Spring 2017

BITMAP INDEXING

2/15/17 CS 564: Database Management Systems; (c) Jignesh M. Patel, 2013



Motivation

Consider the following table:
CREATE TABLE Tweets (

uniqueMsgID INTEGER, -- unique message 1id

tstamp TIMESTAMP, -- when was the tweet posted
uid INTEGER, -- unique 1id of the user

msg VARCHAR (140), -- the actual message

Zzip INTEGER, -- zipcode when posted
retweet BOOLEAN -- retweeted?

);

In the past, we have used a B+-tree for the uid and the zip values.

In a B+-tree, how many bytes do we use for each record?

Can we do better, i.e. an index with lower storage overhead?
Especially for attributed with small domain cardinalities?

Bit-based indices: Two flavors
a) Bitmap indices and
b) Bitslice indices

2/15/17 CS 564: Database Management Systems; (c¢) Jignesh M. Patel, 2013 2



Bitmap Indices

* Consider building an index to answer equality
gueries on the retweet attribute

* [ssues with building a B-tree:
— Three distinct values: True, False, NULL
— Lots of duplicates for each distinct value
— Sort of an odd B-tree with three long rid lists

e Bitmap Index: Build three bitmap arrays
(stored on disk), one for each value.

— The it bit in each bitmap correspond to the it" tuple
(need to map it" position to a rid)



Bitmap Example

Tab/e (stored in a heapfile) Bitmap index on “retweet”
e s Lt ReNo.
11324 0
2 53705 Y 1 0
3 53706 N 0 1
4 53705 NULL 0 0
5 90210 N 0 1
1,0000,000,000 53705 Y 1 0

SELECT * FROM Tweets WHERE retweet = ‘N’

1. Scan the R-No Bitmap file
2. For each bit set to 1, compute the tuple #
3. Fetch the tuple # (s)

2/15/17 CS 564: Database Management Systems; (c¢) Jignesh M. Patel, 2013



Critical Issue

* Need an efficient way to compute a
bit position
— Layout the bitmap in page id order.

* Need an efficient way to map a bit
position to a record id.

Implications
of #1°?

How?
1. If you fix the # records per page in the
heapfile

2. And lay the pages out so that page #s
are sequential and increasing

3. Then can construct rid (page-id, slot#)
* page-id = Bit-position / #records-per-page
* slot# = Bit-position % #records-per-page

2/15/17 CS 564: Database Management Systems; (c¢) Jignesh M. Patel, 2013 5



Other Queries

Tab/e (stored in a heapfile)

11324
2 53705 Y 1
3 53706 N 0
4 53705 NULL 0
5 90210 N 0
1,0000,000,000 53705 Y 1

O » O O

0

Bitmap index on “retweet”

T B P e = [

o »r O O O

0

SELECT COUNT(*) FROM Tweets WHERE retweet

EN’

SELECT *

FROM Tweets WHERE retweet IS NOT NULL

2/15/17 CS 564: Database Management Systems; (c¢) Jignesh M. Patel, 2013




Storing the Bitmap index

* One bitmap for each value, and one for Nulls
* Need to store each bitmap

* Simple method: 1 file for each bitmap

e Can compress the bitmap!

Index size?

When is a bitmap index more space efficient than a B+-tree?

2/15/17 CS 564: Database Management Systems; (c¢) Jignesh M. Patel, 2013 7



Bit-sliced Index: Motivation

(Re)consider the following table:
CREATE TABLE Tweets (

uniqueMsgID INTEGER, -- unique message 1id

tstamp TIMESTAMP, -- when was the tweet posted
uid INTEGER, -- unique id of the user

msg VARCHAR (140), -- the actual message

Zzip INTEGER, -- zipcode when posted
retweet BOOLEAN -- retweeted?

);

SELECT * FROM Tweets WHERE zip = 53706

Would we build a bitmap index on zipcode?

2/15/17 CS 564: Database Management Systems; (c¢) Jignesh M. Patel, 2013



Bit_sliced index Why do we have 17 bits for zipcode?

Table 5 Bit-sliced index E
EEECTEBEEET L (1 slice per bit) &
1 11324 Y o/o[ojLO[LL000OAARRLPD
2 53705 Y o[l{rojrjo0p0aapooppppn
3 53706 N O[1|1/01000L11O0APLD
4 53705 NULL Oo1j1j01000111001POM
5 90210 N 1/0111 /0000001 LPOPLD
1,0000,000,000 53705 Y o[l{rojrjo0p0aapooppppn

Query evaluation: Walk through each slice constructing a result bitmap

e.g. zip £ 11324, skip entries that have 1 in the first three slices (16, 15, 14)

Are we missing anything in the bit-sliced index above?
(Null bitmap is not shown)

2/15/17 CS 564: Database Management Systems; (c¢) Jignesh M. Patel, 2013 9




Bitslice Indices

* Can also do aggregates with Bitslice indices
— E.g. SUM(attr): Add bit-slice by bit-slice.

First, count the number of 1s in the slicel7, and multiply the
count by 21/

Then, count the number of 1s in the slicel6, and multiply the
count by ...

* Store each slice using methods like what you have
for a bitmap.

— Note once again can use compression



Bitmap v/s Bitslice

Bitmaps better for low cardinality domains
Bitslice better for high cardinality domains

Generally easier to “do the math” with bitmap
indices

2/15/17 CS 564: Database Management Systems; (c¢) Jignesh M. Patel, 2013 11



