flows
per second respectively that were inbound and outbound
from the active sink. The positive flows are outbound and
the negative are inbound. As might be expected, the num-
ber of inbound packets is higher than outbound because
the active sink does not respond to the persistent payload
packets. The difference in the number of inbound and out-
bound flows is an artifact of the way flows are accounted
over 5 minute intervals. It should not be surprising that
there are no outbound UDP packets. The number of in-
bound packets was typically between 200-300 packets or
about 40-50 connection attempts per second. The active
sink running on a Pentium 4 Linux PC, had no problem
coping with this traffic rate since no per-connection state
is maintained. The connection attempts spanned a wide
variety of ports and originated from hundreds of thou-
sands of sources. A typical summary of the top ports for
a given week is shown in Table 3. The ms-sql-s and ms-
sql-m scans correspond to the recent SQL-Sapphire worm
and SQL-Snake respectively. The HTTP probes are from
CodeRed and Nimda infected hosts. The microsoft-ds
scans, port 139, port 135 scans are from the Lioten worm
[9]. These are followed by scans for four different open
proxy servers (often used as a means obfuscate Internet
activity).

Figure 10. Protocol breakdown of active sink
packets Jan 28 - Feb 4.

Figure 11. Protocol breakdown of active sink
flows Jan 28 - Feb 4.

An important application of the traffic captured by the
active sink nodes is generating signatures for malicious



Table 2. Sample log entries from portscan logs
Date Time Sub. Hash No: Scans Src IP Src Port Targt IP Targt Port TCP Flags
2002-03-19 18:35:18 provider2323 3 211.10.7.73 1227 10.3.23.12 21 S
2002-03-19 18:35:19 provider2323 16 211.10.7.73 1327 10.3.23.12 53 SF

Table 3. Sample weekly summary top probed services
Service Port Protocol Flows Octets Packets
ms-sql-s 1434 UDP 548838 388453676 1371925
microsoft-ds 445 TCP 541528 42580046 545867
ms-sql-m 1433 TCP 301428 115385725 997172
http 80 TCP 249569 66851055 728766
netbios-ss 139 TCP 99075 10894702 230539
AnalogX (Proxy Server) 6588 TCP 82707 8594185 134813
https 443 TCP 69025 7988260 158725
HyView Proxy 3128 TCP 27483 1146324 27970
http-alt 8080 TCP 27109 1109656 27374
Win NT/2000 RPC 135 TCP 6765 291224 7279

payloads, e.g., signature for a payload of a worm. Cur-
rently, NIDS use simple pattern matching to identify ma-
licious payloads. This method can lead to significant num-
ber of false positives because variations in malicious pay-
loads cannot be detected. We demonstrate how the traffic
captured by the active sink nodes can be used to create a
more “robust” signature for a malicious payload.

Our first step is to cluster the payloads of the traffic ob-
served at the active sink nodes. Intuitively, each cluster
corresponds to malicious payload. Next, we construct a
classifier for each cluster. These classifiers can then be
used by a NIDS to identify malicious payloads. We have
only performed the clustering step. In the future, we will
investigate constructing classifiers and their use in iden-
tifying malicious payloads. However, the results of the
clustering are encouraging.

We performed clustering on data collected between Jan
6, 2003 and Jan 28, 2003. First, we constructed a finger-
print for each payload. A fingerprint for a payload is the
distribution over bytes between 0x1F and 0x7E (these
are the same bytes that are used by Snort in displaying
payloads). Each fingerprint also records the number of
bytes that were outside this range. The distance between
two payloads is the Kullback-Leibler distance between
their fingerprints. Payloads were clustered using the k-
means [15] algorithm and the sum of squared metric was
used to determine the optimal number of clusters.

Our results show that there are six distinct clusters (see
Table 4). Figure 12 provides a cumulative distribution
function of the distance from the cluster centers. Clus-
ters 1 and 3 are perfect clusters (distance of zero). The
clusters with port 80 (2 and 5) and port 1433 seem to have
little more variability. Port 8080 scans in cluster 2 and

5 appear to be CodeRed/Nimda variants. The variability
in these clusters can be attributed to two reasons: each
attack of CodeRed,Nimda and SQL-Snake is a series of
similar packets that attempt to open a shell and execute a
series of commands. There are several variants of these
worms (especially true of port 80) that try a slightly dif-
ferent search path from the default for the presence of an
exploit. Therefore, our experiments demonstrate that clus-
ters naturally correspond to classes of malicious payload,
so classifiers generated from these clusters should be suc-
cessful in identifying malicious payloads.

Figure 12. Variability in the payload clusters.

Table 4. Cluster Summary
Cluster Port (No. Scans)
cluster1 445 (1090338)
cluster2 80 (1315982), 3128 (10995), 8080 (24066)
cluster3 139 (160668), 443 (27377), 3128 (7181)
cluster4 135 (5791)
cluster5 23 (29108), 80 (2309958), 8080 (10770)
cluster6 1433 (2167842)


