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We consider the problem of learning incoherent sparse and low-rank patterns from multiple tasks.
Our approach is based on a linear multi-task learning formulation, in which the sparse and low-rank
patterns are induced by a cardinality regularization term and a low-rank constraint, respectively.

This formulation is non-convex; we convert it into its convex surrogate, which can be routinely
solved via semidefinite programming for small-size problems. We propose to employ the general
projected gradient scheme to efficiently solve such a convex surrogate; however, in the optimization
formulation, the objective function is non-differentiable and the feasible domain is non-trivial. We

present the procedures for computing the projected gradient and ensuring the global convergence
of the projected gradient scheme. The computation of projected gradient involves a constrained
optimization problem; we show that the optimal solution to such a problem can be obtained via
solving an unconstrained optimization subproblem and an Euclidean projection subproblem. We

also present two projected gradient algorithms and analyze their rates of convergence in details.
In addition, we illustrate the use of the presented projected gradient algorithms for the proposed
multi-task learning formulation using the least squares loss. Experimental results on a collection of
real-world data sets demonstrate the effectiveness of the proposed multi-task learning formulation

and the efficiency of the proposed projected gradient algorithms.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications - Data Mining

General Terms: Algorithms

Additional Key Words and Phrases: Multi-task learning, Low-rank and sparse patterns, Trace
norm

1. INTRODUCTION

In the past decade there has been a growing interest in the problem of multi-task learning
(MTL) [Caruana 1997]. Multi-task learning has been applied successfully in many areas
of data mining and machine learning [Ando 2007; Ando and Zhang 2005; Bi et al. 2008;
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Bickel et al. 2008; Si et al. 2010; Xue et al. 2007]. MTL aims to enhance the overall gener-
alization performance of the resulting classifiers by learning multiple tasks simultaneously
in contrast to single-task learning (STL) setting. A common assumption in MTL is that
all tasks are intrinsically related to each other. Under such an assumption, the informative
domain knowledge is allowed to be shared across the tasks, implying what is learned from
one task is beneficial to another. This is particularly desirable when there are a number of
related tasks but only a limited amount of training data is available for learning each task.

MTL has been investigated by many researchers from different perspectives. Hidden
units of neural networks are shared among similar tasks [Caruana 1997]; task relatedness
are modeled using the common prior distribution in hierarchical Bayesian models [Bakker
and Heskes 2003; Schwaighofer et al. 2004; Yu et al. 2005; Zhang et al. 2005]; the pa-
rameters of Gaussian Process covariance are learned from multiple tasks [Lawrence and
Platt 2004]; kernel methods and regularization networks are extended to multi-task learn-
ing setting [Evgeniou et al. 2005]; a convex formulation is developed for learning clustered
tasks [Jacob et al. 2008]; a shared low-rank structure is learned from multiple tasks [Ando
and Zhang 2005; Chen et al. 2009]. Recently, trace norm regularization has been intro-
duced into the multi-task learning domain [Abernethy et al. 2009; Argyriou et al. 2008;
Ji and Ye 2009; Obozinski et al. 2010; Pong et al. 2009] to capture the task relationship
via a shared low-rank structure of the model parameters, resulting in a tractable convex
optimization problem [Liu et al. 2009].

In many real-world applications, the underlying predictive classifiers may lie in a hy-
pothesis space of some low-rank structure [Ando and Zhang 2005], in which the multiple
learning tasks can be coupled using a set of shared factors, i.e., the basis of a low-rank
subspace [Shapiro 1982]. For example, in natural scene categorization problems, images
of different labels may share similar background of a low-rank structure; in collaborative
filtering or recommendation system, only a few factors contribute to an individual’s tastes.
On the other hand, multiple learning tasks may exhibit sufficient differences and mean-
while the discriminative features for each task can be sparse. Thus learning an independent
predictive classifier for each task and identifying the task-relevant discriminative features
simultaneously may lead to improved performance and easily interpretable models.

In this paper, we consider the problem of learning incoherent sparse and low-rank pat-
terns from multiple related tasks. We propose a linear multi-task learning formulation, in
which the model parameter can be decomposed as a sparse component and a low-rank com-
ponent. Specifically, we employ a cardinality regularization term to enforce the sparsity in
the model parameter, identifying the essential discriminative feature for effective classifi-
cation; meanwhile, we use a rank constraint to encourage the low-rank structure, capturing
the underlying relationship among the tasks for improved generalization performance. The
proposed multi-task learning formulation is non-convex and leads to an NP-hard optimiza-
tion problem. We convert this formulation into its tightest convex surrogate, which can
be routinely solved via semi-definite programming. It is, however, not scalable to large
scale data sets in practice. We propose to employ the general projected gradient scheme to
solve the convex surrogate; however, in the optimization formulation, the objective func-
tion is non-differentiable and the feasible domain is non-trivial. We present the procedures
for computing the projected gradient and ensuring the global convergence of the projected
gradient scheme. The computation of projected gradient involves a constrained optimiza-
tion problem; we show that the optimal solution to such a problem can be obtained via
ACM Journal Name, Vol. 00, No. 00, 00 2000.
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solving an unconstrained optimization subproblem and an Euclidean projection subprob-
lem separately. We also present two algorithms based on the projected gradient scheme
and analyze their rates of convergence in details. In addition, we present an example of the
proposed multi-task learning formulation using the least squares loss and illustrate the use
of the presented projected gradient based algorithms in this case. We conduct extensive ex-
periments on a collection of real-world data sets. Our results demonstrate the effectiveness
of the proposed multi-task learning formulation and also demonstrate the efficiency of the
projected gradient algorithms.

The remainder of this paper is organized as follows: in Section 2 we propose the lin-
ear multi-task learning formulation; in Section 3 we present the general projected gradient
scheme for solving the proposed multi-task learning formulation; in Section 4 we present
efficient computational algorithms for solving the optimization problems involved in the
iterative procedure of the projected gradient scheme; in Section 5 we present two algo-
rithms based on the projected gradient scheme and analyze their rates of convergence in
details; in Section 6 we present a concrete example on the use of the projected gradient
based algorithms for the proposed multi-task learning formulation using the least squares
loss; we report the experimental results in Section 7 and the paper concludes in Section 8.

Notations For any matrix A ∈ Rm×n, let aij be the entry in the i-th row and j-th column of
A; denote by ∥A∥0 the number of nonzero entries in A; let ∥A∥1 =

∑m
i=1

∑n
j=1 |aij |; let

{σi(A)}ri=1 be the set of singular values of A in non-increasing order, where r = rank(A);
denote by ∥A∥2 = σ1(A) and ∥A∥∗ =

∑r
i=1 σi(A) the operator norm and trace norm of

A, respectively; let ∥A∥∞ = maxi,j |aij |.

2. MULTI-TASK LEARNING FRAMEWORK

Assume that we are given m supervised (binary) learning tasks, where each of the learning
tasks is associated with a predictor fℓ and a set of training data as {(xℓ

i , y
ℓ
i )}

nℓ
i=1 ⊂ Rd ×

{−1,+1} (ℓ = 1, · · · ,m). We focus on linear predictors as fℓ(xℓ) = zTℓ x
ℓ, where zℓ ∈

Rd is the weight vector for the ℓth learning task.
We assume that the m tasks are related using an incoherent rank-sparsity structure, that

is, the transformation matrix can be decomposed as a sparse component and a low-rank
component. Denote the transformation matrix by Z = [z1, · · · , zm] ∈ Rd×m; Z is the
summation of a sparse matrix P = [p1, · · · , pm] ∈ Rd×m and a low-rank matrix Q =
[q1, · · · , qm] ∈ Rd×m given by

Z = P +Q, (1)

as illustrated in Figure 1. The ℓ0-norm (cardinality) [Boyd and Vandenberghe 2004], i.e.,
the number of non-zero entries, is commonly used to control the sparsity structure in the
matrix; similarity, matrix rank [Golub and Van Loan 1996] is used to encourage the low-
rank structure. We propose a multi-task learning formulation with a cardinality regulariza-
tion and a rank constraint given by

min
Z,P,Q∈Rd×m

m∑
ℓ=1

nℓ∑
i=1

L
(
zTℓ x

ℓ
i , y

ℓ
i

)
+ γ∥P∥0

subject to Z = P +Q, rank(Q) ≤ τ, (2)

where L(·) denotes a smooth convex loss function, γ provides a trade-off between the
sparse regularization term and the general loss component, and τ explicitly specifies the
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Fig. 1. Illustration of the transformation matrix Z in Eq. (1), where P denotes the sparse component with the
zero-value entries represented by white blocks, and Q denotes the low-rank component.

upper bound of the matrix rank. Both γ and τ are non-negative and determined via cross-
validation in our empirical studies.

The optimization problem in Eq. (2) is non-convex due to the non-convexity of the com-
ponents ∥P∥0 and rank(Q); in general solving such an optimization problem is NP-hard
and no efficient solution is known. We consider a computationally tractable alternative by
employing recently well-studied convex relaxation techniques [Boyd and Vandenberghe
2004].

Define the function f : C → R, where C ⊆ Rd×m. The convex envelope [Boyd
and Vandenberghe 2004] of f on C is defined as the largest convex function g such that
g(Ẑ) ≤ f(Ẑ) for all Ẑ ∈ C. The ℓ1-norm has been known as the convex envelope of the
ℓ0-norm as [Boyd and Vandenberghe 2004]:

∥P∥1 ≤ ∥P∥0, ∀P ∈ C = {P | ∥P∥∞ ≤ 1}. (3)

Similarly, trace norm (nuclear norm) has been shown as the convex envelop of the rank
function as [Fazel et al. 2001]:

∥Q∥∗ ≤ rank(Q), ∀Q ∈ C = {Q | ∥Q∥2 ≤ 1}. (4)

Note that both the ℓ1-norm and the trace-norm functions are convex but non-smooth, and
they have been shown to be effective surrogates of the ℓ0-norm and the matrix rank func-
tions, respectively.

Based on the heuristic approximations in Eq. (3) and Eq. (4), we can replace the ℓ0-norm
with the ℓ1-norm, and replace the rank function with the trace norm function in Eq. (2),
respectively. Therefore, we can reformulate the multi-task learning formulation as:

min
Z,P,Q∈Rd×m

m∑
ℓ=1

nℓ∑
i=1

L
(
zTℓ x

ℓ
i , y

ℓ
i

)
+ γ∥P∥1

subject to Z = P +Q, ∥Q∥∗ ≤ τ. (5)

The optimization problem in Eq. (5) is the tightest convex relaxation of Eq. (2). Such a
problem can be reformulated as a semi-definite program (SDP) [Vandenberghe and Boyd
1996], and solved using many off-the-shelf optimization solvers such as SeDuMi [Sturm
2001]; however, SDP is computationally expensive and can only handle several hundreds
of optimization variables.
ACM Journal Name, Vol. 00, No. 00, 00 2000.
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Related Work: The formulation in Eq. (5) resembles the Alternating Structure Optimiza-
tion algorithm (ASO) for multi-task learning proposed in [Ando and Zhang 2005]. How-
ever, they differ in several key aspects: (1) In ASO, the tasks are coupled using a shared
low-dimensional structure induced by an orthonormal constraint, and the formulation in
ASO is non-convex and its convex counterpart cannot be easily obtained. Our formulation
encourages the low-rank structure via a trace norm constraint and the resulting formulation
is convex. (2) In ASO, in addition to a low-dimensional feature map shared by all tasks,
the classifier for each task computes an independent high-dimensional feature map specific
to each individual task, which is in general dense and does not lead to interpretable fea-
tures. In our formulation, the classifier for each task constructs a sparse high-dimensional
feature map for discriminative feature identification. (3) The alternating algorithm in ASO
can only find a local solution with no known convergence rate. The proposed algorithm
for solving the formulation in Eq. (5) finds a globally optimal solution and achieves the
optimal convergence rate among all first-order methods. Note that recent works in [Candès
et al. 2009; Chandrasekaran et al. 2009; Wright et al. 2009] consider the problem of de-
composing a given matrix into its underlying sparse component and low-rank component
in a different setting: they study the theoretical condition under which such two compo-
nents can be exactly recovered via convex optimization, i.e., the condition of guaranteeing
to recover the sparse and low-rank components by minimizing a weighted combination of
the trace norm and the ℓ1-norm.

3. PROJECTED GRADIENT SCHEME

In this section, we propose to apply the general projected gradient scheme [Boyd and
Vandenberghe 2004] to solve the constrained optimization problem in Eq. (5). Note that
the projected gradient scheme belongs to the category of the first-order methods and has
demonstrated good scalability in many optimization problems [Boyd and Vandenberghe
2004; Nemirovski 1995].

The objective function in Eq. (5) is non-smooth and the feasible domain is non-trivial.
For simplicity, we denote Eq. (5) as

min
T

f(T ) + g(T )

subject to T ∈ M, (6)

where the functions f(T ) and g(T ) are defined respectively as

f(T ) =
m∑
ℓ=1

nℓ∑
i=1

L
(
(pℓ + qℓ)

Txℓ
i , y

ℓ
i

)
, g(T ) = γ∥P∥1,

and the set M is defined as

M =

{
T

∣∣∣∣T =

(
P
Q

)
, P ∈ Rd×m, ∥Q∥∗ ≤ τ, Q ∈ Rd×m

}
.

Note that f(T ) is a smooth convex function with a Lipschitz constant Lf [Bertsekas et al.
2003] as:

∥∇f(Tx)−∇f(Ty)∥F ≤ Lf∥Tx − Ty∥F , ∀Tx, Ty ∈ M, (7)

g(T ) is a non-smooth convex function, and M is a compact and convex set [Bertsekas et al.
2003]. It is known that the smallest Lipschitz constant L̂f in Eq. (7), i.e, L̂f = minLf ,
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is called the best Lipschitz constant for the function f(T ); moreover, for any L ≥ L̂f , the
following inequality holds [Nesterov 1998]:

f(Tx) ≤ f(Ty) + ⟨Tx − Ty,∇f(Ty)⟩+
L

2
∥Tx − Ty∥2, (8)

where Tx, Ty ∈ M.
The projected gradient scheme computes the global minimizer of Eq. (6) via an iterative

refining procedure. That is, given Tk as the intermediate solution of the kth iteration, we
refine Tk as

Tk+1 = Tk − tkPk, ∀k, (9)

where Pk and tk denote the appropriate projected gradient direction and the step size,
respectively. The appropriate choice of Pk and tk is key to the global convergence of
the projected gradient scheme. The computation of Eq. (9) depends on Pk and tk; in
the following subsections, we will present a procedure for estimating appropriate Pk and
tk, and defer the discussion of detailed projected gradient based algorithms to Section 5.
Note that since the determination of Pk is associated with Tk and tk, we denote Pk by
P1/tk(Tk), and the reason will become clear from the following discussion.

3.1 Projected Gradient Computation

For any L > 0, we consider the construction associated with the smooth component f(T )
of the objective function in Eq. (6) as

fL(S, T ) = f(S) + ⟨T − S,∇f(S)⟩+ L

2
∥T − S∥2F ,

where S, T ∈ Rd×m. It can be verified that fL(S, T ) is strongly convex with respect to the
variable T . Moreover, we denote

GL(S, T ) = fL(S, T ) + g(T ), (10)

where g(T ) is the non-smooth component of the objective function in Eq. (6). From the
convexity of g(T ), GL(S, T ) is strongly convex with respect to T . Since

GL(S, T ) = f(S)− 1

2L
∥∇f(S)∥2F

+
L

2

∥∥∥∥T −
(
S − 1

L
∇f(S)

)∥∥∥∥2
F

+ g(T ),

the global minimizer of GL(S, T ) with respect to T can be computed as

TL,S = argmin
T∈M

GL(S, T )

= argmin
T∈M

(
L

2

∥∥∥∥T −
(
S − 1

L
∇f(S)

)∥∥∥∥2
F

+ g(T )

)
. (11)

Therefore we can obtain the projected gradient of f at S via

PL(S) = L(S − TL,S). (12)
ACM Journal Name, Vol. 00, No. 00, 00 2000.
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It is obvious that 1/L can be seen as the step size associated with the projected gradient
PL(S) by rewritting Eq. (12) as

TL,S = S − 1

L
PL(S). (13)

Note that if the inequality f(TL,S) ≤ fL(S, TL,S) is satisfied, PL(S) is called the L-
projected gradient [Nemirovski 1995] of f at S.

3.2 Step Size Estimation

From Eq. (12), the step size associated with PL(S) is given by 1/L. Denote the objective
function in Eq. (6) as

F (T ) = f(T ) + g(T ). (14)

Theoretically, any step size 1/L of the value L larger than the best Lipschitz constant L̂f

guarantees the global convergence in the projected gradient based algorithms [Nemirovski
1995]. It follows from Eq. (8) that

F (TL,S) ≤ GL(S, TL,S), ∀L ≥ Lf . (15)

In practice we can estimate an appropriate L (hence the appropriate step size 1/L) by
ensuring the inequality in Eq. (15). By applying an appropriate step size and the associated
projected gradient in Eq. (9), we can verify an important inequality [Beck and Teboulle
2009; Nemirovski 1995], as summarized in the following lemma.

LEMMA 3.1. Let Lf be the Lipschitz continuous gradient associated with the function
f(T ) as defined in Eq. (7). Let S ∈ Rd×m, and TL,S be the minimizer to GL(S, T ) as
defined in Eq. (11). Then if L ≥ Lf , the following inequality holds

F (T )− F (TL,S) ≥ ⟨T − S,PL(S)⟩+
1

2L
∥PL(S)∥2F (16)

for any T ∈ M.

PROOF. Following from the convexity of f(·) and g(·), we have

f(T ) ≥ f(S) + ⟨T − S,∇f(S)⟩ (17)
g(T ) ≥ g(TL,S) + ⟨T − TL,S , ∂g(TL,S)⟩ , (18)

where ∂g(TL,S) denotes the subgradient [Nesterov 1998] of g(·) at TL,S . It is well known
that T̂ minimizes GL(S, T ) (with respect to the variable T ) if and only if 0 is a subgradient
of GL(S, T ) at T̂ , that is,

0 ∈ L (TL,S − S) +∇f(S) + ∂g(TL,S). (19)

From Eqs. (10), (14), (17) and (18), we have

F (T )−GL(S, TL,S) = (f(T ) + g(T ))− (fL(S, TL,S) + g(TL,S))

≥ ⟨T − TL,S ,∇f(S) + ∂g(TL,S)⟩ −
L

2
∥S − TL,S∥2F

= −L ⟨T − TL,S , TL,S − S⟩ − L

2
∥S − TL,S∥2F

= ⟨T − S,PL(S)⟩+
1

2L
∥PL(S)∥2F ,
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where the second equality follows from Eq. (19), and the third equality follows from
Eq. (12). This completes the proof of this lemma.

By replacing S with T in Eq. (16), we have

F (T )− F (TL,T ) ≥
1

2L
∥PL(T )∥2F . (20)

Note that the inequality in Eq. (16) characterizes the relationship of the objective values in
Eq. (6) using T and its refined version via the procedure in Eq. (9).

4. EFFICIENT COMPUTATION

The projected gradient scheme requires to solve Eq. (11) at each iterative step. In Eq. (11),
the objective function is non-smooth and the feasible domain set is non-trivial; we show
that its optimal solution can be obtained by solving an unconstrained optimization problem
and an Euclidean projection problem separately.

Denote T and S in Eq. (11) respectively as

T =

(
TP

TQ

)
, S =

(
SP

SQ

)
.

Therefore the optimization problem in Eq. (11) can be expressed as

min
TP ,TQ

L

2

∥∥∥∥( TP

TQ

)
−
(
ŜP

ŜQ

)∥∥∥∥2
F

+ γ∥TP ∥1

subject to ∥TQ∥∗ ≤ τ, (21)

where ŜP and ŜQ can be computed respectively as

ŜP = SP − 1

L
∇P f(S), ŜQ = SQ − 1

L
∇Qf(S).

Note that ∇P f(S) and ∇Qf(S) denote the derivative of the smooth component f(S) with
respect to the variables P and Q, respectively. We can further rewrite Eq. (21) as

min
TP ,TQ

β∥TP − ŜP ∥2F + β∥TQ − ŜQ∥2F + γ∥TP ∥1

subject to ∥TQ∥∗ ≤ τ, (22)

where β = L/2. Since TP and TQ are decoupled in Eq. (22), they can be optimized
separately as presented in the following subsections.

4.1 Computation of TP

The optimal TP to Eq. (22) can be obtained by solving the following optimization problem:

min
TP

β∥TP − ŜP ∥2F + γ∥TP ∥1.

It is obvious that each entry of the optimal matrix TP can be obtained by solving an opti-
mization problem as

min
t̂∈R

β∥t̂− ŝ∥2 + γ|t̂|. (23)

Note that ŝ denotes an entry in ŜP , corresponding to t̂ in TP from the same location. It
is known [Tibshirani 1996] that the optimal t̂ to Eq. (23) admits an analytical solution; for
completeness, we present its proof in Lemma 4.1.
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LEMMA 4.1. The minimizer of Eq. (23) can be expressed as

t̂∗ =


ŝ− γ

2β ŝ > γ
2β

0 − γ
2β ≤ ŝ ≤ γ

2β

ŝ+ γ
2β ŝ < − γ

2β

. (24)

PROOF. Denote by h(t̂) the objective function in Eq. (23), and by t̂∗ the minimizer of
h(t̂). The subdifferential of h(t̂) can be expressed as

∂h(t̂) = 2β(t̂− ŝ) + γsgn(t̂),

where the function sgn(·) is given by

sgn(t̂) =


{1} t̂ > 0

[−1, 1] t̂ = 0
{−1} t̂ < 0

.

It is known that t̂∗ minimizes h(t̂) if and only if 0 is a subgradient of h(t̂) at the point t̂∗,
that is,

0 ∈ 2β(t̂∗ − ŝ) + γsgn(t̂∗).

Since the equation above is satisfied with t̂∗ defined in Eq. (24), we complete the proof of
this lemma.

4.2 Computation of TQ

The optimal TQ to Eq. (22) can be obtained by solving the optimization problem:

min
TQ

1

2
∥TQ − ŜQ∥2F

subject to ∥TQ∥∗ ≤ τ, (25)

where the constant 1/2 is added into the objective function for convenient presentation.
In the following theorem, we show that the optimal TQ to Eq. (25) can be obtained via
solving a simple convex optimization problem.

THEOREM 4.1. Let ŜQ = UΣSV
T ∈ Rd×m be the SVD of ŜQ, where q = rank(ŜQ),

U ∈ Rd×q, V ∈ Rm×q, and ΣS = diag(ς1, · · · , ςq) ∈ Rq×q. Let {σi}qi=1 be the minimiz-
ers of the following problem:

min
{σi}q

i=1

∑q
i=1 (σi − ςi)

2

subject to
∑q

i=1 σi ≤ τ, σi ≥ 0. (26)

Denote Σ = diag(σ1, · · · , σq) ∈ Rq×q. Then the optimal solution to Eq. (25) is given by

T ∗
Q = UΣV T .

PROOF. Assume that the optimal T ∗
Q to Eq. (25) shares the same left and right singular

vectors as ŜQ. Then the problem in Eq. (25) is reduced to the problem in Eq. (26). Thus,
all that remains is to show that T ∗

Q shares the same left and right singular vectors as ŜQ.
Denote the Lagrangian function [Boyd and Vandenberghe 2004] associated with Eq. (25)
as

H(TQ, λ) =
1

2
∥TQ − ŜQ∥2F + λ(∥TQ∥∗ − τ).
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Since 0 is strictly feasible in Eq. (25), i.e., ∥0∥∗ < τ , the Slater’s condition [Boyd and
Vandenberghe 2004] is satisfied and strong duality holds in Eq. (25). Let λ∗ ≥ 0 be the
optimal dual variable [Boyd and Vandenberghe 2004] in Eq. (25). Therefore,

T ∗
Q = argmin

TQ

H(TQ, λ
∗)

= argmin
TQ

1

2
∥TQ − ŜQ∥2F + λ∗∥TQ∥∗.

Let T ∗
Q = UTΣTV

T
T ∈ Rd×m be the SVD of T ∗

Q and r = rank(T ∗
Q), where UT ∈ Rd×r

and UT ∈ Rm×r are columnwise orthonormal, and ΣT ∈ Rr×r is diagonal consisting
of non-zero singular values on the main diagonal. It is known [Watson 1992] that the
subdifferentials of ∥TQ∥∗ at T ∗

Q can be expressed as

∂∥T ∗
Q∥∗ =

{
UTV

T
T +D : D ∈ Rd×m, UT

T D = 0, DVT = 0, ∥D∥2 ≤ 1
}
. (27)

On the other hand, we can verify that T ∗
Q is optimal to Eq.(25) if and only if 0 is a subgra-

dient of H(TQ, λ
∗) at T ∗

Q, that is,

0 ∈ ∂H(T ∗
Q, λ

∗) = T ∗
Q − ŜQ + λ∗∂∥T ∗

Q∥∗. (28)

Let U⊥
T ∈ Rd×(d−m) and V ⊥

T ∈ Rm×(m−r) be the null space [Golub and Van Loan
1996] of UT and VT , respectively. It follows from Eq. (27) that there exists a point DT =

U⊥
T Σd

(
V ⊥
T

)T such that

UTV
T
T +DT ∈ ∂∥T ∗

Q∥∗
satisfies Eq. (28), and Σd ∈ R(d−m)×(m−r) is diagonal consisting of the singular values of
DT on the main diagonal. It follows that

ŜQ = T ∗
Q + λ∗ (UTV

T
T +DT

)
= UTΣTV

T
T + λ∗UTV

T
T + λ∗U⊥

T Σd

(
V ⊥
T

)T
= UT (ΣT + λ∗I)VT + U⊥

T (λ∗Σd)
(
V ⊥
T

)T
corresponds to the SVD of ŜQ. This completes the proof of this theorem.

Note that the optimization problem in Eq. (26) is convex, and can be solved via an algo-
rithm similar to the one in [Liu and Ye 2009] proposed for solving the Euclidean projection
onto the ℓ1 ball.

5. ALGORITHMS AND CONVERGENCE

We present two algorithms based on the projected gradient scheme in Section 3 for solving
the constrained convex optimization problem in Eq. (6), and analyze their rates of conver-
gence using techniques in [Nemirovski 1995; Nesterov 1998].

5.1 Projected Gradient Algorithm

We first present a simple projected gradient algorithm. Let Tk be the feasible solution point
in the k-th iteration; the projected gradient algorithm refines Tk by recycling the following
two steps: find a candidate T̂ for the subsequent feasible solution point Tk+1 via

T̂ = TL,Tk
= argmin

T∈M
GL(Tk, T ),
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and meanwhile ensure the step size 1
L satisfying the condition

F (T̂ ) ≤ GL(Tk, T̂ ).

Note that both Tk and T̂ are feasible in Eq. (6). It follows from Eq. (20) that the solution
sequence generated in the projected gradient algorithm leads to a non-increasing objective
value in Eq. (6), that is,

F (Tk−1) ≥ F (Tk), ∀k. (29)

The pseudo-code of the projected gradient algorithm is presented in Algorithm 1, and its
convergence rate analysis is summarized in Theorem 5.1. Note that the stopping criterion

Algorithm 1 Projected Gradient Method
1: Input: T0, L0 ∈ R, and max-iter.
2: Output: T .
3: for i = 0, 1, · · · ,max-iter do
4: while (true)
5: Compute T̂ = TLi,Ti via Eq. (11).
6: if F (T̂ ) ≤ GLi(Ti, T̂ ) then exit the loop.
7: else update Li = Li × 2.
8: end-if
9: end-while

10: Update Ti+1 = T̂ and Li+1 = Li.
11: if the stopping criterion is satisfied then exit the loop.
12: end-for
13: Set T = Ti+1.

in line 11 of Algorithm 1 can be set as: the change of objective values in two successive
steps are smaller than some pre-specified value (e.g., 10−5).

THEOREM 5.1. Let T ∗ be the global minimizer of Eq. (6); let L̂f be the best Lipschitz
continuous gradient defined in Eq.(7). Denote by k the index of iteration, and by Tk the
solution point in the kth iteration of Algorithm 1. Then we have

F (Tk)− F (T ∗) ≤ L̂

2k
∥T0 − T ∗∥2F ,

where L̂ = max{L0, 2L̂f}, and L0 and T0 are the initial values of Lk and Tk in Algo-
rithm 1, respectively.

PROOF. It follows from Eq. (12) we have

Ti+1 = TLi,Ti = Ti −
1

Li
PLi(Ti).

Moreover, from Eq. (16), we have

−εi+1 ≥ ⟨T ∗ − Ti,PLi(Ti)⟩+
1

2Li
∥PLi(Ti)∥2F

=
Li

2

(
−∥Ti∥2F + ∥Ti+1∥2F + 2⟨T ∗, Ti − Ti+1⟩

)
, (30)
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where εi+1 = F (Ti+1) − F (T ∗). Moving Li/2 to the left side in Eq. (30) and summing
such a reformulation from i = 0 to i = k, we have

k∑
i=0

2

Li
εi+1 ≤ ∥T0∥2F − ∥Tk+1∥2F + 2⟨T ∗, Tk+1 − T0⟩

= ∥T0 − T ∗∥2F − ∥Tk+1 − T ∗∥2F
≤ ∥T0 − T ∗∥2F .

Since Li ≥ Li−1 from line 7 in algorithm 1, and εi ≤ εi−1 from Eq. (29) for all i, we have

εk+1 ≤ Lk

2(k + 1)
∥T0 − T ∗∥2F .

Moreover, it can be verified that L0 ≤ Lk ≤ 2L̂f for all k. This completes the proof of
this theorem.

5.2 Accelerated Projected Gradient Algorithm

The proposed projected gradient method Section 5.1 is simple to implement but converges
slowly. We improve the projected gradient method using a scheme developed by Nes-
terov [Nesterov 1998], which has been applied for solving various sparse learning formu-
lations [Liu et al. 2009].

Algorithm 2 Accelerated Projected Gradient Method
1: Input: T0, L0 ∈ R, and max-iter.
2: Output: T .
3: Set T1 = T0, t−1 = 0, and t0 = 1.
4: for i = 1, 2, · · · ,max-iter do
5: Compute αi = (ti−2 − 1)/ti−1.
6: Compute S = (1 + αi)Ti − αiTi−1.
7: while (true)
8: Compute T̂ = TLi,S via Eq. (11).
9: if F (T̂ ) ≤ GLi(S, T̂ ) then exit the loop

10: else update Li = Li × 2.
11: end-if
12: end-while
13: Update Ti+1 = T̂ and Li+1 = Li.
14: if the stopping criterion is satisfied then exit the loop.

15: Update ti =
1
2 (1 +

√
1 + 4t2i−1).

16: end-for
17: Set T = Ti+1.

We utilize two sequences of variables in the accelerated projected gradient algorithm:
(feasible) solution sequence {Tk} and searching point sequence {Sk}. In the i-th iteration,
we construct the searching point as

Sk = (1 + αk)Tk − αkTk−1, (31)
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where the parameter αk > 0 is appropriately specified as shown in Algorithm 2. Similar
to the projected gradient method, we refine the feasible solution point Tk+1 via the general
step as:

T̂ = TL,Sk
= argmin

T∈M
GL(Sk, T ),

and meanwhile determine the step size by ensuring

F (T̂ ) ≤ GL(Sk, T̂ ).

The searching point Sk may not be feasible in Eq. (6), which can be seen as a forecast
of the next feasible solution point and hence leads to the faster convergence rate in Algo-
rithm 2. The pseudo-code of the accelerated projected gradient algorithm is presented in
Algorithm 2, and its convergence rate analysis is summarized in the following theorem.

THEOREM 5.2. Let T ∗ be the global minimizer of Eq. (6); let L̂f be the best Lipschitz
continuous gradient defined in Eq.(7). Denote by k the index of iteration, and by Tk the
solution point in the kth iteration of Algorithm 2. Then we have

F (Tk+1)− F (T ∗) ≤ 2L̂

k2
∥T0 − T ∗∥2F ,

where L̂ = max{L0, 2L̂f}, where L0 and T0 are the initial values of Lk and Tk in Algo-
rithm 2.

PROOF. Denote εi = F (Ti)−F (T ∗). Setting T = Ti, S = Si, and L = Li in Eq. (16),
we have

ϵi − ϵi+1 ≥ ⟨Ti − Si,PLi
(Si)⟩+

1

2Li
∥PLi

(Si)∥2F , (32)

where the left side of the inequality above follows from

Ti+1 = TLi,Si = argmin
T∈M

GLi(Si, Ti).

Similarly, setting T = T ∗, S = Si, and L = Li in Eq. (16), we have

−ϵi+1 ≥ ⟨T ∗ − Si,PLi(Si)⟩+
1

2Li
∥PLi(Si)∥2F . (33)

Multiplying Eq. (32) by ti−1 − 1 and summing it with Eq. (33), we have

(ti−1 − 1) εi − ti−1εi+1 ≥ ⟨(ti−1 − 1)(Ti − Si) + T ∗ − Si,PLi(Si)⟩

+
ti−1

2Li
∥PLi

(Si)∥2F . (34)

Moreover, multiplying Eq. (34) by ti−1, we have

t2i−2εi − t2i−1εi+1 ≥ 1

2Li
∥ti−1PLi(Si)∥2F + ⟨ti−1PLi(Si),

(ti−1 − 1)(Ti − Si) + T ∗ − Si⟩. (35)

where the left side is obtained via the equation

t2i−1 − ti−1 = t2i−2
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from the line 15 in Algorithm 2. On the other hand, it follows from Eq. (12) we have

PLi(Si) = Li (Si − TLi,Si) = Li (Si − Ti+1) . (36)

From Eq. (31) and the line 5 in Algorithm 2, we have

ti−1Si = ti−1Ti + (ti−2 − 1)(Ti − Ti−1). (37)

Denote

Ci−2 = ti−2Ti − (ti−2 − 1)Ti−1 − T ∗. (38)

From Eqs. (36), (37) and (38), we can verify that

ti−1PLi(Si) = ti−1Li(Si − Ti+1) = Li(Ci−2 − Ci−1). (39)

Moreover, we have

(ti−1 − 1)(Ti − Si) + T ∗ − Si

= (ti−1 − 1)Ti + T ∗ − ti−1Si

= −ti−2Ti + (ti−2 − 1)Ti−1 + T ∗ = −Ci−2. (40)

Substituting Eqs. (39) and (40) into Eq. (35), we obtain

∥Ci−1∥2F − ∥Ci−2∥2F ≤ 2

Li

(
t2i−2εi − t2i−1εi+1

)
≤ 2

Li−1
t2i−2εi −

2

Li
t2i−1εi+1. (41)

Summing Eq. (41) from i = 1 to i = k, we have

∥Ck−1∥2F − ∥C−1∥2F ≤ 2

L0
t2−1ε1 −

2

Lk
t2k−1εk+1.

Therefore, we have

2

Lk
t2k−1εk+1 ≤ ∥C−1∥2F − ∥Ck−1∥2F +

2

L0
t2−1ε1

≤ ∥C−1∥2F +
2

L0
t2−1ε1 = ∥T0 − T ∗∥2, (42)

where the equality follows from t−1 = 0 in Algorithm 2. From line 15 in Algorithm 2, we
have

2ti = 1 +
√
1 + 4t2i−1 ≥ 2ti−1 + 1. (43)

Summing Eq. (43) from i = 1 to i = k, we have

tk ≥ 1

2
(k + 1), ∀k. (44)

Substituting Eq. (44) into Eq. (42), we complete the proof.

The proof of Theorem 5.2 uses standard techniques in [Nemirovski 1995; Nesterov 1998]
yet with simplification in several aspects for easy understanding. Note that the convergence
rate achieved by Algorithm 2 is optimal among the first-order methods [Nesterov 1998;
Nemirovski 1995].
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6. EXAMPLE: LEARNING SPARSE AND LOW-RANK PATTERNS WITH LEAST
SQUARES LOSS

In this section, we present a concrete example of learning the sparse and low-rank pat-
terns from multiple tasks, i.e., the MTL formulation in Eq. (5) using the least squares loss
function; we also illustrate the use of the projected gradient algorithm (PG) and the accel-
erated projected gradient algorithm (AG) in this case. Mathematically, the specific MTL
formulation can be expressed as

min
P,Q

∥(P +Q)TX − Y ∥2F + γ∥P∥1

subject to ∥Q∥∗ ≤ τ, (45)

where X = [x1, x2, · · · , xn] ∈ Rd×n, and Y = [y1, y2, · · · , yn] ∈ Rm×n. For simplicity
in Eq. (45) we assume that all of the m tasks share the same set of training data, and the
derivation below can be easily extended to the case where each learning task has a different
set of training data.

6.1 Efficient Computation for the Key Component

The computation of Eq. (11) is involved in each iteration of the projected gradient scheme.
For the specifical MTL formulation in Eq. (45), given the intermediate solution pair {Pi, Qi}
in the i-th iteration, the subsequent solution pair {Pi+1, Qi+1} can be obtained via

min
P̂ ,Q̂

Li

2

∥∥∥P̂ − P̃i

∥∥∥2
F
+

Li

2

∥∥∥Q̂− Q̃i

∥∥∥2
F
+ γ∥P̂∥1

subject to ∥Q̂∥∗ ≤ τ, (46)

where Li specifies the step size of the i-th iteration. The optimal P̂ and Q̂ to Eq. (46) can
be obtained via solving two separate problems as below.

Computation of P̂ The optimal P̂ can be obtained via solving

min
P̂

Li

2

∥∥∥P̂ − P̃i

∥∥∥2
F
+ γ∥P̂∥1. (47)

Based on the results in Section 4.1, the optimization problem in Eq. (47) can be further de-
composed into entry-wise subproblems in the form of Eq. (23), which admits an analytical
solution (Lemma 4.1).

Computation of Q̂ The optimal Q̂ can be obtained via solving

min
Q̂

∥∥∥Q̂− Q̃i

∥∥∥2
F

subject to ∥Q̂∥∗ ≤ τ. (48)

Based on the results in Section 4.2, the optimal solution to Eq. (48) can be obtained via the
following two steps:

—Compute the SVD of Q̃i = UQiΣQiV
T
Qi

, where rank(Q̃i) = q, UQi ∈ Rd×q, VQi ∈
Rm×q, and ΣQi = diag(ς̂1, · · · ς̂q) ∈ Rq×q.
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—Compute the optimal solution {σ∗
i }

q
i=1 to the following problem

min
{σi}q

i=1

∑q
i=1 (σi − ς̂i)

2

subject to
∑q

i=1 σi ≤ τ, σi ≥ 0.

The optimal Q̂ can be constructed as Q̂ = UQiΣQV
T
Qi

, where ΣQ = diag(σ∗
1 , · · ·σ∗

q ).

6.2 Estimation of the Lipschitz Constant

An appropriate step size 1/L in Eq. (13) is important for the global convergence of the
projected gradient based algorithms and its value can be estimated via many sophisticated
line search schemes [Boyd and Vandenberghe 2004] in general. In Algorithm 1 (line 6 ∼ 7)
and Algorithm 2 (line 9 ∼ 10), the value of L is updated until the inequality in Eq. (15) is
satisfied; however, this updating procedure may incur overhead cost in the computation.

Denote the smooth component of the objective function in Eq. (45) by

f(P,Q) = ∥(P +Q)TX − Y ∥2F . (49)

It can be verified that any Lipschitz constant Lf of the function f(P,Q) can satisfy Eq. (15).
Note that the gradient of f(P,Q) with respect to P and Q can be expressed as

∇P f(P,Q) = ∇Qf(P,Q) = 2
(
XXT (P +Q)−XY T

)
.

To avoid the computational cost of estimating the lipschitz constant for f(P,Q), we di-
rectly estimate its best value (the smallest lipschitz constant), as summarized in the follow-
ing lemma.

LEMMA 6.1. Given X ∈ Rd×n and Y ∈ Rm×n, the best Lipschitz constant L̂f of the
function f(P,Q) in Eq. (49) is no larger than 2 σ2

X , where σX denotes the largest singular
value of X .

PROOF. For arbitrary Px, Py, Q ∈ Rd×m, we have

L̂P =
∥∇Pxf(Px, Q)−∇Pyf(Py, Q)∥F

∥Px − Py∥F
=

∥2XXT (Px − Py)∥F
∥Px − Py∥F

≤ 2 σ2
X∥(Px − Py)∥F
∥Px − Py∥F

= 2 σ2
X . (50)

Similarly, for arbitrary P,Qx, Qy ∈ Rd×m, we have

L̂Q =
∥∇Qxf(P,Qx)−∇Qyf(P,Qy)∥F

∥Qx −Qy∥F
≤ 2 σ2

X . (51)

Therefore it follows from Eq. (7) that

L̂f ≤ max
(
L̂P , L̂Q

)
= 2 σ2

X . (52)

This completes the proof.

6.3 Main Algorithms

The pseudo-codes of the PG and AG algorithms for solving Eq. (45) are presented in
Algorithm 3 and Algorithm 4 respectively. The main difference between PG and AG lies
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Algorithm 3 Projected Gradient Algorithm (PG) for Solving Eq. (45)
1: Input: P0, Q0, L = 2 σ2

X , and max-iter.
2: Output: P,Q.
3: for i = 0, 1, · · · ,max-iter do
4: Set Li = L, SPi

= Pi, SQi
= Qi.

5: Compute P̃i = SPi −∇P f(P,Q)
∣∣
P=SPi

,Q=SQi
,

6: Q̃i = SQi −∇Qf(P,Q)
∣∣
P=SPi

,Q=SQi
.

7: Compute P̂ via Eq. (47) and Q̂ via Eq. (48).
8: Set Pi+1 = P̂ , Qi+1 = Q̂.
9: if the stopping criterion is satisfied then exit the loop.

10: end-for
11: Set P = Pi+1, Q = Qi+1.

in the construction of SPi
and SQi

: in line 4 of Algorithm 3, SPi
and SQi

are set as the
pair of feasible points from the previous iteration; in line 6 of Algorithm 4, SPi and SQi

are set as the a linear combination of the feasible points from the previous and the current
iterations, which are not necessary feasible in Eq. (45). The different construction leads
to significant different rates of convergence, i.e., O(1/k) in Algorithm 3 and O(1/k2) in
Algorithm 4.

Algorithm 4 Accelerated Projected Gradient Algorithm (AG) for Solving Eq. (45)
1: Input: P0, Q0, L = 2 σ2

X , and max-iter.
2: Output: P,Q.
3: Set P1 = P0, Q1 = Q0, t−1 = 0, and t0 = 1.
4: for i = 1, 2, · · · ,max-iter do
5: Compute αi = (ti−2 − 1)/ti−1.
6: Set Li = L, SPi = (1 + αi)Pi − αiPi−1, SQi = (1 + αi)Qi − αiQi−1.
7: Compute P̃i = SPi −∇P f(P,Q)

∣∣
P=SPi

,Q=SQi
,

8: Q̃i = SQi −∇Qf(P,Q)
∣∣
P=SPi

,Q=SQi
.

9: Compute P̂ via Eq. (47), and Q̂ via Eq. (48).
10: Set Pi+1 = P̂ , Qi+1 = Q̂.
11: if the stopping criterion is satisfied then exit the loop.

12: Update ti =
1
2 (1 +

√
1 + 4t2i−1).

13: end-for
14: Set P = Pi+1, Q = Qi+1.

7. EMPIRICAL EVALUATIONS

In this section, we evaluate the proposed multi-task learning formulation in comparison
with other representative ones; we also conduct numerical studies on the proposed pro-
jected gradient based algorithms. All algorithms are implemented in MATLAB, and the
codes are available at the supplemental website1.

1http://www.public.asu.edu/˜jchen74/MTL
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Table I. Statistics of the benchmark data sets.

Data Set Sample Size Dimension Label Type
Face 1400 19800 30 image
Scene 2407 294 6 image
Yeast 2417 103 14 gene
MediaMill1 8000 120 80 multimedia
MediaMill2 8000 120 100 multimedia
References 7929 26397 15 text
Science 6345 24002 22 text

We employ six benchmark data sets in our experiments. One of them is AR Face
Data [Martinez and Benavente 1998]: we use its subset consisting of 1400 face images
corresponding to 100 persons. The other three are LIBSVM multi-label data sets2: for
Scene and Yeast, we use the entire data sets; for MediaMill, we generate several subsets
by randomly sampling 8000 data points with different numbers of labels. References and
Science are Yahoo webpages data sets [Ueda and Saito 2002]: we preprocess the data sets
following the same procedures in [Chen et al. 2009]. All of the benchmark data sets are
normalized and their statistics are summarized in Table I. Note that in our multi-task learn-
ing setting, each task corresponds to a label and we employ the least squares loss function
for the following empirical studies.
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Fig. 2. Extracted sparse (first and third plots) and low-rank (second and fourth plots) structures on AR face
images with different sparse regularization and rank constraint parameters in Eq. (5): for the first two plots, we
set γ = 11, τ = 0.08; for the last two plots, we set γ = 14, τ = 0.15.

7.1 Demonstration of Extracted Structures

We apply the proposed multi-task learning algorithm on the face images and then demon-
strate the extracted sparse and low-rank structures. We use a subset of AR Face Data for
this experiment. The original size of these images is 165 × 120; we reduce the size to
82× 60.

We convert the face recognition problem into the multi-task learning setting, where one
task corresponds to learning a linear classifier, i.e., fℓ(x) = (pℓ + qℓ)

Tx, for recognizing
the faces of one person. By solving Eq. (5), we obtained pℓ (sparse structure) and qℓ (low-
rank structure); we reshape pℓ and qℓ and plot them in Figure 2. We only plot p1 and q1 for

2http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/multilabel/
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Table II. Average performance (with standard derivation) comparison of six competing algorithms
on three data sets in terms of average AUC (top section), Macro F1 (middle section), and Micro F1
(bottom section). All parameters of the six methods are tuned via cross-validation, and the reported
performance is averaged over five random repetitions.

Data Scene Yeast References
(n, d, m) (2407, 294, 6) (2417, 103, 14) (7929, 26397, 15)

MixedNorm 91.602± 0.374 79.871± 0.438 77.526± 0.285
OneNorm 87.846± 0.193 65.602± 0.842 75.444± 0.074

Average TraceNorm 90.205± 0.374 76.877± 0.127 71.259± 0.129
AUC ASO 86.258± 0.981 64.519± 0.633 75.960± 0.104

IndSVM 84.056± 0.010 64.601± 0.056 73.882± 0.244
RidgeReg 85.209± 0.246 65.491± 1.160 74.781± 0.556

MixedNorm 60.602± 1.383 55.624± 0.621 37.135± 0.229
OneNorm 55.061± 0.801 42.023± 0.120 36.579± 0.157

Macro TraceNorm 57.692± 0.480 52.400± 0.623 35.562± 0.278
F1 ASO 56.819± 0.214 45.599± 0.081 34.462± 0.315

IndSVM 54.253± 0.078 38.507± 0.576 31.207± 0.416
RidgeReg 53.281± 0.949 42.315± 0.625 32.724± 0.190

MixedNorm 64.392± 0.876 56.495± 0.190 59.408± 0.344
OneNorm 59.951± 0.072 47.558± 1.695 58.798± 0.166

Micro TraceNorm 61.172± 0.838 54.172± 0.879 57.497± 0.130
F1 ASO 59.015± 0.124 45.952± 0.011 55.406± 0.198

IndSVM 57.450± 0.322 52.094± 0.297 54.875± 0.185
RidgeReg 56.012± 0.144 46.743± 0.625 53.713± 0.213

demonstration. The first two plots in Figure 2 are obtained by setting γ = 11, τ = 0.08 in
Eq. (5): we obtain a sparse structure of 15.07% nonzero entries and a low-rank structure of
rank 3; similarly, the last two plots are obtained by setting γ = 14, τ = 0.15, we obtain a
sparse structure of 5.35% nonzero entries and a low-rank structure of rank 7. We observe
that the sparse structure identifies the important detailed facial marks, and the low-rank
structure preserves the rough shape of the human face; we also observe that a large sparse
regularization parameter leads to high sparsity (lower percentage of the non-zero entries)
and a large rank constraint leads to structures of high rank.

7.2 Performance Evaluation

We compare the proposed multi-task learning formulation with other representative ones
in terms of average Area Under the Curve (AUC), Macro F1, and Micro F1 [Yang and
Pedersen 1997]. The reported experimental results are averaged over five random repeti-
tions of the data sets into training and test sets of the ratio 1 : 9. In this experiment, we
stop the iterative procedure of the algorithms if the change of the objective values in two
consecutive iterations is smaller than 10−5 or the iteration numbers larger than 105. The
experimental setup is summarized as follows:

1. MixedNorm: The proposed multi-task learning formulation with the least squares loss.
The trace-norm constraint parameter is tuned in {10−2×i}10i=1∪{10−1×i}10i=2∪{2×i}pi=1,
where p = xk/2y and k is the label number; the one-norm regularization parameter is
tuned in {10−3 × i}10i=1 ∪ {10−2 × i}10i=2 ∪ {10−1 × i}10i=2 ∪ {2× i}10i=1 ∪ {40× i}20i=1.
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Table III. Average performance (with standard derivation) comparison of six competing algorithms
on three data sets in terms of average AUC (top section), Macro F1 (middle section), and Micro F1
(bottom section). All parameters of the six methods are tuned via cross-validation, and the reported
performance is averaged over five random repetitions.

Data Science MediaMill1 MediaMill2
(n, d, m) (6345, 24002, 22) (8000, 120, 80) (8000, 120, 100)

MixedNorm 75.746± 1.423 72.571± 0.363 65.932± 0.321
OneNorm 74.456± 1.076 70.453± 0.762 64.219± 0.566

Average TraceNorm 71.478± 0.293 69.469± 0.425 60.882± 1.239
AUC ASO 75.535± 1.591 71.067± 0.315 65.444± 0.424

IndSVM 70.220± 0.065 67.088± 0.231 57.437± 0.594
RidgeReg 69.177± 0.863 66.284± 0.482 56.605± 0.709

MixedNorm 38.281± 0.011 9.706± 0.229 7.981± 0.011
OneNorm 37.981± 0.200 8.579± 0.157 6.447± 0.133

Macro TraceNorm 36.447± 0.055 8.562± 0.027 6.765± 0.039
F1 ASO 36.278± 0.183 8.023± 0.196 6.150± 0.023

IndSVM 35.175± 0.177 6.207± 0.410 5.175± 0.177
RidgeReg 35.066± 0.196 7.724± 0.190 5.066± 0.096

MixedNorm 52.619± 0.042 61.426± 0.062 60.117± 0.019
OneNorm 52.733± 0.394 60.594± 0.026 59.221± 0.39

Micro TraceNorm 49.124± 0.409 59.090± 0.117 58.317± 1.01
F1 ASO 49.616± 0.406 59.415± 0.005 59.079± 1.72

IndSVM 48.574± 0.265 57.825± 0.272 56.525± 0.317
RidgeReg 47.454± 0.255 57.752± 0.210 56.982± 0.455

2. OneNorm: The formulation of the least squares loss with the one-norm regularization.
The one-norm regularization parameter is tuned in {10−3×i}10i=1∪{10−2×i}10i=2∪{10−1×
i}10i=2 ∪ {2× i}10i=1 ∪ {40× i}20i=1.

3. TraceNorm: The formulation of the least squares loss with the trace-norm constraint. The
trace-norm constraint parameter is tuned in {10−2 × i}10i=1 ∪ {10−1 × i}10i=2 ∪ {2× i}pi=1,
where p = xk/2y and k denotes the label number.

4. ASO: The alternating structure optimization algorithm [Ando and Zhang 2005]. The
regularization parameter is tuned in {10−3 × i}10i=1 ∪ {10−2 × i}10i=2 ∪ {10−1 × 2}10i=1 ∪
{2× i}10i=1∪{40× i}20i=1; the dimensionality of the shared subspace is tuned in {2× i}pi=1,
where p = xk/2y and k denotes the label number.

5. IndSVM: Independent support vector machines. The regularization parameter is tuned
in {10−i}3i=1 ∪ {2× i}50i=1 ∪ {200× i}20i=1.

6. RidgeReg: Ridge regression. The regularization parameter is tuned in {10−3 × i}10i=1 ∪
{10−2 × i}10i=2 ∪ {10−1 × 2}10i=1 ∪ {2× i}10i=1 ∪ {40× i}20i=1.

The averaged performance (with standard deviation) of the competing algorithms are
presented in Table II and Table III. We have the following observations: (1) MixedNorm
achieves the best performance among the competing algorithms on all benchmark data sets
in this experiment, which gives strong support for our rationale of improving the gener-
alization performance by learning the sparse and low-rank patterns simultaneously from
multiple tasks; (2) TraceNorm outperforms OneNorm on Scene and Yeast data sets, which
ACM Journal Name, Vol. 00, No. 00, 00 2000.
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Fig. 3. Performance comparison of six multi-task learning algorithms with different train-
ing ratios in terms of average AUC (left plot), Macro F1 (middle plot), and Micro F1 (right
plot). The index on x-axis corresponds to the training ratio varying from 0.1 to 0.9.

implies that the shared low-rank structure may be important for image and gene classi-
fication tasks; meanwhile, OneNorm outperforms TraceNorm on MediaMill and yahoo
webpage data sets, which implies that sparse discriminative features may be important for
multimedia learning problems; (3) the multi-task learning algorithms in our experiments
outperform SVM and RidgeReg, which verifies the effect of improved generalization per-
formance via multi-task learning.

7.3 Sensitivity Study

We conduct sensitivity studies on the proposed multi-task learning formulation, and study
how the training ratio and the task number affect its generalization performance.

Effect of the training ratio We use Scene data for this experiment. We vary the training
ratio in the set {0.1 × i}9i=1 and record the obtained generalization performance for each
training ratio. The experimental results are depicted in Figure 3. We can observe that (1)
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for all of the compared algorithms, the resulting generalization performance improves with
the increase of the training ratio; (2) MixedNorm outperforms other competing algorithms
in all cases in this experiment; (3) when the training ratio is small (e.g., smaller than 0.5),
multi-task learning algorithms can significantly improve the generalization performance
compared to IndSVM and RidgeReg; on the other hand, when the training ratio is large, all
competing algorithms achieve comparable performance. This is consistent with previous
observations that multi-task learning is most effective when the training size is small.

Effect of the task number We use MediaMill data for this experiment. We generate 5 data
sets by randomly sampling 8000 data points with the task number set at 20, 40, 60, 80, 100,
respectively; for each data set, we set the training and test ratio at 1 : 9 and record the
average generalization performance of the multi-task learning algorithms over 5 random
repetitions. The experimental results are depicted in Figure 4. We can observe that (1)
for all of the compared algorithms, the achieved performance decreases with the increase
of the task numbers; (2) MixedNorm outperforms or perform competitively compared to
other algorithms with different task numbers; (3) all of the specific multi-task learning
algorithms outperform IndSVM and RidgeReg. Note that the learning problem becomes
more difficult as the number of the tasks increases, leading to decreased performance for
both multi-task and single-task learning algorithms. We only present the performance
comparison in terms of Macro/Micro F1; we observe a similar trend in terms of average
AUC in the experiments.
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Fig. 4. Performance comparison of the six competing multi-task learning algorithms with different numbers of
tasks in terms of Macro F1 (top plot) and Micro F1 (bottom plot).
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7.4 Comparison of PG and AG

We empirically compare the projected gradient algorithm (PG) in Algorithm 1 and the
accelerated projected gradient algorithm (AG) in Algorithm 2 using Scene data. We present
the comparison results of setting γ = 1, τ = 2 and γ = 6, τ = 4 in Eq. (5); for other
parameter settings, we observe similar trends in our experiments.
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Fig. 5. Convergence rate comparison between PG and AG: the relationship between the objective value of Eq. (5)
and the iteration number (achieved via PG and AG, respectively). For the left plot, we set γ = 1, τ = 2; for the
right plot, we set γ = 6, τ = 4.

Comparison on convergence rate We apply PG and AG for solving Eq. (5) respectively,
and compare the relationship between the obtained objective values and the required itera-
tion numbers. The experimental setup is as follows: we terminate the PG algorithm when
the change of objective values in two successive steps is smaller than 10−5 and record the
obtained objective value; we then use such a value as the stopping criterion in AG, that is,
we stop AG when AG attains an objective value equal to or smaller than the one attained by
PG. The experimental results are presented in Figure 5. We can observe that AG converges
much faster than PG, and their respective convergence speeds are consistent with the the-
oretical convergence analysis in Section 5, that is, PG converges at the rate of O(1/k) and
AG at the rate of O(1/k2), respectively.

Comparison on computation cost We compare PG and AG in terms of computation time
(in seconds) and iteration numbers (for attaining convergence) by using different stopping
criteria {10−i}10i=1. We stop PG and AG if the stopping criterion is satisfied, that is, the
change of the objective values in two successive steps is smaller than 10−i. The experi-
mental results are presented in Table IV and Figure 6. We can observe from these results
that (1) PG and AG require higher computation costs (more computation time and larger
numbers of iterations) for a smaller value of the stopping criterion (higher accuracy in the
optimal solution); (2) in general, AG requires lower computation costs than PG in this ex-
periment; such an efficiency improvement is more significant when a smaller value is used
in the stopping criterion.
7.5 Automated Annotation of the Gene Expression Pattern Images

We apply the proposed multi-task learning formulation for the automated annotation of the
Drosophila gene expression pattern images from the FlyExpress3 database. The Drosophila

3http://www.flyexpress.net/
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Fig. 6. Comparison of PG and AG in terms of the computation time in seconds (left column) and iteration number
(right column) with different stopping criteria. The x-axis indexes the stopping criterion from 10−1 to 10−10.
Note that we stop PG or AG when the change of the objective value in Eq. (5) is smaller than the value of the
stopping criterion. For the first row, we set γ = 1, τ = 2; for the second row, we set γ = 6, τ = 4.

Table IV. Comparison of PG and AG in terms of computation time (in seconds) and iteration number using
different stopping criteria.

γ = 1, τ = 2 γ = 6, τ = 4

stopping iteration time iteration time
criteria PG AG PG AG PG AG PG AG
10−1 2 2 0.6 0.4 3 3 0.5 0.4
10−2 4 4 0.6 0.4 5 4 0.6 0.5
10−3 17 15 0.6 0.5 722 110 8.4 1.6
10−4 9957 537 116.1 6.5 1420 144 16.2 1.9
10−5 19103 683 223.7 8.3 1525 144 17.3 1.9
10−6 21664 683 253.0 8.3 1525 259 17.4 3.1
10−7 31448 1199 367.9 14.3 1527 271 18.3 3.3
10−8 44245 1491 521.3 18.4 1570 287 19.7 3.5
10−9 58280 1965 690.5 23.0 2062 365 23.1 4.2
10−10 73134 3072 885.4 35.9 2587 365 29.1 4.4

gene expression pattern images capture the spatial and temporal dynamics of gene expres-
sion and hence facilitate the explication of the gene functions, interactions, and networks
during Drosophila embryogenesis [Fowlkes et al. 2008; Lécuyer et al. 2007]. To provide
text-based pattern searching, the gene expression pattern images are annotated manually
using a structured controlled vocabulary (CV) in small groups based on the genes and the
developmental stages as shown in Table V. However, with a rapidly increasing number
ACM Journal Name, Vol. 00, No. 00, 00 2000.
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of gene expression pattern images, it is desirable to design computational approaches to
automate the CV annotation process.

Table V. Sample images and the associated controlled vocabulary (CV) terms in FlyExpress database.
Stage Range 7 ∼ 8 11 ∼ 12

Gene Pfrx Ran

Images Groups

CV Terms anterior endoderm anlage anterior midgut primordium
dorsal ectoderm primordium brain primordium
head mesoderm primordium P4 posterior midgut primordium
mesectoderm primordium ventral nerve cord primordium
posterior endoderm primordium P2
procephalic ectoderm anlage
trunk mesoderm primordium P2
ventral ectoderm primordium P2
ventral nerve cord anlage
visual anlage

We preprocess the Drosophila gene expression pattern images (of the standard size
128 × 320) from the FlyExpress database following the procedures in [Ji et al. 2009].
The Drosophila images are from 16 specific stages, which are then grouped into 6 stage
ranges (1 ∼ 3, 4 ∼ 6, 7 ∼ 8, 9 ∼ 10, 11 ∼ 12, 13 ∼ 16). We manually annotate the image
groups (based on the genes and the developmental stages) using the structured CV terms.
Each image group is then represented as a feature vector based on the bag-of-words and
the soft-assignment sparse coding. Note that the SIFT (scale-invariant feature transform)

Table VI. Performance comparison of six competing algorithms for the gene expression pattern
images annotation (10 CV terms) in terms of average AUC (top section), Macro F1 (middle section),
and Micro F1 (bottom section). All parameters of the six methods are tuned via cross-validation, and
the reported performance is averaged over five random repetitions. Note that n, d, and m denote the
sample size, dimensionality, and term (task) number, respectively.

Stage Range 4 ∼ 6 7 ∼ 8 9 ∼ 10 11 ∼ 12 13 ∼ 16
(n, d, m) (925, 2000, 10) (797, 2000, 10) (919, 2000, 10) (1622, 2000, 10) (2228, 2000, 10)

MixedNorm 75.44 ± 0.87 75.55 ± 0.42 77.18 ± 0.50 83.82 ± 0.93 85.54 ± 0.25
OneNorm 74.98 ± 0.12 73.80 ± 0.55 75.80 ± 0.24 82.78 ± 0.27 84.77 ± 0.20

Avg. AUC TraceNorm 73.04 ± 0.79 74.06 ± 0.46 76.71 ± 0.72 81.77 ± 1.10 83.64 ± 0.27
ASO 72.01 ± 0.36 73.56 ± 0.97 75.89 ± 0.24 82.97 ± 0.15 83.06 ± 0.80

IndSVM 71.00 ± 0.53 72.13 ± 0.70 73.58 ± 0.48 79.01 ± 0.58 82.06 ± 1.04
RidgeReg 72.46 ± 0.15 72.51 ± 0.82 73.10 ± 0.38 80.83 ± 0.67 82.02 ± 0.15

MixedNorm 43.71 ± 0.32 48.31 ± 0.56 53.11 ± 0.56 61.11 ± 0.58 61.81 ± 0.40
OneNorm 42.24 ± 0.14 47.40 ± 0.23 51.04 ± 0.10 59.36 ± 0.60 61.02 ± 0.10

Mac. F1 TraceNorm 41.38 ± 0.36 46.51 ± 0.67 51.13 ± 0.95 61.05 ± 0.78 60.15 ± 0.45
ASO 42.13 ± 0.63 47.83 ± 1.55 51.18 ± 0.41 61.01 ± 0.55 60.58 ± 0.19

IndSVM 40.88 ± 0.49 46.73 ± 0.51 50.28 ± 0.65 59.82 ± 0.83 59.62 ± 0.94
RidgeReg 41.65 ± 0.45 46.91 ± 0.94 50.69 ± 0.77 59.46 ± 0.95 60.59 ± 0.79

MixedNorm 46.98 ± 0.90 62.73 ± 0.93 63.46 ± 0.07 69.31 ± 0.37 67.13 ± 0.41
OneNorm 44.55 ± 0.38 60.02 ± 0.56 61.78 ± 0.10 68.54 ± 0.17 66.30 ± 0.55

Mic. F1 TraceNorm 43.88 ± 0.73 61.29 ± 0.78 61.33 ± 1.04 68.68 ± 0.27 66.37 ± 0.26
ASO 44.77 ± 0.49 60.47 ± 0.23 62.26 ± 0.23 68.60 ± 0.61 66.25 ± 0.18

IndSVM 42.05 ± 0.61 60.09 ± 0.78 60.57 ± 0.75 67.08 ± 0.99 65.95 ± 0.80
RidgeReg 43.63 ± 0.41 59.95 ± 0.75 60.59 ± 0.66 66.87 ± 0.11 65.67 ± 1.10
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Table VII. Performance comparison of six competing algorithms for the gene expression pattern
images annotation (20 CV terms).

Stage Range 4 ∼ 6 7 ∼ 8 9 ∼ 10 11 ∼ 12 13 ∼ 16
(n, d, m) (1023, 2000, 20) (827, 2000, 20) (1015, 2000, 20) (1940, 2000, 20) (2476, 2000, 20)

MixedNorm 76.27 ± 0.53 72.03 ± 0.63 73.97 ± 1.10 82.27 ± 0.42 82.16 ± 0.16
OneNorm 75.13 ± 0.03 70.95 ± 0.14 72.49 ± 1.00 81.73 ± 0.36 81.03 ± 0.08

Avg. AUC TraceNorm 74.69 ± 0.39 69.43 ± 0.46 71.59 ± 0.79 81.53 ± 0.16 80.88 ± 1.10
ASO 74.86 ± 0.33 70.15 ± 0.31 71.37 ± 0.99 81.45 ± 0.26 80.79 ± 0.23

IndSVM 73.82 ± 0.78 69.74 ± 0.19 70.84 ± 0.85 80.86 ± 0.56 79.94 ± 0.19
RidgeReg 74.66 ± 1.44 70.77 ± 0.62 69.36 ± 1.44 80.40 ± 0.43 78.29 ± 0.42

MixedNorm 31.90 ± 0.11 31.13 ± 0.68 32.28 ± 1.13 43.48 ± 0.39 43.44 ± 0.60
OneNorm 30.48 ± 0.12 30.07 ± 0.56 30.50 ± 1.13 41.89 ± 0.24 42.64 ± 0.47

Mac. F1 TraceNorm 29.22 ± 0.31 30.24 ± 0.78 31.28 ± 0.54 42.07 ± 0.67 41.11 ± 0.52
ASO 30.51 ± 0.94 29.37 ± 0.56 31.46 ± 1.33 42.34 ± 1.08 41.55 ± 0.67

IndSVM 29.47 ± 0.46 28.85 ± 0.62 30.03 ± 1.68 41.63 ± 0.58 40.80 ± 0.66
RidgeReg 28.92 ± 1.24 28.76 ± 0.95 29.94 ± 1.84 41.51 ± 0.39 40.84 ± 0.40

MixedNorm 42.50 ± 0.63 57.04 ± 0.13 57.37 ± 0.71 61.97 ± 0.51 56.75 ± 0.40
OneNorm 40.80 ± 0.48 56.55 ± 0.22 56.82 ± 0.04 60.59 ± 0.32 55.87 ± 0.11

Mic. F1 TraceNorm 41.26 ± 1.16 56.47 ± 0.27 55.37 ± 0.38 59.27 ± 0.93 54.08 ± 0.51
ASO 40.80 ± 0.53 56.88 ± 0.13 55.65 ± 0.33 59.74 ± 0.18 54.83 ± 0.67

IndSVM 39.24 ± 0.82 55.40 ± 0.15 55.75 ± 1.70 58.33 ± 0.53 53.61 ± 0.36
RidgeReg 38.46 ± 0.41 56.08 ± 0.46 54.23 ± 0.85 59.13 ± 0.67 53.75 ± 0.31

features [Lowe 2004] are extracted from the images with the patch size set at 16 × 16
and the number of visual words in sparse coding set at 2000. The first stage range only
contains 2 CV terms and we do not report the performance for this stage range. For other
stage ranges, we consider the top 10 and 20 CV terms that appears the most frequently in
the image groups and treat the annotation of each CV term as one task. We generate 10
subsets for this experiment, and randomly partition each subset into training and test sets
using the ratio 1 : 9. Note that the parameters in the competing algorithms are tuned as the
experimental setting in Section 7.2.

We report the averaged AUC (Avg. AUC), Macro F1 (Mac. F1), and Micro F1 (Mic. F1)
over 10 random repetitions in Table VI (for 10 CV terms) and Table VII (for 20 CV terms),
respectively. We can observe that MixedNorm achieves the best performance among the six
algorithms on all subsets. In particular, MixedNorm outperforms the multi-task learning al-
gorithms: OneNorm, TraceNorm, and ASO; MixedNorm also outperforms the single-task
learning algorithms: IndSVM and RidgeReg. The experimental results demonstrate the ef-
fectiveness of learning the sparse and low-rank patterns from multiple tasks for improved
generalization performance.

8. CONCLUSION

We consider the problem of learning sparse and low-rank patterns from multiple related
tasks. We propose a multi-task learning formulation in which the sparse and low-rank
patterns are induced respectively by a cardinality regularization term and a low-rank con-
straint. The proposed formulation is non-convex; we convert it into its tightest convex
surrogate and then propose to apply the general projected gradient scheme to solve such
a convex surrogate. We present the procedures for computing the projected gradient and
ensuring the global convergence of the projected gradient scheme. Moreover, we show
that the projected gradient can be obtained via solving two simple convex subproblems.
We also present two detailed projected gradient based algorithms and analyze their rates of
convergence. Additionally, we illustrate the use of the presented projected gradient algo-
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rithms for the proposed multi-task learning formulation using the least squares loss. Our
experiments demonstrate the effectiveness of the proposed multi-task learning formulation
and the efficiency of the proposed projected gradient algorithms. In the future, we plan to
conduct a theoretical analysis on the proposed multi-task learning formulation and apply
the proposed algorithm to other real-world applications.
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