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Abstract. The freedom and transparency of information flow on the hethas
heightened concerns of privacy. Given a set of data itemstaling algorithms
group similar items together. Clustering has many appéioat such as customer-
behavior analysis, targeted marketing, forensics, anthfioionatics. In this pa-
per, we present the design and analysis of a privacy-presgkvmeans cluster-
ing algorithm, where only the cluster means at the varioegssof the algorithm
are revealed to the participating parties. The crucialistepr privacy-preserving
k-means is privacy-preserving computation of cluster meaflespresent two pro-
tocols (one based on oblivious polynomial evaluation ardstacond based on
homomorphic encryption) for privacy-preserving compiotabnf cluster means.
We have a JAVA implementation of our algorithm. Using our iempentation,
we have performed a thorough evaluation of our privacyemesg clustering al-
gorithm on three data sets. Our evaluation demonstratéptivacy-preserving
clustering is feasible, i.e., our homomorphic-encrypti@ased algorithm finished
clustering a large data set in approximatéfyseconds.

1 Introduction

The ease and transparency of information flow on the Intdragtheightened concerns
of personal privacy [9, 49]. Web surfing, email, and othevisess constantly leak infor-
mation about who we are and what we care about. Many have tecctyat some pri-
vacy will be lost in exchange for the benefits of digital seed [48]. However, in other
domains privacy is so important that its protection is feflgimandated [1]. Technolo-
gies for protecting privacy are emerging in response toetlggswing concerns [8, 18,
45]. Recently, more emphasis has been placed on presehangrivacy of user-data
aggregations, e.g., databases of personal informatiocesscto these collections is,
however, enormously useful. It is from this balance betwaaracy and utility that the
area ofprivacy preserving data-miningmerged [3, 33].

Unsupervised learning deals with designing classifienmfacset of unlabeled sam-
ples. A common approach for unsupervised learning is to ditstter or group unla-
beled samples into sets of samples that are “similar” to edlclr. Once the clusters
have been constructed, we can design classifiers for easteclusing standard tech-
niques (such as decision-tree learning [38, 44]). Moremlasters can also be used to
identify features that will be useful for classification.éfb is significant research on
privacy-preserving algorithms for designing classifié;,s3@3]. This paper addresses the
problem of privacy-preserving algorithms for clustering.



Assume that AliceA and BobB have two unlabeled sampléd3, and Dg. We
assume that each sampleliny and D has all the attributes, or the data sets are hor-
izontally partitioned betweer and B. Alice and Bob want to cluster the joint data
setD 4 U Dp without revealing the individual items of their data setbdourse Alice
only obtains the clusters corresponding to her data)set In this paper, we assume
that clustering the joint data sé?4 U Dp provides better results than individually
clusteringD 4 and Dg. Using a large data set from the networking domain we also
demonstrate that clustering the joint data set resultsgnifitantly different clusters
than individually clustering the data sets (see end of gedifor details). We present
a privacy-preserving version of tikemeans algorithm where only the cluster means at
the various steps of the algorithm are revealed to Alice avlol B

There are several applications of clustering [14]. Any aapion of clustering where
there are privacy concerns is a possible candidate for dtaqy-preserving clustering
algorithm. For example, suppose network traffic is colld@etwo ISPs, and the two
ISPs want to cluster the joint network traffic without rewegltheir individual traffic
data. Our algorithm can be used to obtain joint clusterseut@specting the privacy of
the network traffic at the two ISPs. An application of clustgrto network intrusion
detection is presented by Marchette [36]. Clustering has hesed for forensics [43]
and root-cause analysis for alarms [29]. Clustering haslad®n used in bioinformat-
ics. For example, Dhilloet al.[11] have used clustering to predict gene function. We
believe that privacy-preserving clustering can be useddimformatics where the data
sets are owned by separate organizations, who do not wartéalrtheir individual
data sets.

This paper makes the following contributions:

— We present the design and analysis of privacy-preserkingeans clustering al-
gorithm for horizontally partitioned data (see Section®)e crucial step in our
algorithm is privacy-preserving of cluster means. We pnese@o protocols for
privacy-preserving computation of cluster means. The firstocol is based on
oblivious polynomial evaluation and the second one on hoorptric encryption.
These protocols are described in detail in Section 4.

— We have also have a JAVA implementation of our algorithm. \&kelve that mod-
ular design of our implementation will enable other reskars to use our im-
plementation. Our clustering tool is available by requiét. evaluated the two
privacy-preserving clustering algorithms on real data.s@ur first conclusion is
that privacy-preserving clustering is feasible. For exenfor a large data set
(5,687 samples andi2 features) from the speech recognition domain our homoniorph
encryption-based algorithm took approximatébyseconds. We also observed that
both in bandwidth efficiency and execution overhead algorit based on homo-
morphic encryption performed better than the one based bvialks polynomial
evaluation. A detailed discussion of our evaluation is giveSection 5.

2 Related Work

Privacy issues in statistical databases have been thdsoimylestigated [2, 10]. Re-
cently privacy-preserving data mining has been a very acrnea of research. Initial



focus in this area was on construction of decision trees fitnibuted data sets [3, 33].
There is also a significant body of research on privacy-pvésgmining of association
rules [15, 46, 50]. We will focus on existing work on privapyeserving clustering.

In general, there are two approaches for designing priymegerving machine learn-
ing algorithms. The first approach is to use transformatiopgrturb the data set before
the algorithm is applied. This approach for designing pryvpreserving clustering al-
gorithms is taken by several researchers [31, 37, 41]. Arskepproach to designing
privacy preserving algorithms is to use algorithms from seeure-multiparty com-
putation literature. The advantage of this approach overmptrturbation approach is
that formal guarantees of privacy can be given for thesergifgns. This paper takes
the latter approach. Vaidya and Clifton’s [51] work is clsséo the one presented
in this paper. Vaidya and Clifton present a privacy-presgrk-means algorithm for
vertically-partitioned data sets. As already pointed outhie introduction, our paper
considers clustering for horizontally-partitioned dafaidya and Clifton’s algorithm is
based on the secure-permutation algorithm of Du and At4ll8h However, Vaidya
and Clifton’s algorithm has to execute Du and Atallah’s pomt for every item in the
data set. Therefore, their algorithm is not practical fogéadata sets. Moreover, Vaidya
and Clifton did not perform an experimental evaluation @tlalgorithm. By contrast,
the complexity of our algorithm only depends on the numbesteps taken by thi-
means algorithm and the dimension of the data items. Therdistributed clustering
algorithms where the goal is to reduce communication cd&s30]. These distributed
clustering algorithms do not consider privacy. Howevewilt be interesting to investi-
gate whether these algorithms can be made privacy pregervin

In our implementation, we approximate real numbers usitegvals (see appendix C).
Finite-precision approximation to functions may leak imf@ation. Feigenbauet al.[16]
show that approximations to functions can be made privatedoyng noise.

3 The k-means clustering algorithm

Thek-means algorithm [14, 34] is shown in Figure 1. Assume thaameegivern sam-
pleszy,-- -, x,, where each sample isra-dimensional vector of real numbers. The
number of clusters is. The algorithm maintaing meansuy, - - -, u.. Initially, assume
that the means are assigned arbitrary values. A sampedeemed to be in the clus-
ter j if it is closest to the meap;, where mean of a clustde, - - -, z).} is @
Distance between twa-dimensional vectors andy is given byZ}il (z[5] — vli)?,
wherezx[j] is thej-th element of the vectar. Other distance metrics [14, Chapter 10],
such as scatter metrics, can be used instead of the distagtcie mentioned above.
Each iteration of thé--means algorithms recomputes the means and reclassifies the
samples. The algorithm terminates when it detects “no offainghe means. The pre-
cise definition of “no change” depends on the specific metiadp used. We also as-
sume that the initial cluster means are chosen randomlyeTisesome research on
picking the initial cluster means [4]. Various techniquesdicking initial cluster means
can be easily incorporated into our algorithm. This issulévait be discussed further
in the paper.



Algorithm (k-means clustering)
begininitialize n, ¢, 1, - - -, pe
do classifyn samples according to neargst and

recomputeu;

until no change inu;'s

return g, p2, -0, fe
end

Fig. 1. The k-means clustering algorithm.

3.1 Distributed k-means

Assume that Aliced (party1) hasz sample{z1, - -, z,, }, and BobB (party2) has

n — ny samples{z, , 1, -, 2, }. Each party wants to jointly cluster their samples
without revealing any private information. We are assuntireg clustering the union of
samples from the two parties is more desirable than clugf¢hie two samples individ-
ually.

Assume that there is a trusted third pafty P. A and B perform iterations locally.
However, at each iteration the new cluster meayssare computed by communicating
with the TT P. Let C/* andC# be the cluster corresponding to mearfor A and B,
respectivelyA sendsc-pairs{(as,b1),- -, (ac, bc)) to TTP, wherea; = 3, ccax;
andb; =| C# | (a; is the sum of samples in clustéf' andb; is the number of samples
in the clusterC#'). Analogously,B sendsc-pairs{((di,e1), -, (de, e.)) to theTTP,
whered; = ijecf x; ande; =| CE |. TheTT P computes the means/pu1, - - - , fte)

and sends them td and B, wherey; = ‘gi‘; We call this algorithndistributed
k-mean®r Di._means '

3.2 Assumptions

Our goal is to design a privacy-preservihgneans that does not use a TTP. Before
we present such an algorithm, we state assumptions made de#ign of our privacy-
preserving algorithm.

Number of parties.n this paper we only present the two party case.

The adversary modeMe assume a semi-honest adversary (also called honest-but cu
rious adversary model) [20]. There are standard constmgtihat transform a proto-
col that is secure in the semi-honest model and produce aqmiothat is secure in

a more general malicious model (these constructions aledcaemi-honest to mali-
cious” compilers, and details of these constructions cdiotyed in [23]).

Information disclosure.Our privacy-preserving algorithm discloses the clusteanse
at the various steps to the two parties. Therefore, the ctatipn of classifying sam-
ples according to the nearest cluster means can be perfdooady. Therefore, the
complexity of our privacy-preserving algorithm depend$/am the number of steps



taken by thek-means algorithm and the number of features, but not on geedfithe
data. This is a desirable property because usually the dtdasbe clustered can be
very large.

3.3 Privacy-preservingk-means

In order, to create a privacy-preserving versiot aheans that does not use a TTP we
have to devise a privacy-preserving protocol to computecthster means. Consider
the computation of a single cluster mean Recall that in distributed-means each
party sendsa;, b;) and(d;, e;) to the TTP, which compute%i—j;; this is precisely the
function for which we have to devise a privacy-preservingtgcol. This problem can
be formally defined as follows:

Definition 1. Theweighted average problem (WAR)defined as follows: party has

a pair(z,n), wherez is a real number and is a positive integer. Similarly, party
has pairy, m). They want to jointly computgf%. In other words, we need a privacy-
preserving protocol for the following functionality:

r+y x+vy
n+m n+m

)

The notation shown above means that the first and second grastide inputs(z, n)
and(y,m) to the protocol and both parties receive out@gﬁ%. Notice that WAP is
different than the classical problem of computing the agesawhere: parties have a
number and they jointly want to compute the average withexgaling their individual
numbers. In the classical problem, the number of partiesknown to all the parties.
In WAP, the number of points andm needs to be kept secret.

((z,n), (y,m)) — (

Let Py ap be a privacy-preserving protocol for solving WAP. Two piaits for
WAP are presented in Section 4. In the privacy-preserkingeans algorithm (denoted
asPPj._means A andB usePyy 4 p instead of the trusted third parfyI" P to compute
the cluster meang;s. The algorithm is shown in Fig 2. We only show the part of
the algorithm executing at Alice’s (parfy side. Bob (party2) will execute a similar
algorithm at his side.

Note: Suppose that the initial clusters are picked randomly. Reiprivacy-preserving
algorithm we need a protocol for two parties to jointly pick@mmon random vector.
Such a protocol s callegcbin-tossing into the wedind is based on commitment schemes
(see [20, Section 7.4.3.1]).

3.4 Proof of Privacy

In this section we provide a proof of privacy for the protoshbwn in Figure 2. The
proof uses a semi-honest adversary model. Notice that idigtiebutedk-means algo-
rithm Dy._meand0th parties only know their input and output. Definition ol/acy is
based on the intuition that parties should learn nothingenfimm the messages used
in privacy-preserving protocol, i.e., the messages reckby a party during an execu-
tion of a privacy-preserving protocol can be “effectivelyneputed” by only knowing
its input and output. This idea is formalized below:



Algorithm P P;._eandPrivacy-preserving:-means clustering)
begininitialize na, ¢, g1, -, pie
do classifyn 4 samples according to nearest
fori:=1tocstepldo
LetC{* be thei-th cluster
Computea; = ijec;‘ x; andb; =| C |
recomputeu; by invoking the protocoPw 4 p

od

until no change inu;

return g, p2, - - -y fe
end

Fig. 2. The privacy-preserving-means clustering algorithm.

Definition 2. Let x andy be inputs of the two parties andh (z,y), f2(z,y)) be the
desired functionality, i.e., the first party wants to congit(x,y) and the second
wants to computez(z,y). Let IT be a two-party protocol to compute The view
of the first party after having participated in protoddl(denoted by VIEW (z, y)) is
(x,r,mq,---my), wherer are the random bits generated by pargndms, - - -, m; is
the sequence of messages received by panyhile participating in protocoll. The
view VIEWZ (z, ) for the second party is defined in an analogous manner.

We say thatl] privately computed if there exists probabilistic polynomial-time
algorithms (PPTA), denoted by, andS» such that

{S1(z, fr(z,9)}ay = {VIEW (2,9)}2,y
{Sa2(, f2(2,9)} oy =° {VIEWg(xvy)}w,y

In the equation given aboves® denotesstatistically indistinguishableTwo prob-
ability ensemblesy = {X,,},es andY = {Y,,},es indexed byS are statistically
indistinguishable if for some negligible functign: X — [0, 1] and allw € S,

D IPr(Xy =a) = Pr(Y, =a) [ < p(lw))

A functionp : X — [0, 1] is callednegligibleif for every positive polynomiap, and
all sufficiently largen’s, u(n) < ﬁ. There is a weaker notion of indistinguishabil-
ity calledcomputationally indistinguishabl&Ve will use statistical indistinguishability
throughout the paper, but all the results hold even if thekeeaotion of indistinguisha-
bility is used. Detailed definitions of these concepts cafobed in [19, 20].

The privacy-preserving-means algorithm uses the privacy-preserving protocol
Pw ap for the WAP. Assume that the two parties invoke the protdegl p as an
oracle, i.e., both parties write their respective inputstfiis case(x,n) and (y, m))
and invoke the oracle which returns the result (in this c}lﬁf%). Recall that in the



distributedk-means algorithms both parties learn the cluster meangiaugasteps. If
we use oracle calls to compute the cluster means, then thpawies also learn only
the cluster means. So the views in the two case®argical Hence, the conditions of
definition 2 are trivially satisfied. However, there are diddial messages exchanged in
the protocolPy, 4 p used to compute the cluster means. We need to ensure thatgoth
can be learned from these messages. The privacy of protomehsin Figure 2 follows
from the composition theorem [7] stated belayig the algorithm shown in Figure 2
and f is the protocolPyy 4 p to solve WAP described in Section 4):

Theorem 1. (Composition Theorem for the semi-honest modei)ppose thaj is pri-
vately reducible tof and that there exists a protocol for privately computifigThen
there exists a protocol for privately computing

4 Privacy-Preserving Protocol for
the Weighted Average Problem

In the weighted average problem (WAP) we want to find a priai®serving protocol
for the following functionality:

r+y xT+vYy
n+m' n+m

((z,n), (y,m)) — ( )
Recall that a protocol for WAP was used in the privacy-présgrk-means algorithm
(see Figure 2).

A simple strategy to address this problem is to first appratéthe functior\%
by a circuitC, and then use standard constructions [21, 22, 52] to cansirprivacy-
preserving protocol. Protocols constructed using thetegyy have a very high compu-
tational overhead. Malkhet al. considered the cost of implementing these protocols
in their work in the Fairplay system [35]. They found that fhr@tocol was feasible
for small circuits, e.g., a single-gate could be implemented #10 milliseconds, and
more complex integer numerical functions could be impleteén the order of sec-
onds. They further showed the runtimes of these protocols gpuickly with the size
of the input and complexity of the implemented function. Thest complex function
discussed by the authors computed a median of two ten-etenteger input sets. This
function took over7 seconds to execute in a LAN environment, and dwseconds
in an WAN environment. The circuit for computin;gi—% is significantly more com-
plex. Hence, with a non-trivial data set, a single compatetif cluster means may take
several minutes to compute. Note that the underlying cdgtaioplay are not artifacts
of the design, but simply the cost of implementing the stathg@aotocols; the reported
costs were almost completely dominated with circuit setuppthe necessary oblivious
transfers.

In this section, we present two privacy-preserving prot®éar WAP that are more
efficient than the standard protocols. The first protocolasda on oblivious polyno-
mial evaluation and the second on homomorphic encryptionil&ity of WAP with a
problem that occurs in protocols for generation of shared RSys [6, 17] is discussed
in appendix B.



4.1 Protocol based on oblivious polynomial evaluation

We will first give a privacy-preserving protocol for a geriggeoblem, and then at the
end of the subsection demonstrate how we can constructacgriweserving protocol
for WAP. Consider the following problem.

Definition 3. Let F be a finite field. Party has two polynomial$® and@ with coeffi-
cients inF. Party2 has two pointsx andg in F. Both parties want to compu Egg
In other words, we want to privately compute the followingdtionality:

P(e) P(a)

(P, Q),(a, 3)) ¥ (mv m)

We call this problenprivate rational polynomial evaluation (PRPE)

The protocolPprp g Uses a protocol for oblivious polynomial evaluation, whigh
defined below.

Definition 4. LetF be afinite field. Th@blivious polynomial evaluatioor OPEprob-
lem can be defined as follows: Alicé has a polynomiaP over the finite field?, and
Bob B has an element € F. After executing the protocol implementing ORE
shouldonly knowP(z) and A should know nothing.

A protocol to solve the OPE was given by Naor and Pinkas [48]Ro pr (P, «)
denote the privacy-preserving protocol for OPE. We progigeotocolPprpr ((P, Q), (a, 3))
for PRPE, which useBo pr (P, o) as an oracle. The protocol is shown in Figure 3.

(Step 1)Party1 picks a random element € F and computes two new polynomiatg® and
z@. In other words, party “blinds” the polynomialsP and@.

(Step 2) Party2 computeszP(«) and zQ(«) by invoking the protocol for OPE twice, i.e.
invokes the protocdPope(zP, o) andPorr(2Q, 3).

(Step 3)Party2 computes; 2} by computingZ55)

and sends it to party.

Fig. 3. Protocol for PRPE.

Theorem 2. Protocol Pprpe((P, Q)(«, 3) shown in Figure 3 is privacy-preserving
protocol for PRPE.

Proof: The views of the two parties are

PpPRPE _ ia)
VIEW] (P,Q) = (P,Q, Q(ﬁ))

VIEW!?5PE (o, 3) = (a, B, 2P (), 2Q(6))

The view of partyl consists of its inputP, Q) and output%. Therefore, there is

nothing to prove (see definition 2, we can usgeas the identity function). The input



and output of party are(«, 8) and % respectively. We have to show a PPHA

such thatSs («, 3, %) and VIEV\?QDPRPE («, B) are statistically indistinguishable. Let

z' be a random element ¢f and Sz («, £, %) be defined as follows:

, P(a)
Q(B)

It is easy to see that the following two ensembles are statlbt indistinguishable:

(aaﬁaz azl)

(., 8,2/ 53, 2)

(o, B, 2P(a), 2Q(0))

The reason is that if is a random element of thenzQ(3) is a random element of
as well. Moreover, the ratio of the third and fourth elemeéntthe view of party2 is

%, i.e., the output and the third element of the view deterrttiegfourth element of
the view.

Recall thatPprpr uses the protocdPppr. Using the composition theorem we
conclude thaPprpg is privacy preservinga

Protocol for WAP.First, we show that a protoc®lp g pr for PRPE can be used to solve
WAP. Recall that in WAP party and party2 have inputgz, n) and(y, m) respectively.
In the invocation ofPprpE, party 1 constructs two polynomial®(w) = w + x and
Q(w) = w + n, and party2 setsa. = y and3 = m. The output both parties receive
is equal to%, which is the desired output. The proof of privacy for thistorcol
follows from Theorem 2 and the composition theorem.

4.2 Protocol based on homomorphic encryption

Let (G, E, D, M) be a encryption scheme (whefeis the function to generate public
parametersy andD are the encryption and decryption functions, atids the message
space respectively) with the following properties:

— The encryption schem@, E, D) is semantically securf24]. Essentially, an en-
cryption scheme is semantically secure if an adversarysganextra information
by inspecting the ciphertext. This is formally defined in #ppendix (see defini-
tion 5).

— Forallm € M anda € M, my € E(m) implies thatm$ € E(m«a). Encrypting
the same message twice in a probabilistic encryption fanatan yield a different
ciphertext, saZ(m) denotes the set of ciphertexts that can be obtained by encryp
i 3
ing m.

— There is a computable functighsuch that for all messages, andms the follow-
ing property holds:

f(E(m1), E(mz)) = E(m1 + m2)

% Of course, to successfully decrypt two different messageandm’ setsE(m) and E(m’)
should be disjoint.



There are several encryption scheme that have the threentiesomentioned above [5,
39, 42]. In ourimplementation, we used thense probabilistic encryption (DPEgheme
of Benaloh [5]. The semantic security of the scheme provideBenaloh is based on
the intractability of deciding prime residuosity.

Party 1 and2 have a pair of messagé¢s,n) and (y,m). The two parties want
to jointly computejigl in a privacy-preserving way. Assume that pattgets up a
probabilistic encryption schemié&, E, D, M), and publishes the public parametéts
We also assume that the probabilistic encryption sché@hez, D, M) satisfies the
three properties given at the beginning of the section. THagopol Py for WAP is

shown in Figure 4.

— (Step 1)Party1 encryptsz andn and sends the encrypted values € E(z) andn; €
E(n) to party2.

— (Step 2)Party2 computes a random message M, and encrypts - y andz - m to obtain
z1 € E(z-y) andz2 € E(z-m). Party2 computes the following two messages and s¢nds
it to party 1:

mi = f(x1,21)

me = f(ni, 22)

Note: In our implementation we use the homomorphic-encryptidreste by [5] wheref
is multiplication.

— (Step 3)Using the two properties of the probabilistic encryptioheme (G, E, D), we
have the following:

mi=E(z-z+2-y)

mo =E(z-n+z-m)

Therefore, partyl can computez(z + y) andz(n + m), and hence can compug}éj—gl.
Party1 sends™L to party2.

Fig. 4. Protocol for WAP based on homomorphic encryption.

Theorem 3. Assume that the probabilistic encryption schei@ie ', D) has three prop-
erties mentioned at the beginning of this sub-sectm((x, n), (y,m)) is a privacy-
preserving protocol to compuﬁ%.

The proof of this theorem is straightforward and is givenppendix A. The basic in-
tuition is that party2 cannot tell the difference betwedf(z) and E(n) and encryption
of two arbitrary messages.

The complexity of encryption and decryption operations stlhemd G, E, D, M)
depends on size of the message spateTherefore, in order to keep the complexity



low it is important that the size of the message space be shiallever, in order to
achieve adequate precision the message space should &eGaigese remainder the-
orem (CRT) allows us to perform computation over smallecepand then reconstruct
the result for a larger message space.jzet - -, p,,, bem small primes. The two par-
ties execute the protocol described abovedpr, - - -, Z,, . Partyl receives:(z + y)
andz(n + m) modulop; (for 1 <i < m). CRT allows partyl to reconstruct(z + y)
andz(n +m) moduloN = []“, p;. This technique is also used by Gilboa [17].

5 Experimental Evaluation

This section looks at the feasibility of our solution by exating the cost of the protocol
on real data-sets. The goal of this study is to establishdkeaf our privacy-preserving
clustering algorithms on real applications. We principakek to understand the per-
formance and privacy tradeoffs inherent to the operatich@protocols.

We evaluated three clustering algorithms. Biraplescheme is used throughout as
a baseline for our experiments. This protocol implemengsitmeans clustering al-
gorithm as described in section 3. This algorithm does netamy privacy-preserving
protocols. This represents the nominal cost of clusteang, will be present in ank-
means clustering approach, independent of if and how prigamplemented. Through-
out this sectiorfeaturesrefer to the dimension of the vectors being clustered anl eac
iteration of thek-means algorithm is referred to emund Ouir first privacy-preserving
protocol (referred to a®PE) uses oblivious polynomial evaluation. This protocol is de
scribed in detail in Section 4.1. For oblivious polynomizkiation we use the protocol
presented by Naor and Pinkas [40]. The next privacy-présgprotocol (referred to as
DPE) uses homomorphic encryption scheme of Benaloh [5]. Thasogol is described
in detail in Section 4.2.

ImplementationOur system consists of approximat800 lines of Java code, split up
into a number of self-contained modules. Theneans algorithm module implements
actual clustering computations as described in SectionudinD each iteration, this
module calls therotocol module to compute the cluster means for each dimension of
the cluster. Theprotocol module sets up the framework of communication, and calls
the specific protocol handlers with a common interface, ddg on which protocol
is selected. In theimplehandler, Alice sendgz, n) to Bob, who computes the cluster
meanjﬂ and sends it to Alice. The OPE and DPE protocol handlers imefe the
protocols described in Sections 4.1 and 4.2.

The central results uncovered by this investigation inefud

1. Clustering using DPE is two orders of magnitude more baditivmefficient than
OPE, and executes in 4.5 to 5 times less time. This is largedytal bandwidth and
computational costs associated with the oblivious trassfsed by OPE.

2. Our protocols clustering with perfect fidelity; that isetclusters resulting from our
algorithms are identical to those reported biy-means algorithm with no privacy
for reasonable parameter choices.

3. Small, medium, and large data-sets can be clustereckeetigi



4. Costs scale linearly with feature and rounds. The numbsamples affects run-
time only inasmuch as it increases the number of rounds the@mvergence.

5. Protocol parameters affect bandwidth usage by consaatarf Moreover, expo-
nential increases in security or supported message spswk irelinear increases
in execution run-times.

We begin in the following section by exploring several realadsets representative of
expected environments.

5.1 Experimental Data

The validity of our experimental approach is partially degent on the realism of our
test data. For this reason, we have obtained a collectioxtefreally provided data-
sets representing diverse applications. All experimeessidbed in this section use the
syntheticriver, robot, andspeecldata-sets detailed below.

We selected the elements of asyntheticdata-set to enable testing and measure
startup costs. This data set includes 4 points uniformlridiged within a 6 dimen-
sional space. By design, the data clusters quickly into 4uiadi’ clusters within 2
rounds under thé-means algorithm in all experiments.

Originally used in the Computation Intelligence and LeagnjCOIL) competition,
theriver data-set describes measurements of river chemical caatiens and algae
densities [27]. The river data was used to ascertain the srrafgae growth of river
water in temperate climates. The clustered data is useddmirthe relationship be-
tween the presence and concentrations of various chenmicplsblic waterways and
algae growth. The river contains 184 samples with 15 featpee sample.

Therobot data-set [26] contains continuous senor readings fromithreeBr-1 mo-
bile robot used for testing computer learning and concéplexzelopment approaches.
Each of the 697 samples contains 36 features from sensgsafrthe Pioneer-1 mobile
robot. The samples were taken every 100ms and reflect thememte and changing
environment in which the robot was tested. The data has Hastered in prior use to
recognize experiences with common outcomes.

The speechdata-set [28] documents the measured voice charactsratispoken
Japanese vowels. Nine male speakers uttered two Japanesis yae/ repeatedly.
Sampled at 10kHz, the 640 utterances resulted in 12 featfir®®$87 samples. This
large data-set is used in the context of our experimentsatate the degree to which
the proposed protocols scale with the size of the input ditailar data-sets are clus-
tered frequently to help guide speech recognition softjag

Each of the data-sets represents a singular corpus. Inasbraur protocols are tar-
geted for applications of clustering with two parties. Wedwlothe two party case by
randomly subdividing the samples into equal sized subsetsasigning them to each
party. In real environments the size of the sets may be vdgtrent. Our approxima-
tion approach ensures that this kind of asymmetry will badparent to both parties
both in execution and performance. That is, the performahttee algorithm is largely
independent of the number of samples. However, as we shaliedlew, the number of
features has tremendous effect on the cost of clustering.



The last data set (called theng data-set) was collected by us. The purpose of
collecting this data was two fold:

— Test our clustering algorithm on a large data set.

— Construct a data set that can be naturally partitioned tootstrate that jointly
clustering two data sets can produce significantly differesults than individually
clustering them.

We setup two hosts (referred to dsand B) to measure ICMP ping round-trip times.
There wered ping targets located around the world (one of the ping targets on

the same subnet as haB). On each host and for each ping target the pings were
grouped in blocks 0£00. For each block, &-tuple consisting of the following three
values was generated: the average time to live (TTL), theageround-trip time (RTT),
and fraction of lost packets (%drop). We collected data aveeriod of24 hours and
generated a data set consistin@8872 data points, which were evenly divided between
host A and B. We ran our clustering algorithm on the joint data set, ani dats
corresponding to host4 and B.

5.2 Experimental Setup

We use the architecture and code described earlier for freriements described through-
out. All experiments are executed on a pair of 3Ghz machirgsargigabyte physical
memory. The experimental application is running on the Sucrddystems Java Vir-
tual Machine version 1.5 [47] on the Tao Linux version 1.0ragiag system [25]. The
protocols are executed on a 100Mbps unloaded LAN with a nredsound-trip time
of 0.2 milliseconds.

The experiments profile the additional cost of providingacly in clustering sen-
sitive data. To this end, we focus on three metrics of costutitith; communication
overheaddelay, andprecision Communication overhead records the amount of addi-
tional network bandwidth used by the privacy schemes owesittnple schemes. Delay
measures the additional time required to complete thearinst.

Precision is used to measure the degree to which the appatedntlustering di-
verge from those reported by a sim@leneans algorithm, and is calculated as follows.
Let X = {z1,...,7,} be the sample data set to be cluster@dC 2% is the cluster-
ing of X by the simple algorithm, an@’, C 2% is the clustering returned by the OPE
algorithm (the DPE metric is defined similarly in the obviouanner). For each pair
(x;,z;) such thall <i < j < nan error occurs if

1. x; andz; are in the same cluster @f;, but inC, they are in different clusters.
2. z; andz; in the same cluster i€, but in C; they are in different clusters.

The total number of errors is denotéd The maximum number of errors § =
n(n — 1)/2. The precisionP is given by(N — E)/N.

Both OPE and DPE have unique parameters which dictate tierpemce and se-
curity of each protocol. The performance of DPE is most ¢ff@dy the size of the
primes used to select the homomorphic encryption keys. |Smaites can be crypt-
analyzed, and large ones can unnecessarily increase hithdwse and computational



costs. Like RSA, linear increases in the size of the primesilshresult in exponential
security improvements.

We use interval arithmetic to approximate real numbers éppendix C). The size
of the message space in DPE and the finite-field in OPE are whosachieve the
desired precision. In Benaloh’s encryption schemndenotes the size of the message
space. For efficiency reasons we choese 3* (see [5] for details). Two crucial pa-
rameters in the oblivious polynomial evaluation protoddlaor and Pinkas ar®, the
degree of the masking polynomial aid, the total number of points used (details of
this algorithm can be found in [40]). The sender’'s maskintypomial D has degree
k.d, whered is the degree of the polynomi& being evaluated and is the security
parameter. Since in our algorithm the polynomial being watdd is always linear, the
security parameter is simpl§. IncreasingD strengthens the sender’s security. Only
D +1 points are needed to interpolate, but the receiver sgiids1).M pairs of values
to the sender. Out of each set bf pairs, one of them is related to (the point the
polynomial is being evaluated on), and the othér 1 values are random. ThHeout-
of M oblivious transfer protocol (denoted @3'}VY) is repeated + 1 times to learn the
required value. So, increasirg strengthens the receiver’s security. Unless otherwise
specified, we selected = 7 andM = 6. For brevity, we do not considdp or M
further.

5.3 Results

Ouir first battery of tests broadly profile the performance 8ECand DPE. Shown in
Table 1, the most striking characteristic of these expanisies that they demonstrate
that OPE protocols consume two orders of magnitude moreankt@sources than the
DPE protocols. These costs can be directly attributed tootiliwious transfer algo-
rithms whose primitive cryptographic operations require transfer of many polyno-
mials between hosts. The total bandwidth costs scaledrlinfea both OPE and DPE.
That is, the bandwidth costs per feature/round are relgtoanstant for the given data
sets, where we observed 0.03% variance in scaled bandwsdteun OPE and 9.36%
in DPE. Note that the bandwidth is ultimately of limited irdet; the worst case exper-
iment only consumes 47 megabytes of bandwidth over two araffarfinutes. Hence,
our protocols would have visible impact only the slowestusibst networks.

A chief feature illustrated by the timing measurements & DPE is much more
time and bandwidth efficient than OPE. Surprisingly, DPE.Et 5 times faster on
all the data-sets for the selected parameters. The reasothss is that the underlying
oblivious transfers incur large message exchanges bettheamo parties. Hence, in
all experiments the limiting factors are bandwidth and catapion? The efficiency of
DPE with respect to OPE further shows fixed costs (startup)ikewise dominated
by the underlying privacy preservation operations. Furthiee the bandwidth costs,
the execution of each algorithm scale linearly with the nandf features and rounds,

4 Early implementations of our protocols were limited by thtehcy caused by many individual
round-trips in the protocol. We optimized these these bulfsizing exchanges, where pos-
sible. This vastly improved protocol performance, and agectiresult, bandwidth and and
computation have since emerged as the limiting factors.



Communications Overhead Delay
Test |Rounds bytes bytes _percent milliseconds millisecondsg _percent
feature/rnd| increase feature/rnd | increase
Synthetic (4 samples, 6 features)
Simplg 2 5959 0 0% | 168 0 0%
OPE 2 1497823 124322 [25035.48% 10147 831.58 |5939.88%
DPE 2 13580 635.08 | 127.89%| 2135 [163.916666[71170.83%)
River (184 samples, 15 features)
Simplg 16 74574 | 0 0% | 772 0 0%
OPE 16 2991645’( 124241.17 40116.47% 176133 730.67 |22715.16%
DPE 16 [ 234422| 566.03 | 314.35%| 38721 158.12 | 4915.67%
Robot (697 samples, 36 features)
Simplg 8 94005 | 0 0% | 1348 0 0%
OPE 8 [36569040 126649.4238801.16% 212776 734.125 |15684.57%
DPE 8 269698 | 610.04 | 186.90% | 47662 160.8125 | 3435.76%
Speech (5,687 samples, 12 features)
Simplg 33 143479 | 0 0% | 4198 0 0%
OPE 33 4935973$ 124183.48 34402.07% 294694 733.57 |6919.87%
DPE 33 [ 384644| 509.00 | 268.08%| 66101 [156.320707[11474.58%)
Ping (28,392 samples, 3 features)
Simplg 9 11644 0 0% | 2765 0 0%
OPE 9 3429688 126594.2|29354.55% 23767 777.8519 | 759.566%
DPE 9 30633 703.29 | 163.07% | 9694 256.63 | 250.59%

Table 1. Experimental Results - resource and precision results éxperiments over the three
data sets. The feature/round statistics show the costy éégieire clustering in a single round of
the k-means algorithm, e.g., a single execution of the pyiyaeserving WAP protocol.



where each feature round requires 730 and 160 millisecard3RPE and DPE to com-
plete, respectively.

The cost of privacy-preservationin large data-set clirsggs noticeable. For exam-
ple, a large data-set containing 5687 samples and 12 fedtakes DPE just 66 seconds
to cluster, as opposed to the 4.19 seconds required by ifdeskiymeans counterpart.
Hence for this experiment, DPE algorithm incurs slowdowra déctor of 15 and the
more expensive OPE a factor of 70. These results are, for appsications, clearly
within the bounds of acceptable performance. This is pagity encouraging in the
face of past attempts; circuit implementations of vasthger operations (averaging
very small collections of data points) took tens of secondimplete [35].

Fairplay. We compared our protocols for WAP with a simple strategy @ragimating

the function% by a circuitC and then using standard constructions [21, 22, 52]. We
used Fairplay [35] to securely evaluate the circlitFairplay does not support divi-
sion, so we implemented a circuit for division (our implertaion for division uses the
standard "long division” method). As expected the privacgserving clustering algo-
rithm that uses Fairplay to be very slow. Experimental risstbnfirmed this intuition.
For example, for the@ing data set clustering with Fairplay todk5, 416 milliseconds
(recall that clustering with DPE took onfy 694 milliseconds).

For the parameters we selected the precision of our prigaegerving algorithms
(DPE and OPE) wa$00%. The reasons for this are two-fold. The parameter choices
for DPE resulted in a message space3f values, which allowed us to map cluster
means to 4 decimal places. Moreover, the data range was snalllour data-sets.
Hence, the error rounding caused by using interval aritmaets inconsequential. Note
that in other environments, where the message space igedduoi be smaller (likely
for performance reasons) or the range of data values is,lprgeision errors may be
introduced.

The costs of OPE grow slightly with increases/inand M. We experimented with
varied parameters dD and M equal 5, 10, 15 on all the non-synthetic data-sets (for a
total of 27 experiments) . In all cases increased cost wasnadnthe parameter sets
slowed the performance of the algorithm down between 60%4.8086 over a baseline
experiment, i.e.M = D = 5. Again, these costs are a direct reflection of the costs of
the underlying oblivious transfer. Not shown, the bandidbsts in DPE scale by a
constant factor proportional tb and M .

As illustrated in Figure 5, increases the siz@which is a product of two primes) in
DPE has modest affect on the performance of the protocofmiential increases im
resultin linear increases in message size. Because thenkdsaa limiting factor, such
increases are, as shown, reflected in linear slowdowns.deecy large intervals or
high precision clustering can be supported by small in@e&s bandwidth consump-
tion. As in OPE, bandwidth costs in DPE scale by a constatdfatthese experiments,
where each protocol exchange increases directly in prigpax the size of the primes.

For the ping data set our clustering algorithm generawdsters, which correspond
to the four target hosts. The centers for the four clusterskaown in Figure 6. As can be
clearly seen from the results, clusters found by the algoritsing the joint data set are
significantly different than the clusters found in the iridival data sets. Therefore, if the
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Fig. 5. DPE runtime costs by message space mitliseconds the time to cluster the sample
data-sets with various widths efmessage spaces.

goal is to estimate RTT, TTL, and %drop for the target hostsstmsed in networking
applications (such as routing), then clustering on the jdata set is desirable.

Cluster centers

A (241.76, 32.69, 0.18), (48.00, 75.87, 0.58), (243.00, 59.81, 0.15), (64.00, 0.19, 0.00)
B |(47.00, 88.60, 0.74), (251.92, 4.73,0.19), (242.00, 48.01, 2.70), (133.67, 485.77, 13.78)
Joint(245.26, 28.73, 0.60), (47.51, 82.13, 0.66), (133.67, 485.77, 13.78), (64.00, 0.186, 0.00)

Fig. 6. (TTL,RTT,%drop) centers for the four clusters.

6 Conclusion

We presented two privacy-preservihgneans algorithms. We also implemented these
algorithm and performed a thorough evaluations of our dlgms. There are several
avenues for further research. We want to perform furtheinopations to our tool to
reduce the execution and bandwidth overheads. We want torexgrivacy-preserving
versions of other clustering algorithms. We are partidularterested in hierarchical
clustering algorithms.
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A Definitions and Proofs

Definition 5. Assume that the message spddecan be sampled in polynomial time,
i.e., there exists a probabilistic polynomial time algomitA,; such that it takes input
1* and generates a messagec M. Leth : M — R be a function, which can be
thought of as some information about the message, /g(g:) = 1 iff message has a
substring “Bob” in it. Consider the following two games:

— (Game 1):Adversary is informed that | am about to choose a messagsing the
sampling algorithmd ;. The adversary is asked to guégsn).

— (Game 2):In addition to the information given in game 1, he is also tibld en-
cryptiona € E(m) of the message. The adversary is again asked to duiess

An encryption functionF is calledsemantically securd the difference between the
probabilities of the adversary succeeding in the two gasesgligible. The probability
is computed over the message space.

Proof of Theorem 3: The view of the two parties is shown below:

VIEWTH (z,n) = (z,n, 2(x + y), 2(n + m))
x—l—y)

VIEW?ZH = -7
2 (Uvm) (yamaxlvnlvn_i_m

Let 2’ be a message uniformly chosen frath DefineS; (z,n, 2% ) as follows:

’ n+m

r+y
n+m

,2')

(z,n, 2’



It is easy to see thaf; (x, n, j:jl) and VIEW, " (z, n) are statistically indistinguish-
able (this proof is very similar to the proof of Theorem 2 give Section 4.1).

Recall thatz; € E(z) andny € E(n). Since(G, E, D) is semantically secure,
party 2 cannot gain extra information from the encrypted valuesndn;. In other
words. Letr) € E(z') andn} € E(n’), wherez’ andn’ are randomly chosen mes-
sages. An adversary cannot distinguish between \{J’EW, m) and(y, m, z},n}, j:jl)

with more than negligible probability. Therefore, privasfyparty1 with respect to party
2 follows. O

B Generation of shared RSA keys and WAP

We assume that all elements are drawn from a finite flel&uppose that partyand2
have a pair of numbef(s, b) and(c, d) and they want to privately compufe+c) (b+d).
In other words, they want to privately compute the followfogctionality:

((a,b), (c,d)) — (a+¢)(b+d)

This problem is one of the crucial steps in the protocol farsig RSA keys. LeP,;
be the protocol for solving this problem. We will show tia, can be used to design
a protocolPy 4 p for solving WAP (see Section 4 for a description of this pesh).
ProtocolPy 4 p works as follows:

— Partyl and party2 generate two random elemenisandz, chosen uniformly from
F.

— Two parties invoke the protocd®,; with inputs (z,z1) and (y, z2). Each party
obtainsr; = (x4 y)(21 + 22).

— Two parties invoke the protoc@®,; with inputs(n, z1) and (m, z2). Each party
obtainsry = (n+m)(z1 + 22).

— The two parties obtaif=-L by computing:—;.

n+m

Next we argue thaPy 4 p is privacy preserving. The views of the two parties in
this protocol are:

VIEW(z,n) = (z,n, (x + y)(21 + 22), (n + m)(z1 + 22))
VIEW:(y,m) = (y,m, (z +y)(21 + 22), (n + m) (21 + 22))

Let 2’ be a random element &f and S, (z, n, 2% be defined as follows:

’ n+m
2"

If we fix z, y, andz; and pickzs uniformly from 7, then(z + y)(z1 + 22) is a random
element distributed uniformly ove¥. Therefore, VIEW (z, n) andS; (=, n, Z2)) are

' n+m
statistically indistinguishable. Let be a random element ¢f and Sz (y, m, %)) be
defined as follows:

r+y
n+m’

(z,n, 2

r+y
)
n-+m
It is easy to see that VIEWy, m) and Sy (y, m, 2L )) are statistically indistinguish-

' n+m

able. Using the composition theorem the privacyPpf 4 p follows.

(y,m, 2’




C Approximating Reals

Assume that real numbers occur in the intefaid] — M'). We divide the intervalM, — M)
into 2M N sub-intervals of siquv. Thei-th sub-interval (wher® < i < 2MN) is
given by

i i+1
~M+—,—-M
oM+ 52

We denote byl (z) as the sub-interval the real numbetdies in, i.e.z € [-M +

%, -M + %). If z andy are two real numbers that lie in the sub-intervét)

andI(y), thenz + y lies in the sub-intervgdl-2M + w, —2M + %).
For the rest of the sub-section we will approximate real neralwith the the inter-

val they lie in. In our protocol, a party obtair$l (x) + I(y)) andz(n + m), wherez

@)+1(Y))

is the random number. Using some simple arithmetic we cancdethatz(lz(%m)

lies in the interval—M + £, —M + <), whereQ is the quotient of;; divided by
q2- Integersy; andg, are shown below:

1 = MN(2(n+m) - 2) + z(n+m) - 2(I(z) + I(y))
g2 = z(n +m)
In all our algorithms, we have to use a large enough spacesaltithe operations used

to calculatey; andgs are exact, i.e., there is no “wrap around”. If all the integesed

in ¢, andg, are bounded bg”, then the size of the field should be greater than or equal
to 24k+5'



