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Abstract. The freedom and transparency of information flow on the Internet has
heightened concerns of privacy. Given a set of data items, clustering algorithms
group similar items together. Clustering has many applications, such as customer-
behavior analysis, targeted marketing, forensics, and bioinformatics. In this pa-
per, we present the design and analysis of a privacy-preserving k-means cluster-
ing algorithm, where only the cluster means at the various steps of the algorithm
are revealed to the participating parties. The crucial stepin our privacy-preserving
k-means is privacy-preserving computation of cluster means. We present two pro-
tocols (one based on oblivious polynomial evaluation and the second based on
homomorphic encryption) for privacy-preserving computation of cluster means.
We have a JAVA implementation of our algorithm. Using our implementation,
we have performed a thorough evaluation of our privacy-preserving clustering al-
gorithm on three data sets. Our evaluation demonstrates that privacy-preserving
clustering is feasible, i.e., our homomorphic-encryptionbased algorithm finished
clustering a large data set in approximately66 seconds.

1 Introduction

The ease and transparency of information flow on the Internethas heightened concerns
of personal privacy [9, 49]. Web surfing, email, and other services constantly leak infor-
mation about who we are and what we care about. Many have accepted that some pri-
vacy will be lost in exchange for the benefits of digital services [48]. However, in other
domains privacy is so important that its protection is federally mandated [1]. Technolo-
gies for protecting privacy are emerging in response to these growing concerns [8, 18,
45]. Recently, more emphasis has been placed on preserving the privacy of user-data
aggregations, e.g., databases of personal information. Access to these collections is,
however, enormously useful. It is from this balance betweenprivacy and utility that the
area ofprivacy preserving data-miningemerged [3, 33].

Unsupervised learning deals with designing classifiers from a set of unlabeled sam-
ples. A common approach for unsupervised learning is to firstcluster or group unla-
beled samples into sets of samples that are “similar” to eachother. Once the clusters
have been constructed, we can design classifiers for each cluster using standard tech-
niques (such as decision-tree learning [38, 44]). Moreover, clusters can also be used to
identify features that will be useful for classification. There is significant research on
privacy-preserving algorithms for designing classifiers [3, 33]. This paper addresses the
problem of privacy-preserving algorithms for clustering.



Assume that AliceA and BobB have two unlabeled samplesDA andDB. We
assume that each sample inDA andDB has all the attributes, or the data sets are hor-
izontally partitioned betweenA andB. Alice and Bob want to cluster the joint data
setDA ∪ DB without revealing the individual items of their data sets (of course Alice
only obtains the clusters corresponding to her data setDA). In this paper, we assume
that clustering the joint data setDA ∪ DB provides better results than individually
clusteringDA andDB. Using a large data set from the networking domain we also
demonstrate that clustering the joint data set results in significantly different clusters
than individually clustering the data sets (see end of section 5 for details). We present
a privacy-preserving version of thek-means algorithm where only the cluster means at
the various steps of the algorithm are revealed to Alice and Bob.

There are several applications of clustering [14]. Any application of clustering where
there are privacy concerns is a possible candidate for our privacy-preserving clustering
algorithm. For example, suppose network traffic is collected at two ISPs, and the two
ISPs want to cluster the joint network traffic without revealing their individual traffic
data. Our algorithm can be used to obtain joint clusters while respecting the privacy of
the network traffic at the two ISPs. An application of clustering to network intrusion
detection is presented by Marchette [36]. Clustering has been used for forensics [43]
and root-cause analysis for alarms [29]. Clustering has also been used in bioinformat-
ics. For example, Dhillonet al. [11] have used clustering to predict gene function. We
believe that privacy-preserving clustering can be used in bioinformatics where the data
sets are owned by separate organizations, who do not want to reveal their individual
data sets.

This paper makes the following contributions:

– We present the design and analysis of privacy-preservingk-means clustering al-
gorithm for horizontally partitioned data (see Section 3).The crucial step in our
algorithm is privacy-preserving of cluster means. We present two protocols for
privacy-preserving computation of cluster means. The firstprotocol is based on
oblivious polynomial evaluation and the second one on homomorphic encryption.
These protocols are described in detail in Section 4.

– We have also have a JAVA implementation of our algorithm. We believe that mod-
ular design of our implementation will enable other researchers to use our im-
plementation. Our clustering tool is available by request.We evaluated the two
privacy-preserving clustering algorithms on real data sets. Our first conclusion is
that privacy-preserving clustering is feasible. For example, for a large data set
(5, 687 samples and12 features) from the speech recognition domain our homomorphic-
encryption-based algorithm took approximately66 seconds. We also observed that
both in bandwidth efficiency and execution overhead algorithms based on homo-
morphic encryption performed better than the one based on oblivious polynomial
evaluation. A detailed discussion of our evaluation is given in Section 5.

2 Related Work

Privacy issues in statistical databases have been thoroughly investigated [2, 10]. Re-
cently privacy-preserving data mining has been a very active area of research. Initial



focus in this area was on construction of decision trees fromdistributed data sets [3, 33].
There is also a significant body of research on privacy-preserving mining of association
rules [15, 46, 50]. We will focus on existing work on privacy-preserving clustering.

In general, there are two approaches for designing privacy-preservingmachine learn-
ing algorithms. The first approach is to use transformationsto perturb the data set before
the algorithm is applied. This approach for designing privacy-preserving clustering al-
gorithms is taken by several researchers [31, 37, 41]. A second approach to designing
privacy preserving algorithms is to use algorithms from thesecure-multiparty com-
putation literature. The advantage of this approach over the perturbation approach is
that formal guarantees of privacy can be given for these algorithms. This paper takes
the latter approach. Vaidya and Clifton’s [51] work is closest to the one presented
in this paper. Vaidya and Clifton present a privacy-preserving k-means algorithm for
vertically-partitioned data sets. As already pointed out in the introduction, our paper
considers clustering for horizontally-partitioned data.Vaidya and Clifton’s algorithm is
based on the secure-permutation algorithm of Du and Atallah[13]. However, Vaidya
and Clifton’s algorithm has to execute Du and Atallah’s protocol for every item in the
data set. Therefore, their algorithm is not practical for large data sets. Moreover, Vaidya
and Clifton did not perform an experimental evaluation of their algorithm. By contrast,
the complexity of our algorithm only depends on the number ofsteps taken by thek-
means algorithm and the dimension of the data items. There are distributed clustering
algorithms where the goal is to reduce communication costs [12, 30]. These distributed
clustering algorithms do not consider privacy. However, itwill be interesting to investi-
gate whether these algorithms can be made privacy preserving.

In our implementation, we approximate real numbers using intervals (see appendix C).
Finite-precision approximation to functions may leak information. Feigenbaumet al.[16]
show that approximations to functions can be made private byadding noise.

3 Thek-means clustering algorithm

Thek-means algorithm [14, 34] is shown in Figure 1. Assume that weare givenn sam-
plesx1, · · · , xn, where each sample is am-dimensional vector of real numbers. The
number of clusters isc. The algorithm maintainsc meansµ1, · · · , µc. Initially, assume
that the means are assigned arbitrary values. A samplexi is deemed to be in the clus-

ter j if it is closest to the meanµj , where mean of a cluster{x′
1, · · · , x

′
r} is x′

1
+···,x′

r

r
.

Distance between twom-dimensional vectorsx andy is given by
∑m

j=1(x[j] − y[j])2,
wherex[j] is thej-th element of the vectorx. Other distance metrics [14, Chapter 10],
such as scatter metrics, can be used instead of the distance metric mentioned above.
Each iteration of thek-means algorithms recomputes the means and reclassifies the
samples. The algorithm terminates when it detects “no change” in the means. The pre-
cise definition of “no change” depends on the specific metric being used. We also as-
sume that the initial cluster means are chosen randomly. There is some research on
picking the initial cluster means [4]. Various techniques for picking initial cluster means
can be easily incorporated into our algorithm. This issue will not be discussed further
in the paper.



Algorithm (k-means clustering)
begin initialize n, c, µ1, · · · , µc

do classifyn samples according to nearestµi, and
recomputeµi

until no change inµi’s
return µ1, µ2, · · · , µc

end

Fig. 1. Thek-means clustering algorithm.

3.1 Distributed k-means

Assume that AliceA (party1) hasz samples{x1, · · · , xnA
}, and BobB (party2) has

n − nA samples{xnA+1, · · · , xn}. Each party wants to jointly cluster their samples
without revealing any private information. We are assumingthat clustering the union of
samples from the two parties is more desirable than clustering the two samples individ-
ually.

Assume that there is a trusted third partyTTP . A andB perform iterations locally.
However, at each iteration the new cluster meansµis are computed by communicating
with theTTP . Let CA

i andCB
i be the cluster corresponding to meanµi for A andB,

respectively.A sendsc-pairs〈(a1, b1), · · · , (ac, bc)〉 to TTP , whereai =
∑

xj∈CA
i

xj

andbi =| CA
i | (ai is the sum of samples in clusterCA

i andbi is the number of samples
in the clusterCA

i ). Analogously,B sendsc-pairs〈(d1, e1), · · · , (dc, ec)〉 to theTTP ,
wheredi =

∑

xj∈CB
i

xj andei =| CB
i |. TheTTP computes thec means〈µ1, · · · , µc〉

and sends them toA andB, whereµi = ai+di

bi+ei
. We call this algorithmdistributed

k-meansor Dk-means.

3.2 Assumptions

Our goal is to design a privacy-preservingk-means that does not use a TTP. Before
we present such an algorithm, we state assumptions made in the design of our privacy-
preserving algorithm.

Number of parties.In this paper we only present the two party case.

The adversary model.We assume a semi-honest adversary (also called honest but cu-
rious adversary model) [20]. There are standard constructions that transform a proto-
col that is secure in the semi-honest model and produce a protocol that is secure in
a more general malicious model (these constructions are called “semi-honest to mali-
cious” compilers, and details of these constructions can befound in [23]).

Information disclosure.Our privacy-preserving algorithm discloses the cluster means
at the various steps to the two parties. Therefore, the computation of classifying sam-
ples according to the nearest cluster means can be performedlocally. Therefore, the
complexity of our privacy-preserving algorithm depends only on the number of steps



taken by thek-means algorithm and the number of features, but not on the size of the
data. This is a desirable property because usually the data sets to be clustered can be
very large.

3.3 Privacy-preservingk-means

In order, to create a privacy-preserving version ofk-means that does not use a TTP we
have to devise a privacy-preserving protocol to compute thecluster means. Consider
the computation of a single cluster meanµi. Recall that in distributedk-means each
party sends(ai, bi) and(di, ei) to the TTP, which computesai+di

bi+ei
; this is precisely the

function for which we have to devise a privacy-preserving protocol. This problem can
be formally defined as follows:

Definition 1. Theweighted average problem (WAP)is defined as follows: party1 has
a pair(x, n), wherex is a real number andn is a positive integer. Similarly, party2
has pair(y, m). They want to jointly computex+y

n+m
. In other words, we need a privacy-

preserving protocol for the following functionality:

((x, n), (y, m)) 7−→ (
x + y

n + m
,

x + y

n + m
)

The notation shown above means that the first and second partyprovide inputs(x, n)
and(y, m) to the protocol and both parties receive outputx+y

n+m
. Notice that WAP is

different than the classical problem of computing the averages, wheren parties have a
number and they jointly want to compute the average without revealing their individual
numbers. In the classical problem, the number of partiesn is known to all the parties.
In WAP, the number of pointsn andm needs to be kept secret.

Let PWAP be a privacy-preserving protocol for solving WAP. Two protocols for
WAP are presented in Section 4. In the privacy-preservingk-means algorithm (denoted
asPPk-means) A andB usePWAP instead of the trusted third partyTTP to compute
the cluster meansµis. The algorithm is shown in Fig 2. We only show the part of
the algorithm executing at Alice’s (party1) side. Bob (party2) will execute a similar
algorithm at his side.
Note: Suppose that the initial clusters are picked randomly. For the privacy-preserving
algorithm we need a protocol for two parties to jointly pick acommon random vector.
Such a protocol is calledcoin-tossing into the welland is based on commitment schemes
(see [20, Section 7.4.3.1]).

3.4 Proof of Privacy

In this section we provide a proof of privacy for the protocolshown in Figure 2. The
proof uses a semi-honest adversary model. Notice that in thedistributedk-means algo-
rithmDk-meansboth parties only know their input and output. Definition of privacy is
based on the intuition that parties should learn nothing more from the messages used
in privacy-preserving protocol, i.e., the messages received by a party during an execu-
tion of a privacy-preserving protocol can be “effectively computed” by only knowing
its input and output. This idea is formalized below:



Algorithm PPk-means(privacy-preservingk-means clustering)
begin initialize nA, c, µ1, · · · , µc

do classifynA samples according to nearestµi

for i := 1 to c step1 do
Let CA

i be thei-th cluster
Computeai =

∑

xj∈CA
i

xj andbi =| CA
i |

recomputeµi by invoking the protocolPWAP

od
until no change inµi

return µ1, µ2, · · · , µc

end

Fig. 2. The privacy-preservingk-means clustering algorithm.

Definition 2. Let x andy be inputs of the two parties and〈f1(x, y), f2(x, y)〉 be the
desired functionality, i.e., the first party wants to compute f1(x, y) and the second
wants to computef2(x, y). Let Π be a two-party protocol to computef . The view
of the first party after having participated in protocolΠ (denoted by VIEWΠ

1 (x, y)) is
(x, r, m1, · · ·mt), wherer are the random bits generated by party1 andm1, · · · , mt is
the sequence of messages received by party1, while participating in protocolΠ . The
view VIEWΠ

2 (x, y) for the second party is defined in an analogous manner.
We say thatΠ privately computesf if there exists probabilistic polynomial-time

algorithms (PPTA), denoted byS1 andS2 such that

{S1(x, f1(x, y))}x,y ≡s {VIEWΠ
1 (x, y)}x,y

{S2(x, f2(x, y))}x,y ≡s {VIEWΠ
2 (x, y)}x,y

In the equation given above,≡s denotesstatistically indistinguishable. Two prob-
ability ensemblesX = {Xw}w∈S andY = {Yw}w∈S indexed byS are statistically
indistinguishable if for some negligible functionµ : ℵ 7→ [0, 1] and allw ∈ S,

∑

α

| Pr(Xw = α) − Pr(Yw = α) | < µ(| w |)

A function µ : ℵ 7→ [0, 1] is callednegligibleif for every positive polynomialp, and
all sufficiently largen’s, µ(n) < 1

p(n) . There is a weaker notion of indistinguishabil-
ity calledcomputationally indistinguishable. We will use statistical indistinguishability
throughout the paper, but all the results hold even if the weaker notion of indistinguisha-
bility is used. Detailed definitions of these concepts can befound in [19, 20].

The privacy-preservingk-means algorithm uses the privacy-preserving protocol
PWAP for the WAP. Assume that the two parties invoke the protocolPWAP as an
oracle, i.e., both parties write their respective inputs (in this case(x, n) and (y, m))
and invoke the oracle which returns the result (in this casex+y

n+m
). Recall that in the



distributedk-means algorithms both parties learn the cluster means at various steps. If
we use oracle calls to compute the cluster means, then the twoparties also learn only
the cluster means. So the views in the two cases areidentical. Hence, the conditions of
definition 2 are trivially satisfied. However, there are additional messages exchanged in
the protocolPWAP used to compute the cluster means. We need to ensure that nothing
can be learned from these messages. The privacy of protocol shown in Figure 2 follows
from the composition theorem [7] stated below (g is the algorithm shown in Figure 2
andf is the protocolPWAP to solve WAP described in Section 4):

Theorem 1. (Composition Theorem for the semi-honest model):Suppose thatg is pri-
vately reducible tof and that there exists a protocol for privately computingf . Then
there exists a protocol for privately computingg.

4 Privacy-Preserving Protocol for
the Weighted Average Problem

In the weighted average problem (WAP) we want to find a privacy-preserving protocol
for the following functionality:

((x, n), (y, m)) 7−→ (
x + y

n + m
,

x + y

n + m
)

Recall that a protocol for WAP was used in the privacy-preserving k-means algorithm
(see Figure 2).

A simple strategy to address this problem is to first approximate the functionx+y
n+m

by a circuitC, and then use standard constructions [21, 22, 52] to construct a privacy-
preserving protocol. Protocols constructed using this strategy have a very high compu-
tational overhead. Malkhiet al. considered the cost of implementing these protocols
in their work in the Fairplay system [35]. They found that theprotocol was feasible
for small circuits, e.g., a single∧-gate could be implemented in410 milliseconds, and
more complex integer numerical functions could be implemented on the order of sec-
onds. They further showed the runtimes of these protocols grow quickly with the size
of the input and complexity of the implemented function. Themost complex function
discussed by the authors computed a median of two ten-element integer input sets. This
function took over7 seconds to execute in a LAN environment, and over16 seconds
in an WAN environment. The circuit for computingx+y

n+m
is significantly more com-

plex. Hence, with a non-trivial data set, a single computation of cluster means may take
several minutes to compute. Note that the underlying costs of Fairplay are not artifacts
of the design, but simply the cost of implementing the standard protocols; the reported
costs were almost completely dominated with circuit setup and the necessary oblivious
transfers.

In this section, we present two privacy-preserving protocols for WAP that are more
efficient than the standard protocols. The first protocol is based on oblivious polyno-
mial evaluation and the second on homomorphic encryption. Similarity of WAP with a
problem that occurs in protocols for generation of shared RSA keys [6, 17] is discussed
in appendix B.



4.1 Protocol based on oblivious polynomial evaluation

We will first give a privacy-preserving protocol for a general problem, and then at the
end of the subsection demonstrate how we can construct a privacy-preserving protocol
for WAP. Consider the following problem.

Definition 3. LetF be a finite field. Party1 has two polynomialsP andQ with coeffi-
cients inF . Party2 has two pointsα andβ in F . Both parties want to computeP (α)

Q(β) .
In other words, we want to privately compute the following functionality:

((P, Q), (α, β)) 7−→ (
P (α)

Q(β)
,
P (α)

Q(β)
)

We call this problemprivate rational polynomial evaluation (PRPE).

The protocolPPRPE uses a protocol for oblivious polynomial evaluation, whichis
defined below.

Definition 4. LetF be a finite field. Theoblivious polynomial evaluationor OPEprob-
lem can be defined as follows: AliceA has a polynomialP over the finite fieldF , and
Bob B has an elementx ∈ F . After executing the protocol implementing OPEB
shouldonly knowP (x) andA should know nothing.

A protocol to solve the OPE was given by Naor and Pinkas [40]. LetPOPE(P, α)
denote the privacy-preservingprotocol for OPE. We providea protocolPPRPE((P, Q), (α, β))
for PRPE, which usesPOPE(P, α) as an oracle. The protocol is shown in Figure 3.

(Step 1)Party1 picks a random elementz ∈ F and computes two new polynomialszP and
zQ. In other words, party1 “blinds” the polynomialsP andQ.

(Step 2) Party2 computeszP (α) and zQ(α) by invoking the protocol for OPE twice, i.e.,
invokes the protocolPOPE(zP, α) andPOPE(zQ,β).

(Step 3)Party2 computesP (α)
Q(β)

by computingzP (α)
zQ(β)

and sends it to party1.

Fig. 3. Protocol for PRPE.

Theorem 2. ProtocolPPRPE((P, Q)(α, β) shown in Figure 3 is privacy-preserving
protocol for PRPE.

Proof: The views of the two parties are

VIEWPP RPE

1 (P, Q) = (P, Q,
P (α)

Q(β)
)

VIEWPPRP E

2 (α, β) = (α, β, zP (α), zQ(β))

The view of party1 consists of its input(P, Q) and outputP (α)
Q(β) . Therefore, there is

nothing to prove (see definition 2, we can useS1 as the identity function). The input



and output of party2 are(α, β) and P (α)
Q(β) respectively. We have to show a PPTAS2

such thatS2(α, β, P (α)
Q(β) ) and VIEWPP RPE

2 (α, β) are statistically indistinguishable. Let

z′ be a random element ofF andS2(α, β, P (α)
Q(β) ) be defined as follows:

(α, β, z′
P (α)

Q(β)
, z′)

It is easy to see that the following two ensembles are statistically indistinguishable:

(α, β, z′ P (α)
Q(β) , z

′)

(α, β, zP (α), zQ(β))

The reason is that ifz is a random element ofF thenzQ(β) is a random element ofF
as well. Moreover, the ratio of the third and fourth elementsin the view of party2 is
P (α)
Q(β) , i.e., the output and the third element of the view determinethe fourth element of
the view.

Recall thatPPRPE uses the protocolPOPE . Using the composition theorem we
conclude thatPPRPE is privacy preserving.2

Protocol for WAP.First, we show that a protocolPPRPE for PRPE can be used to solve
WAP. Recall that in WAP party1 and party2 have inputs(x, n) and(y, m) respectively.
In the invocation ofPPRPE , party1 constructs two polynomialsP (w) = w + x and
Q(w) = w + n, and party2 setsα = y andβ = m. The output both parties receive
is equal to x+y

n+m
, which is the desired output. The proof of privacy for this protocol

follows from Theorem 2 and the composition theorem.

4.2 Protocol based on homomorphic encryption

Let (G, E, D, M) be a encryption scheme (whereG is the function to generate public
parameters,E andD are the encryption and decryption functions, andM is the message
space respectively) with the following properties:

– The encryption scheme(G, E, D) is semantically secure[24]. Essentially, an en-
cryption scheme is semantically secure if an adversary gains no extra information
by inspecting the ciphertext. This is formally defined in theappendix (see defini-
tion 5).

– For all m ∈ M andα ∈ M , m1 ∈ E(m) implies thatmα
1 ∈ E(mα). Encrypting

the same message twice in a probabilistic encryption function can yield a different
ciphertext, soE(m) denotes the set of ciphertexts that can be obtained by encrypt-
ing m.3

– There is a computable functionf such that for all messagesm1 andm2 the follow-
ing property holds:

f(E(m1), E(m2)) = E(m1 + m2)

3 Of course, to successfully decrypt two different messagesm andm′ setsE(m) andE(m′)
should be disjoint.



There are several encryption scheme that have the three properties mentioned above [5,
39, 42]. In our implementation, we used thedense probabilistic encryption (DPE)scheme
of Benaloh [5]. The semantic security of the scheme providedby Benaloh is based on
the intractability of deciding prime residuosity.

Party 1 and 2 have a pair of messages(x, n) and (y, m). The two parties want
to jointly compute x+y

n+m
in a privacy-preserving way. Assume that party1 sets up a

probabilistic encryption scheme(G, E, D, M), and publishes the public parametersG.
We also assume that the probabilistic encryption scheme(G, E, D, M) satisfies the
three properties given at the beginning of the section. The protocolPH for WAP is
shown in Figure 4.

– (Step 1)Party1 encryptsx andn and sends the encrypted valuesx1 ∈ E(x) andn1 ∈
E(n) to party2.

– (Step 2)Party2 computes a random messagez ∈ M , and encryptsz · y andz ·m to obtain
z1 ∈ E(z · y) andz2 ∈ E(z ·m). Party2 computes the following two messages and sends
it to party1:

m1 = f(xz
1, z1)

m2 = f(nz
1 , z2)

Note: In our implementation we use the homomorphic-encryption scheme by [5] wheref
is multiplication.

– (Step 3)Using the two properties of the probabilistic encryption scheme(G, E, D), we
have the following:

m1 = E(z · x + z · y)

m2 = E(z · n + z · m)

Therefore, party1 can computez(x + y) andz(n + m), and hence can computex+y

n+m
.

Party1 sendsx+y

n+m
to party2.

Fig. 4.Protocol for WAP based on homomorphic encryption.

Theorem 3. Assume that the probabilistic encryption scheme(G, E, D) has three prop-
erties mentioned at the beginning of this sub-section.PH((x, n), (y, m)) is a privacy-
preserving protocol to computex+y

n+m
.

The proof of this theorem is straightforward and is given in appendix A. The basic in-
tuition is that party2 cannot tell the difference betweenE(x) andE(n) and encryption
of two arbitrary messages.

The complexity of encryption and decryption operations of ascheme(G, E, D, M)
depends on size of the message spaceM . Therefore, in order to keep the complexity



low it is important that the size of the message space be small. However, in order to
achieve adequate precision the message space should be large. Chinese remainder the-
orem (CRT) allows us to perform computation over smaller spaces and then reconstruct
the result for a larger message space. Letp1, · · · , pm bem small primes. The two par-
ties execute the protocol described above forZp1

, · · · , Zpm
. Party1 receivesz(x + y)

andz(n + m) modulopi (for 1 ≤ i ≤ m). CRT allows party1 to reconstructz(x + y)
andz(n + m) moduloN =

∏m

i=1 pi. This technique is also used by Gilboa [17].

5 Experimental Evaluation

This section looks at the feasibility of our solution by evaluating the cost of the protocol
on real data-sets. The goal of this study is to establish the cost of our privacy-preserving
clustering algorithms on real applications. We principally seek to understand the per-
formance and privacy tradeoffs inherent to the operation ofthe protocols.

We evaluated three clustering algorithms. Thesimplescheme is used throughout as
a baseline for our experiments. This protocol implements the k-means clustering al-
gorithm as described in section 3. This algorithm does not use any privacy-preserving
protocols. This represents the nominal cost of clustering,and will be present in anyk-
means clustering approach, independent of if and how privacy is implemented. Through-
out this sectionfeaturesrefer to the dimension of the vectors being clustered and each
iteration of thek-means algorithm is referred to asround. Our first privacy-preserving
protocol (referred to asOPE) uses oblivious polynomial evaluation. This protocol is de-
scribed in detail in Section 4.1. For oblivious polynomial evaluation we use the protocol
presented by Naor and Pinkas [40]. The next privacy-preserving protocol (referred to as
DPE) uses homomorphic encryption scheme of Benaloh [5]. This protocol is described
in detail in Section 4.2.

Implementation.Our system consists of approximately3000 lines of Java code, split up
into a number of self-contained modules. Thek-means algorithm module implements
actual clustering computations as described in Section 3. During each iteration, this
module calls theprotocol module to compute the cluster means for each dimension of
the cluster. Theprotocol module sets up the framework of communication, and calls
the specific protocol handlers with a common interface, depending on which protocol
is selected. In thesimplehandler, Alice sends(x, n) to Bob, who computes the cluster
mean x+y

n+m
and sends it to Alice. The OPE and DPE protocol handlers implement the

protocols described in Sections 4.1 and 4.2.
The central results uncovered by this investigation include:

1. Clustering using DPE is two orders of magnitude more bandwidth efficient than
OPE, and executes in 4.5 to 5 times less time. This is largely due to bandwidth and
computational costs associated with the oblivious transfers used by OPE.

2. Our protocols clustering with perfect fidelity; that is, the clusters resulting from our
algorithms are identical to those reported by ak-means algorithm with no privacy
for reasonable parameter choices.

3. Small, medium, and large data-sets can be clustered efficiently.



4. Costs scale linearly with feature and rounds. The number of samples affects run-
time only inasmuch as it increases the number of rounds toward convergence.

5. Protocol parameters affect bandwidth usage by constant factor. Moreover, expo-
nential increases in security or supported message space result in linear increases
in execution run-times.

We begin in the following section by exploring several real data-sets representative of
expected environments.

5.1 Experimental Data

The validity of our experimental approach is partially dependent on the realism of our
test data. For this reason, we have obtained a collection of externally provided data-
sets representing diverse applications. All experiments described in this section use the
synthetic, river, robot, andspeechdata-sets detailed below.

We selected the elements of oursyntheticdata-set to enable testing and measure
startup costs. This data set includes 4 points uniformly distributed within a 6 dimen-
sional space. By design, the data clusters quickly into 4 ”natural” clusters within 2
rounds under thek-means algorithm in all experiments.

Originally used in the Computation Intelligence and Learning (COIL) competition,
the river data-set describes measurements of river chemical concentrations and algae
densities [27]. The river data was used to ascertain the summer algae growth of river
water in temperate climates. The clustered data is used to inform the relationship be-
tween the presence and concentrations of various chemicalsin public waterways and
algae growth. The river contains 184 samples with 15 features per sample.

Therobot data-set [26] contains continuous senor readings from the Pioneer-1 mo-
bile robot used for testing computer learning and conceptual development approaches.
Each of the 697 samples contains 36 features from sensor arrays of the Pioneer-1 mobile
robot. The samples were taken every 100ms and reflect the movements and changing
environment in which the robot was tested. The data has been clustered in prior use to
recognize experiences with common outcomes.

The speechdata-set [28] documents the measured voice characteristics of spoken
Japanese vowels. Nine male speakers uttered two Japanese vowels /ae/ repeatedly.
Sampled at 10kHz, the 640 utterances resulted in 12 featuresof 5,687 samples. This
large data-set is used in the context of our experiments to evaluate the degree to which
the proposed protocols scale with the size of the input data.Similar data-sets are clus-
tered frequently to help guide speech recognition software[32].

Each of the data-sets represents a singular corpus. In contrast, our protocols are tar-
geted for applications of clustering with two parties. We model the two party case by
randomly subdividing the samples into equal sized subsets and assigning them to each
party. In real environments the size of the sets may be vastlydifferent. Our approxima-
tion approach ensures that this kind of asymmetry will be transparent to both parties
both in execution and performance. That is, the performanceof the algorithm is largely
independent of the number of samples. However, as we shall see below, the number of
features has tremendous effect on the cost of clustering.



The last data set (called theping data-set) was collected by us. The purpose of
collecting this data was two fold:

– Test our clustering algorithm on a large data set.
– Construct a data set that can be naturally partitioned to demonstrate that jointly

clustering two data sets can produce significantly different results than individually
clustering them.

We setup two hosts (referred to asA andB) to measure ICMP ping round-trip times.
There were4 ping targets located around the world (one of the ping targets was on
the same subnet as hostB). On each host and for each ping target the pings were
grouped in blocks of200. For each block, a3-tuple consisting of the following three
values was generated: the average time to live (TTL), the average round-trip time (RTT),
and fraction of lost packets (%drop). We collected data overa period of24 hours and
generated a data set consisting of23872 data points, which were evenly divided between
host A and B. We ran our clustering algorithm on the joint data set, and data sets
corresponding to hostsA andB.

5.2 Experimental Setup

We use the architecture and code described earlier for the experiments described through-
out. All experiments are executed on a pair of 3Ghz machines with 2 gigabyte physical
memory. The experimental application is running on the Sun Microsystems Java Vir-
tual Machine version 1.5 [47] on the Tao Linux version 1.0 operating system [25]. The
protocols are executed on a 100Mbps unloaded LAN with a measured round-trip time
of 0.2 milliseconds.

The experiments profile the additional cost of providing privacy in clustering sen-
sitive data. To this end, we focus on three metrics of cost andutility; communication
overhead, delay, andprecision. Communication overhead records the amount of addi-
tional network bandwidth used by the privacy schemes over the simple schemes. Delay
measures the additional time required to complete the clustering.

Precision is used to measure the degree to which the approximated clustering di-
verge from those reported by a simplek-means algorithm, and is calculated as follows.
Let X = {x1, . . . , xn} be the sample data set to be clustered.C1 ⊆ 2X is the cluster-
ing of X by the simple algorithm, andC2 ⊆ 2X is the clustering returned by the OPE
algorithm (the DPE metric is defined similarly in the obviousmanner). For each pair
(xi, xj) such that1 ≤ i < j ≤ n an error occurs if

1. xi andxj are in the same cluster inC1, but inC2 they are in different clusters.
2. xi andxj in the same cluster inC2, but inC1 they are in different clusters.

The total number of errors is denotedE. The maximum number of errors isN =
n(n − 1)/2. The precisionP is given by(N − E)/N .

Both OPE and DPE have unique parameters which dictate the performance and se-
curity of each protocol. The performance of DPE is most effected by the size of the
primes used to select the homomorphic encryption keys. Small primes can be crypt-
analyzed, and large ones can unnecessarily increase bandwidth use and computational



costs. Like RSA, linear increases in the size of the primes should result in exponential
security improvements.

We use interval arithmetic to approximate real numbers (seeappendix C). The size
of the message space in DPE and the finite-field in OPE are chosen to achieve the
desired precision. In Benaloh’s encryption schemer denotes the size of the message
space. For efficiency reasons we chooser = 3k (see [5] for details). Two crucial pa-
rameters in the oblivious polynomial evaluation protocol of Naor and Pinkas areD, the
degree of the masking polynomial andM , the total number of points used (details of
this algorithm can be found in [40]). The sender’s masking polynomial D has degree
k.d, whered is the degree of the polynomialP being evaluated andk is the security
parameter. Since in our algorithm the polynomial being evaluated is always linear, the
security parameter is simplyD. IncreasingD strengthens the sender’s security. Only
D+1 points are needed to interpolate, but the receiver sends(D+1).M pairs of values
to the sender. Out of each set ofM pairs, one of them is related toα (the point the
polynomial is being evaluated on), and the otherM − 1 values are random. The1-out-
ofM oblivious transfer protocol (denoted asOT M

1 ) is repeatedD +1 times to learn the
required value. So, increasingM strengthens the receiver’s security. Unless otherwise
specified, we selectedD = 7 andM = 6. For brevity, we do not considerD or M
further.

5.3 Results

Our first battery of tests broadly profile the performance of OPE and DPE. Shown in
Table 1, the most striking characteristic of these experiments is that they demonstrate
that OPE protocols consume two orders of magnitude more network resources than the
DPE protocols. These costs can be directly attributed to theoblivious transfer algo-
rithms whose primitive cryptographic operations require the transfer of many polyno-
mials between hosts. The total bandwidth costs scaled linearly for both OPE and DPE.
That is, the bandwidth costs per feature/round are relatively constant for the given data
sets, where we observed 0.03% variance in scaled bandwidth usage in OPE and 9.36%
in DPE. Note that the bandwidth is ultimately of limited interest; the worst case exper-
iment only consumes 47 megabytes of bandwidth over two and a half minutes. Hence,
our protocols would have visible impact only the slowest or busiest networks.

A chief feature illustrated by the timing measurements is that DPE is much more
time and bandwidth efficient than OPE. Surprisingly, DPE is 4.5 to 5 times faster on
all the data-sets for the selected parameters. The reasons for this is that the underlying
oblivious transfers incur large message exchanges betweenthe two parties. Hence, in
all experiments the limiting factors are bandwidth and computation.4 The efficiency of
DPE with respect to OPE further shows fixed costs (startup) are likewise dominated
by the underlying privacy preservation operations. Further, like the bandwidth costs,
the execution of each algorithm scale linearly with the number of features and rounds,

4 Early implementations of our protocols were limited by the latency caused by many individual
round-trips in the protocol. We optimized these these by parallelizing exchanges, where pos-
sible. This vastly improved protocol performance, and as a direct result, bandwidth and and
computation have since emerged as the limiting factors.



Communications Overhead Delay
Test Rounds bytes percent milliseconds percentbytes

feature/rnd increase
milliseconds

feature/rnd increase

Synthetic (4 samples, 6 features)
Simple 2 5959 0 0% 168 0 0%
OPE 2 1497823 124322 25035.48% 10147 831.58 5939.88%
DPE 2 13580 635.08 127.89% 2135 163.91666671170.83%

River (184 samples, 15 features)
Simple 16 74574 0 0% 772 0 0%
OPE 16 29916457 124241.17 40116.47% 176133 730.67 22715.16%
DPE 16 234422 566.03 314.35% 38721 158.12 4915.67%

Robot (697 samples, 36 features)
Simple 8 94005 0 0% 1348 0 0%
OPE 8 36569040 126649.42 38801.16% 212776 734.125 15684.57%
DPE 8 269698 610.04 186.90% 47662 160.8125 3435.76%

Speech (5,687 samples, 12 features)
Simple 33 143479 0 0% 4198 0 0%
OPE 33 49359739 124183.48 34402.07% 294694 733.57 6919.87%
DPE 33 384644 509.00 268.08% 66101 156.32070711474.58%

Ping (28,392 samples, 3 features)
Simple 9 11644 0 0% 2765 0 0%
OPE 9 3429688 126594.2 29354.55% 23767 777.8519 759.566%
DPE 9 30633 703.29 163.07% 9694 256.63 250.59%

Table 1. Experimental Results - resource and precision results fromexperiments over the three
data sets. The feature/round statistics show the costs of per feature clustering in a single round of
the k-means algorithm, e.g., a single execution of the privacy preserving WAP protocol.



where each feature round requires 730 and 160 milliseconds for OPE and DPE to com-
plete, respectively.

The cost of privacy-preservation in large data-set clustering is noticeable. For exam-
ple, a large data-set containing 5687 samples and 12 features takes DPE just 66 seconds
to cluster, as opposed to the 4.19 seconds required by its simple k-means counterpart.
Hence for this experiment, DPE algorithm incurs slowdown ofa factor of 15 and the
more expensive OPE a factor of 70. These results are, for mostapplications, clearly
within the bounds of acceptable performance. This is particularly encouraging in the
face of past attempts; circuit implementations of vastly simpler operations (averaging
very small collections of data points) took tens of seconds to complete [35].

Fairplay. We compared our protocols for WAP with a simple strategy of approximating
the function x+y

n+m
by a circuitC and then using standard constructions [21, 22, 52]. We

used Fairplay [35] to securely evaluate the circuitC. Fairplay does not support divi-
sion, so we implemented a circuit for division (our implementation for division uses the
standard ”long division” method). As expected the privacy-preserving clustering algo-
rithm that uses Fairplay to be very slow. Experimental results confirmed this intuition.
For example, for theping data set clustering with Fairplay took805, 416 milliseconds
(recall that clustering with DPE took only9, 694 milliseconds).

For the parameters we selected the precision of our privacy-preserving algorithms
(DPE and OPE) was100%. The reasons for this are two-fold. The parameter choices
for DPE resulted in a message space of340 values, which allowed us to map cluster
means to 4 decimal places. Moreover, the data range was smallin all our data-sets.
Hence, the error rounding caused by using interval arithmetic was inconsequential. Note
that in other environments, where the message space is required to be smaller (likely
for performance reasons) or the range of data values is large, precision errors may be
introduced.

The costs of OPE grow slightly with increases inD andM . We experimented with
varied parameters ofD andM equal 5, 10, 15 on all the non-synthetic data-sets (for a
total of 27 experiments) . In all cases increased cost was nominal; the parameter sets
slowed the performance of the algorithm down between 60% and190% over a baseline
experiment, i.e.,M = D = 5. Again, these costs are a direct reflection of the costs of
the underlying oblivious transfer. Not shown, the bandwidth costs in DPE scale by a
constant factor proportional toD andM .

As illustrated in Figure 5, increases the sizen (which is a product of two primes) in
DPE has modest affect on the performance of the protocols. Exponential increases inn
result in linear increases in message size. Because the network is a limiting factor, such
increases are, as shown, reflected in linear slowdowns. Hence, very large intervals or
high precision clustering can be supported by small increases in bandwidth consump-
tion. As in OPE, bandwidth costs in DPE scale by a constant factor in these experiments,
where each protocol exchange increases directly in proportion to the size of the primes.

For the ping data set our clustering algorithm generated4 clusters, which correspond
to the four target hosts. The centers for the four clusters are shown in Figure 6. As can be
clearly seen from the results, clusters found by the algorithm using the joint data set are
significantly different than the clusters found in the individual data sets. Therefore, if the
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goal is to estimate RTT, TTL, and %drop for the target hosts tobe used in networking
applications (such as routing), then clustering on the joint data set is desirable.

Cluster centers
A (241.76, 32.69, 0.18), (48.00, 75.87, 0.58), (243.00, 59.81, 0.15), (64.00, 0.19, 0.00)

B (47.00, 88.60, 0.74), (251.92, 4.73, 0.19), (242.00, 48.01, 2.70), (133.67, 485.77, 13.78)

Joint (245.26, 28.73, 0.60), (47.51, 82.13, 0.66), (133.67, 485.77, 13.78), (64.00, 0.186, 0.00)

Fig. 6. (TTL,RTT,%drop) centers for the four clusters.

6 Conclusion

We presented two privacy-preservingk-means algorithms. We also implemented these
algorithm and performed a thorough evaluations of our algorithms. There are several
avenues for further research. We want to perform further optimizations to our tool to
reduce the execution and bandwidth overheads. We want to explore privacy-preserving
versions of other clustering algorithms. We are particularly interested in hierarchical
clustering algorithms.
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A Definitions and Proofs

Definition 5. Assume that the message spaceM can be sampled in polynomial time,
i.e., there exists a probabilistic polynomial time algorithmAM such that it takes input
1k and generates a messagem ∈ M . Let h : M → R be a function, which can be
thought of as some information about the message, e.g.,h(m) = 1 iff message has a
substring “Bob” in it. Consider the following two games:

– (Game 1):Adversary is informed that I am about to choose a messagem using the
sampling algorithmAM . The adversary is asked to guessh(m).

– (Game 2):In addition to the information given in game 1, he is also toldthe en-
cryptionα ∈ E(m) of the message. The adversary is again asked to guessh(m).

An encryption functionE is calledsemantically secureif the difference between the
probabilities of the adversary succeeding in the two games is negligible. The probability
is computed over the message space.

Proof of Theorem 3:The view of the two parties is shown below:

VIEWPH

1 (x, n) = (x, n, z(x + y), z(n + m))

VIEWPH

2 (y, m) = (y, m, x1, n1,
x + y

n + m
)

Let z′ be a message uniformly chosen fromM . DefineS1(x, n, x+y
n+m

) as follows:

(x, n, z′
x + y

n + m
, z′)



It is easy to see thatS1(x, n, x+y
n+m

) and VIEWPH

1 (x, n) are statistically indistinguish-
able (this proof is very similar to the proof of Theorem 2 given in Section 4.1).

Recall thatx1 ∈ E(x) andn1 ∈ E(n). Since(G, E, D) is semantically secure,
party 2 cannot gain extra information from the encrypted valuesx1 andn1. In other
words. Letx′

1 ∈ E(x′) andn′
1 ∈ E(n′), wherex′ andn′ are randomly chosen mes-

sages. An adversary cannot distinguish between VIEWPH

2 (y, m) and(y, m, x′
1, n

′
1,

x+y
n+m

)
with more than negligible probability. Therefore, privacyof party1 with respect to party
2 follows. 2

B Generation of shared RSA keys and WAP

We assume that all elements are drawn from a finite fieldF . Suppose that party1 and2
have a pair of numbers(a, b) and(c, d) and they want to privately compute(a+c)(b+d).
In other words, they want to privately compute the followingfunctionality:

((a, b), (c, d)) 7−→ (a + c)(b + d)

This problem is one of the crucial steps in the protocol for sharing RSA keys. LetPsk

be the protocol for solving this problem. We will show thatPsk can be used to design
a protocolPWAP for solving WAP (see Section 4 for a description of this problem).
ProtocolPWAP works as follows:

– Party1 and party2 generate two random elementsz1 andz2 chosen uniformly from
F .

– Two parties invoke the protocolPsk with inputs (x, z1) and (y, z2). Each party
obtainsr1 = (x + y)(z1 + z2).

– Two parties invoke the protocolPsk with inputs(n, z1) and (m, z2). Each party
obtainsr2 = (n + m)(z1 + z2).

– The two parties obtainx+y
n+m

by computingr1

r2

.

Next we argue thatPWAP is privacy preserving. The views of the two parties in
this protocol are:

VIEW1(x, n) = (x, n, (x + y)(z1 + z2), (n + m)(z1 + z2))

VIEW2(y, m) = (y, m, (x + y)(z1 + z2), (n + m)(z1 + z2))

Let z′ be a random element ofF andS1(x, n, x+y
n+m

) be defined as follows:

(x, n, z′
x + y

n + m
, z′)

If we fix x, y, andz1 and pickz2 uniformly fromF , then(x + y)(z1 + z2) is a random
element distributed uniformly overF . Therefore, VIEW1(x, n) andS1(x, n, x+y

n+m
)) are

statistically indistinguishable. Letz′ be a random element ofF andS2(y, m, x+y
n+m

)) be
defined as follows:

(y, m, z′
x + y

n + m
, z′)

It is easy to see that VIEW2(y, m) andS2(y, m, x+y
n+m

)) are statistically indistinguish-
able. Using the composition theorem the privacy ofPWAP follows.



C Approximating Reals

Assume that real numbers occur in the interval[M,−M). We divide the interval[M,−M)
into 2MN sub-intervals of size1

N
. The i-th sub-interval (where0 ≤ i < 2MN ) is

given by
[

−M +
i

N
,−M +

i + 1

N

)

We denote byI(x) as the sub-interval the real numberx lies in, i.e.x ∈ [−M +
I(x)
N

,−M + I(x)+1
N

). If x andy are two real numbers that lie in the sub-intervalI(x)

andI(y), thenx + y lies in the sub-interval[−2M + I(x)+I(y)
N

,−2M + I(x)+I(y)+2
N

).
For the rest of the sub-section we will approximate real numbers with the the inter-

val they lie in. In our protocol, a party obtainsz(I(x) + I(y)) andz(n + m), wherez

is the random number. Using some simple arithmetic we can deduce thatz(I(x)+I(y))
z(n+m)

lies in the interval[−M + Q
N

,−M + Q+1
N

), whereQ is the quotient ofq1 divided by
q2. Integersq1 andq2 are shown below:

q1 = MN(z(n + m) − 2) + z(n + m) · z(I(x) + I(y))

q2 = z(n + m)

In all our algorithms, we have to use a large enough space so that all the operations used
to calculateq1 andq2 are exact, i.e., there is no “wrap around”. If all the integers used
in q1 andq2 are bounded by2k, then the size of the field should be greater than or equal
to 24k+5.


