
On Energy Management, Load Balancing and Replication

Willis Lang Jignesh M. Patel Jeffrey F. Naughton
Computer Sciences Department

University of Wisconsin-Madison, USA

{wlang, jignesh, naughton}@cs.wisc.edu

Abstract
In this paper we investigate some opportunities and chal-

lenges that arise in energy-aware computing in a cluster of
servers running data-intensive workloads. We leverage the
insight that servers in a cluster are often underutilized, which
makes it attractive to consider powering down some servers
and redistributing their load to others. Of course, powering
down servers naively will render data stored only on pow-
ered down servers inaccessible. While data replication can
be exploited to power down servers without losing access to
data, unfortunately, care must be taken in the design of the
replication and server power down schemes to avoid creating
load imbalances on the remaining “live” servers. Accord-
ingly, in this paper we study the interaction between energy
management, load balancing, and replication strategies for
data-intensive cluster computing. In particular, we show that
Chained Declustering – a replication strategy proposed more
than 20 years ago – can support very flexible energy man-
agement schemes.

1 Introduction
Servers consume tremendous amounts of energy, and the

energy cost as a component of the TCO is quickly ris-
ing [4, 7]. In addition, servers often run at low utilization,
typically in the 20-30% range [3]. This low utilization sug-
gests that one way of saving energy is to selectively power
down servers. However, arbitrarily powering down servers
that are running data-intensive applications is problematic,
as it can render a portion of the data unavailable.

Fortunately, most clusters servicing data-intensive work-
loads already employ data replication schemes, to ensure
data availability and reliability in the presence of failures.
One of our key observations is thatthis same replication can
be exploited to ensure availability in the presence of deliber-
ate server power downs intended to save energy.However,
while data replication can indeed be exploited to power down
servers without losing access to data, care must be taken in
the design of the replication and server power down schemes
to avoid creating load imbalances on the remaining “live”
servers, which can have severe performance consequences.

To see this point, consider a system that uses the common
mirroring replication strategy. To make this example more
concrete, suppose that there are four nodes using mirrored
replication, where each data partition is stored in exactlytwo
different storage units. In addition, suppose that the dataset

is split into two partitions,P0 with mirror R0, andP1 with
mirror R1. Assume that noden0, n1, n2, andn3 storeP0, P1,
R0, andR1 respectively. Furthermore, assume that queries
can be sent to either the primary copy or the replica for load
balancing. If the overall system utilization is at or below 50%
of the provisioned utilization, then nodesn2 and n3 could
be turned off to save energy, while nodesn0 andn1 would
then operate at 100% of the provisioned utilization. This is
an ideal scenario and may be sufficient for certain systems.
However, we wish to explore powering down nodes when
utilization is between 50−100% for a finer grained energy
management scheme.

Now, consider another scenario in which the four nodes
each initially see a load of 75%. The system has the capacity
to run this workload on only three processors. Furthermore,
by exploiting replication, we can certainly turn off one pro-
cessor and still maintain access to all data.

Unfortunately, if we turn off noden3, then nodesn0 and
n2 will continue to operate at 75% of the provisioned utiliza-
tion, but now both noden1 and noden3’s original load will
be directed at noden1, so the presented load there will be
150%, and the system will likely fail to meet its performance
requirement. Such large load imbalances may be acceptable
in certain environments, but the performance degradations
are usually unacceptable (see Sections 2.1 and 3.1 for more
details).

Given this example, our goal is to investigate the inter-
action between replication and power down schemes to pro-
vide the foundation for energy management approaches that
gracefully adapt to overall system utilization. This should
be done in such a way as to maximize energy efficiency by
powering down some nodes while ensuring that the utiliza-
tion of the remaining nodes does not exceed a targeted peak
utilization.

Given the many decades of work on designing replication
schemes, the immediate question is whether or not there is a
replication scheme that fits our goals of producing balanced,
and energy-efficient cluster management strategies. As we
will demonstrate, the surprising answer is yes — one of the
earliest proposed parallel database data replication schemes,
the “Chained Declustering” technique [10], when coupled
with careful choices of which nodes to power down, can be
exploited to achieve the above goal. In this paper, we present
and evaluate two Chained Declustering-based schemes that
differ in they way they power down/up nodes in a cluster.

W1 W2W3W4 W5 W6

W7

W8

80

120

160

200

240

R
e

sp
o

n
se

 T
im

e
 P

e
r

Q
u

e
ry

(m
il

li
se

co
n

d
s)

0

40

35 40 45 50 55

R
e

sp
o

n
se

 T
im

e
 P

e
r

Q
u

e
ry

(m
il

li
se

co
n

d
s)

Total Energy Consumed by the System during

512.5ms Time Window (Joules)

Figure 1. Energy consumption and response time profile

To the best of our knowledge this is the first paper ex-
ploring this interaction between power down sequences and
replication strategies while controlling load imbalances.

2 Background and Problem Specification
In this paper, we use the termload on a node to refer to

the work that is being carried out on a node. In a system with
a number of concurrent queries, each with the same process-
ing cost, the load can simply mean the number of queries
per node. The termutilization of a server node refers to the
resource consumption on the node. The termoverall sys-
tem utilizationrefers to the average utilization across all the
server nodes in the system.Maximum node utilizationrefers
to the maximum utilization across all the server nodes.

Often cluster systems are designed to handle a certain pro-
visionedpeakload. We refer to the utilization using a value
expressed as a percentage. Within this context, a utilization
of 100% simply refers to operating at an initial designated
“peak load” (which could be lower than the system’s peak
load at which it is stable). Lower utilization values, e.g.,
50%, imply a corresponding reduction in the load (and an
increase in server idle time).

The energy management schemes that we describe in this
paper work by taking some nodesoffline, which refers to a
node being powered down to save energy. Nodes that are
available to run queries areonline. An offline node becomes
available when it is powered up, in which case it then comes
online. (In the more traditional case of replication for failure
management, offline refers to the node being unavailable due
to some component failure.)

Finally, an operational state for the entire system is de-
fined as: Theoperating stateof the entire system,s(m), is a
state wherem of theN total nodes in the system are offline.

2.1 Server Load vs. Energy Consumed
As pointed out in [3], the relationship between the load on

a server and the energy consumed by the server is not linear.
As an example, consider Figure 1, which shows the charac-
teristics of a 1% clustered index query workload running on
a commercial DBMS. (See Section 5.2 for more details about
this workload.) In this graph, the point W1 corresponds to a
server workload in which one instance of the query takes X
ms to run followed by the server being idle for 4X ms. One
can view this workload as a series of time windows, each
of size 5X ms, whereX is the time to run the query. For
workload W1, only one query is run in each window.

Other points in this graph correspond to higher server
utilizations, which we achieved by randomly adding more
queries in the time window (of length 5X ms), thereby reduc-
ing the idle component. Specifically, a point Wi corresponds
to injecting i queries, with random arrival times, into each
5X ms time window. Figure 1 shows for each workload the
average execution time per query and the energy consumed
by the server to run the workload.

Now, consider the point W1 in Figure 1. In this case, the
server consumes about 41.5 Joules and provides a query re-
sponse time of 102.5 ms. Most of this energy, specifically
74%, is consumed while the server is idle. As we add more
queries to the workload, i.e., go beyond W1, the idle time
decreases and a larger fraction of the energy consumed by
the server is spent actually running the queries. At W5, since
each query takes X ms to run, we are running at some provi-
sioned “peak” utilization of 100%. Notice how performance
rapidly degrades beyond W6. Operating at such points (W7
and beyond) merely to save power may be unacceptable as
this region likely represents an unstable operating range.

If efficiency is defined as the energy consumed by the
server per query, of the five workloads W1 to W5, W5 has the
highest efficiency. Notice, however, the response time per
query is slightly worse at W5 than at the other four points,
since at the other points there is less contention for resources
across different queries.

Thus we have two possibly conflicting optimization goals.
The first is the traditional one — we could simply optimize
for response time, which means running the system at point
W1. However, typically in data center environments, the
performance constraint to meet is not “as fast as possible;”
but rather, something more like “no worse thant seconds
per query for this workload.” When agreeing to such Ser-
vice Level Agreements (SLAs), data center service providers
tend to be conservative and agree to performance that they
can generally guarantee under the heaviest provisioned load,
rather than performance they can meet in the best case. Con-
sequently, the second optimization goal, and the one that we
focus on in this paper, is to reduce the energy consumption
while staying below a response time target.
2.2 Problem Statement

We want an energy management scheme that starts with
an operating states(m) for a system with maximum node
utilization of u (u < U). HereU refers to some maximum
tolerable system utilization (perhaps defined by an SLA). We
want the system to move to a new operating states(m′) with
maximum node utilizationu′ such thatu′ < U andm≤ m′,
and at least one copy of each data item is available on the
remaining servers that are still powered up.

Note thatU is defined relative to the initial designated
peak load (cf. Section 2). Consequently,U can be greater
than 100%; e.g., if the maximum tolerable response time is
120msin Figure 1, thenU is 120% (at W6).

Notice that the problem statement also allows setting U to
100%, in which case no node operates over the designated
peak capacity.

In addition, we require “data availability” – i.e., the power
down sequence does not deliberately make any data item un-
available on the live servers that are powered up.

Nodes: n0 n1 n2 n3 n4 n5 n6 n7

Primary: R0 R1 R2 R3 R4 R5 R6 R7

Backup: r1 r2 r3 r4 r5 r6 r7 r0

Load: 1 1 1 1 1 1 1 1

Table 1. An 8 node CD ring without failure.

The schemes that we present differ in the “variance” in
the load across the different nodes. In other words, some
schemes result in larger variation in the loads across the
nodes (cf. Section 5.4, Figure 6). While load variance (im-
balances) are inevitable, and minor load imbalances do not
create a problem, artificially creating major load imbalances
can result in the system failing to meet its targeted perfor-
mance (e.g., W7 and W8 in Figure 1). Accordingly, we re-
quire that the energy management techniques bound the load
imbalances (U) that they introduce. Some thoughts on pick-
ing appropriate values ofU are presented in [11].

Finally, for certain system states, the nodes can be “per-
fectly balanced” – which means that each online node has
the same node load. We discuss this further in Section 4.2.3.

3 Replication Revisited
Replication schemes are traditionally designed to allow

continued access to data when some nodes fail. Here, we
want to exploit replication for a related but different purpose:
namely, allowing continued data access not when nodes fail,
but when they are deliberately powered down to save energy,
while controlling the resulting load imbalance. When we
look at the commonly used techniques, such as RAID [14],
Mirrored Disk [5, 6], and Interleaved Declustering [20], we
find that they all produce undesired load imbalances as nodes
become inoperable or do not allow us to turn off multiple
nodes. For instance, Interleaved Declustering retains load
balance when one node fails but loses data availability if any
additional nodes are lost. Our goal here is to leverage a repli-
cation scheme to safely and easily power down any number
of nodes for energy efficiency, and exploit the load balancing
and failover properties of replication.

Dealing with updates in this environment poses certain
challenges, but our schemes can be adopted to handle up-
dates, as discussed in [11].

3.1 Mirroring Replication
The basic principle used in mirroring [5, 6] is to make a

second copy of the data and store it on a different storage
device. Then, when some disk fails, the load on the remain-
ing copies goes up dramatically. For example, consider a
2X replication scheme, in which we have a primary copy
and one additional replica. Then, when a disk with either of
these copies fails, all the load from the failed disk is trans-
ferred to the remaining disk, thereby doubling the load on
the remaining disk. If a 2X increase in load is unacceptable,
then with mirroring there is no energy savings if the system
load is between 50 and 100%.

Also notice that with mirroring, there are only two oper-
ating states, 100% online nodes or 50% online nodes, which
implies that it can’t effectively adapt to loads in between
these two extremes.

Nodes: n0 n1 n2 n3 n4 n5 n6 n7

Primary: — R1(1) R2(6
7) R3(5

7) R4(4
7) R5(3

7) R6(2
7) R7(1

7)

Backup: — r2(1
7) r3(2

7) r4(3
7) r5(4

7) r6(5
7) r7(6

7) r0(1)

Load: 0 8
7

8
7

8
7

8
7

8
7

8
7

8
7

Table 2. An 8 node CD ring with 1 failure.

3.2 Chained Declustering (CD)
Chained Declustering [10] is a replication scheme that

stripes the partitions of a data set two times across the nodes
of the system, thereby doubling the amount of required disk
space. The main hallmark of this scheme is its tolerance to
multiple faults along the chain, if those faults do not occur
on adjacent nodes. Furthermore, along with high availabil-
ity, the arrangement of the replicas along the chain allows for
balanced workload distribution when some nodes are offline.
If one thinks of all the nodes in the system as being arranged
in a ring or chain, then Chained Declustering (CD) places a
partition and its replica in adjacent nodes in the chain.

As an example of CD, consider a data setR, spread over
8 nodes in Table 1. Here the primary copies of the data set
areR0 ... R7. The corresponding replicas are shown asr0
... r7. The nodesn0 ... n7 are conceptually organized in a
ring. Primary copyRi is placed on nodei and its replicar i
is placed on the “previous” node. During normal operation,
if the access to all the partitions is uniform, then the queries
simply access the primary partitions.

Now consider what happens when a node is taken offline
by our energy management methods. Table 2 shows what
happens when noden0 is offline. Since noden0 holds the
partition R0, all queries against this partition must now be
serviced by noden7, which holds the only other copy of this
partition. But simply redirecting the queries against partition
0 to noden7 could double the load on noden7. CD solves
this problem by redistributing the queries against partition 7
across both copies of that partition’s data, namelyR7 andr7.
It does this for all the partitions, and ends up with a system

in which each node is serving the same number (8
7

th
of the

original load) of queries, and hence is abalancedsystem.
While Table 2 shows what happens when one node is of-

fline, CD can allow up toN/2 alternating nodes to go offline,
whereN is the number of nodes in the system. We exploit
this property of CD to develop various energy management
schemes.

4 Using Replication for Energy Management
While CD can tolerate a variety of configurations with

nodes being offline, as we show below, some of these con-
figurations lead to system load imbalances. The protocol that
is used to take nodes offline directly determines the unifor-
mity and balance of the load on the remaining online nodes.

For the discussion below, we introduce a few additional
terms: aring refers to the logical ordered arrangement of all
the nodes in a CD scheme. When a node in a ring goes of-
fline, the ring isbrokenand produces asegment. Additional
node failures partition segments into other segments. Each
segment has twoend nodes.

A key observation is that if thering or asegmentof a CD
set of nodes is broken, then the two new end nodes of the re-
sulting segment(s) areessential, where the term essential for

a node implies that removing that node makes the data un-
available. Thus, to take nodes offline any scheme must select
additional nodes from the remaining online nodes that are not
end points of the remaining segments. Next, we present two
protocols for selecting which nodes to take offline.

4.1 Dissolving Chain (DC)
Using the key observation described above, the DC proto-

col sequentially withdraws nodes so that data is always avail-
able. DC starts with a full ring of nodes online, and when it
takes the first node offline, it produced two segments of equal
(or nearly equal) length. The next node it takes down is the
middle node in the longest remaining segment.

At any given point in time, DC has a number of segments
that it keeps sorted based on the segment length. Its powering
down algorithm is then simple – simply take the middle node
down in the current longest segment. More details about this
method, including pseudocode and the node powering up se-
quence can be found in [11].

4.2 Blinking Chain (BC)
The general intuition behind the Blinking Chain (BC)

methods is to allow more general cuts than the simple bi-
nary cuts used by DC to: a) to reduce the variation in the
load across the nodes that are still up, and b) produce states
where the load across the nodes is “balanced”.

For example, for a system whereN = 40 nodes, for a DC
system ats(9), there will be segments of length 4,2,1 with
28 nodes at(5/4) load, 2 nodes at(3/2) load, and 1 node
at double load. A better way to cut theN = 40 ring results
in 4 segments of length 4 and 5 segments of length 3. This
results in minimal load variation across the remaining online
nodes (the benefits of this are shown in Section 5.4). We now
discuss how to create these segments.
4.2.1 Segments and Transitions

Notice that in DC once a node is powered down, that node
continues to remain powered down if utilization decreases
monotonically. This strategy can result in long segments,
which in turn implies bigger variation in loads across the
online nodes. The main intuition behind BC is to reduce
these load variations by allowing powered down nodes to be
brought online to make the current segments more uniform in
terms of their lengths (which leads to lower load variations).

Consider transitioning from a state withm nodes offline
to m′ nodes offline. A method to implement this transition
is to bring all but the root node back online and then turn
m′ − 1 of them off, but this results in a high transitioning
cost as each transition requires makingm+m′−2 node state
changes (i.e., changing the state of a node from offline to
online, or vice versa). These state changes can consume a
significant amount of energy, and we would alsolike to min-
imize the energy spent in making these transitions. An inter-
esting property of BC is that when transitioning from state
s(m) to s(m′), there may be offline nodes in thes(m) config-
uration that can remain offline in thes(m′) configuration. By
not changing the status of these nodes, the transitions can be
made more energy efficient, as discussed next.
4.2.2 Optimizing the Transitions

First consider finding states that provide the most “effi-
cient” transitions, which implies making the least number of

node state changes in the transition. In BC, the most efficient
transition between two statess(m) ands(m′) is such that only
|m−m′| nodes undergo transition. This efficient transition is
defined formally as:
DEFINITION 4.1. TheOptimal Blinking Chain Transition
s(m) to s(m′) only requires|m−m′| nodes to undergo tran-
sition.

Details about how to implement this optimal transition
can be found in [11]. The following proposition highlights
a key relationship between divisible states (s(m), s(m′) such
that m|m′ or m′|m) and the Optimal Blinking Chain Transi-
tion.
PROPOSITION 4.1. s(m) to s(m′) is an optimal Blinking
Chain transition iff(m|m′ OR m′|m)

See [11] for the proof.
Proposition 4.1 tells us that in a given operating state,

s(m), for N CD nodes, we can transition to anothers(m′)
with maximum efficiency if and only ifm′ is a multiple or
factor ofm. While the Optimal BC Transition has interesting
properties, it does not handle all possible state transitions.
Specifically, it does not cover transitions between any states
s(m) ands(m′) whenm andm′ do not divide each other. For
example, ifN = 42, we cannot executes(6) to s(15), since
the optimal transition is not defined in this case.

To handle transitions between any two arbitrary states, we
need aGeneral Blinking Chain Transition . This transition
is implemented as a composition of two Optimal BC Tran-
sitions: s(m) to s(GCD(m,m′)) to s(m′), which maximizes
the number of offline nodes that are untouched during the
transition.

Using our previous example, ifN = 42 and we wish to
transition froms(6) to s(15), then using the General BC
Transition, we can save 4 node transitions by doing two op-
timal transitions: one froms(6) to s(3) and the second from
s(3) to s(15). Details about implementing the Optimal BC
Transition can be found in [11].

Notice that BC transitions are “optimal”, when only|m−
m′| nodes transition. Recall this isalwaysthe case for DC
transitions. The implication of this property is discussedin
Section 5.5.
4.2.3 Number of Balanced States

Now consider the special statess(m) wherem|N, in which
all the nodes have identical loads. We call such statesbal-
ancedstates, and denote this as ¯s(m).

We can calculate the total number of possible balanced
operating states for a Chained Declustered system ofN nodes
by recognizing that the number of primes in the factorization
of N is what determines the number of balanced states. That
is, we first factorN as N = pN1

1 pN2
2 ...p

Nj
j , where pi is the

ith prime number. Then, by simple combinatorics, the total
number of unique factors ofN is Π1≤i≤ j(Ni + 1), which is
also the number of balanced states for this system since ¯s(0)
replaces factorN.

5 Evaluation
To evaluate our proposed methods, we took an actual

server and ran two prototypical workloads on the server. We
then took actual measurements for both energy and response
time on this server, as we varied the load on the server (i.e.,

Figure 2. Index query regression model Figure 3. Database scan regression model

changed the server utilization). We then produced a model
for a single node in a system. This model was then plugged
into a larger model for the entire distributed system.

In all results presented below, we consider a system with
1000 nodes (N = 1000).

5.1 Experimental Setup
Our system under test (SUT) consisted of an ASUS

P5Q3 Deluxe WIFI-AP motherboard with an Intel Core2Duo
E8500, 2GB Kingston DDR3 memory, an ASUS GeForce
8400GS 256M graphics card, and a WD Caviar SE16
320G SATA disk. The power supply unit was a Corsair
VX450W. System energy draw was measured using a Yoko-
gawa WT210 unit as suggested by [1].

We ran queries on a commercial DBMS against a Wiscon-
sin Benchmark (WB) table [9]. Client applications accessing
the database were written in Java 1.6 using the JDBC con-
nection drivers for the commercial DBMS.

We ran each experiment five times, and report the average
of the middle three results. The ACPI S4 state was used as
the offline state. Other offline states are discussed in [11].

5.2 Workload
We model two different types of workloads. The first

workload uses WB Query 3. This query is a 1% selection
query using a clustered index on a table with 20M tuples (ap-
prox. 4GB table size). The actual workload consists of 1000
such queries with randomly selected ranges. This workload
is used to model simple lookup queries. Our second work-
load is a file scan on a WB table (of varying sizes) that has no
indices. This workload mimics queries that require scanning
tables in a DSS environment. These workloads are described
in more detail below.

5.2.1 Index Queries Workload
To simulate varying node underutilization with the in-

dexed range query, we defined various workloads for the in-
dexed query by varying idle times (this is the same setup as
described in Section 2.1). First, we ran this query and mea-
sured the query runtime. Lets call this X seconds. Then, we
defined a 20% utilization workload as one in which the query
runs for X seconds followed by an idle time of 4X seconds.
In this setup, the server is presented with a series of these 5X
time windows. An actual run consists of 1000 such windows,
with random arrival time for the query in each window. We
average the results over each run. Workloads with higher uti-
lization are generated by injecting additional queries in this

5X window. For example a workload with 40% utilization
has two queries in each 5X window, and a workload with
100% utilization has 5 queries in each 5X window.

To determine the value of X above, we ran 10000 random
1% selection queries and measured the average response
time at 102.5 ms, with a standard deviation of 0.46 ms.

5.2.2 Database Scan Workload
We modeled utilization of the system running scan work-

loads slightly differently to mimic a scenario in which a sin-
gle scan runs across all the nodes in the system. In this case,
when nodes are taken offline, the remaining online nodes
have to scan larger portions of the data. In this model, let
the time it takes a node to scan a 20M tuple WB table be
56.49 seconds. This node is operating at 100% utilization,
scanning as much as possible. For 75% utilization, we ask
the node to scan a 15M tuple table every 56.49s. Thus, over
time, it is doing 75% of the work that it would do in the
100% case. Similarly, for 50% utilization, we ask it to scan
a 10M tuple WB table every 56.49s. Energy consumption is
measured for the entire 56.49s window. With increased uti-
lization, the increase in response time increases (nearly)lin-
early. All scans are “cold” and there is no caching between
successive scans.

5.3 Modeling Energy and Response Time
In this section we present the measured energy consump-

tion and response time results for each workload. We then
use these results to develop a model for the behavior of a
node in the system. All models were picked by trying a num-
ber of different linear and polynomial regression models, and
picking the one with the lowest coefficient of determination,
R2. All presented models hadR2 > 0.94.

5.3.1 Indexed Query Workload
The response time and energy measurement results for the

index workload are presented in Figure 1 (in Section 2.1).
Figure 2 plots this data with utilization on the x-axis, sys-
tem energy consumption (for a 5X window) on the primary
y-axis, and the query response time in milliseconds on the
secondary y-axis.

Figure 2 also show the derived regression models for the
average energy consumed by our SUT and average query re-
sponse time as a function of utilization. The energy con-
sumption model is linear while the response time model is
quadratic.

10%

20%

30%

40%

50%

E
n

e
rg

y
 s

a
v

e
d

 o
v

e
r

1
0

0
%

 u
ti

li
ze

d
 s

y
st

e
m Unmanaged Index Query

Index Query w/Dissolving Chain
Index Query w/Blinking Chain

0%

10%

50%60%70%80%90%100%

E
n

e
rg

y
 s

a
v

e
d

 o
v

e
r

1
0

0
%

 u
ti

li
ze

d
 s

y
st

e
m

System Utilization

(a) Index Queries, N=1000

10%

20%

30%

40%

50%

E
n

e
rg

y
 s

a
v

e
d

 o
v

e
r

1
0

0
%

 u
ti

li
ze

d
 s

y
st

e
m Unmanaged DB Scan

DB Scan w/Dissolving Chain
DB Scan w/Blinking Chain

0%

10%

50%60%70%80%90%100%

E
n

e
rg

y
 s

a
v

e
d

 o
v

e
r

1
0

0
%

 u
ti

li
ze

d
 s

y
st

e
m

System Utilization

(b) Scan Queries, N=1000
Figure 4. Energy savings v/s varying system utilization.

5.3.2 Database Scan Workload
For the scan workload, increased utilization corresponds

to increasing the length of time that an instance runs (to
mimic what would happen if we turned nodes offline for such
workloads). The results for this workload are presented in
Figure 3. Again, the energy model is linear, but for scan
the response time model is logarithmic. The average re-
sponse time curve is sublinear as the pre-fetching used by
the DBMS decreases the per-record response time as we in-
crease the amount of data that is read. While the energy con-
sumption curves in Figures 2 and 3 are both linear, as uti-
lization increases, energy consumption grows faster with the
CPU-bound index workload.

5.4 Effect of Decreasing Utilization
Using the models described in the previous section, we

now apply the workload models to aN = 1000 system con-
figuration under varied system utilization.

We then analyze the workload energy consumption of the
overall system as the overall system utilization decreases
from 100%. In addition to comparing differences between
our methods, we also compare against theUnmanagedsys-
tem, where all nodes are always online regardless of the over-
all system utilization.

These results are shown in Figures 4 (a) and (b). In these
figures, we vary the system utilization from 100% to 50% as
shown on the x-axis (going from 100% on the left to 50% on
the right). So going left to right, corresponds to decreasing
the overall system utilization from the fully loaded (100%)
system. For each point in these figures, we apply our empiri-
cally derived models from Section 5.3 to calculate the energy
consumption. Using this calculated energy consumption, we
plotted, on the y-axis, the energy saved by the entire system
compared to the energy consumption at the 100% point.

We notice that an unmanaged cluster saves at most 10% in
energy consumption (for the Index query workload Figure 4
(a)) at 50% utilization. For the Scan workload (Figure 4 (b)),
the unmanaged cluster only saves 3% of energy at 50% uti-
lization! However, using DC and BC, we can save 48% and

110

120

130

140

150

M
a

x
im

u
m

N
o

d
e

 U
ti

li
za

ti
o

n
 (

%
)

100

110

0 100 200 300 400 500

M
a

x
im

u
m

N
o

d
e

 U
ti

li
za

ti
o

n
 (

%
)

Offline Nodes

(a) Dissolving Chains

110

120

130

140

150

M
a

x
im

u
m

N
o

d
e

 U
ti

li
za

ti
o

n
 (

%
)

100

110

0 100 200 300 400 500

M
a

x
im

u
m

N
o

d
e

 U
ti

li
za

ti
o

n
 (

%
)

Offline Nodes

(b) Blinking Chains

20%

40%

60%

80%

100%

M
a

x
im

u
m

 P
e

rc
e

n
t

o
f

N
/2

 N
o

d
e

s
T

h
a

t
C

a
n

 B
e

P
o

w
e

re
d

 D
o

w
n

0%

20%

0 200 400 600 800 1000

M
a

x
im

u
m

 P
e

rc
e

n
t

o
f

N
/2

 N
o

d
e

s
T

h
a

t
C

a
n

 B
e

P
o

w
e

re
d

 D
o

w
n

System Size (N)

(c) Dissolving Chain maximum number off offline nodes

Figure 5. (a-b) Maximum node utilization as we itera-
tively take nodes offline. (c) Ability of Dissolving Chains
to power down half of the nodes.

50% of the energy consumption at 50% utilization respec-
tively. Notice, because of DC’s inability to power down 500
nodes forN = 1000, its savings is slightly lower than BC.

Another striking observation from Figure 4 is that the
curves for both BC and DC have big swings/spikes. These
spikes can be seen for both methods clearly in Figure 4 (b).
This behavior is because both methods introduce load im-
balances at certain operating states. Notice that the swings
for BC are more gradual compared to DC – this is because
BC maintains optimal load balance on the online nodes at
any given operating state, which makes its energy swings are
more subtle compared to DC.

Let us explore these swings in greater detail. Consider
Figures 5 (a) and (b), where we power downm nodes when
the system utilization is(1000−m)/1000 for a 1000 node
system. As the system utilization drops, consider taking
nodes offline one by one (incrementingmby 1), up to a max-
imum of 500 nodes, using both DC and BC methods. Note
that not all states will be balanced.

Figures 5 (a) and (b) show themaximum node utilization
for both methods, i.e., the maximum relative increase (com-
pared tom= 0) that any system node will see. Note the
maximum node utilization is a crude way to determine the
imbalance of the system. (This type of analysis can be used
to avoid load spikes seen in Figure 1.) Comparing these two
figures, we see that BC is more graceful in its worst-case

105

110

115

120

125

130

R
e

sp
o

n
se

 T
im

e

(s
e

co
n

d
s)

100

105

1
5

0

1
5

5

1
6

0

1
6

5

1
7

0

1
7

5

1
8

0

1
8

5

1
9

0

1
9

5

2
0

0

2
0

5

2
1

0

2
1

5

2
2

0

2
2

5

2
3

0

2
3

5

2
4

0

2
4

5

2
5

0

R
e

sp
o

n
se

 T
im

e

(s
e

co
n

d
s)

Offline Nodes

(a) Dissolving Chains Response Time

105

110

115

120

125

130

R
e

sp
o

n
se

 T
im

e

(s
e

co
n

d
s)

100

105

1
5

0

1
5

5

1
6

0

1
6

5

1
7

0

1
7

5

1
8

0

1
8

5

1
9

0

1
9

5

2
0

0

2
0

5

2
1

0

2
1

5

2
2

0

2
2

5

2
3

0

2
3

5

2
4

0

2
4

5

2
5

0

R
e

sp
o

n
se

 T
im

e

(s
e

co
n

d
s)

Offline Nodes

(b) Blinking Chains Response Time

Figure 6. Comparing imbalanced operating points using
the Index Query workload. The vertical lines in repre-
sent the range between the minimum and the maximum
response times and the horizontal bar is the median re-
sponse time.

node utilization in imbalanced states (where maximum node
utilization is greater than 100%) compared to DC.

In addition, from Sections 4.1 and 4.2.3 we know that BC
has 16 balanced states (see Section 4.2.3) forN= 1000 while
DC only has 4. (These correspond to a 100% maximum node
utilization in Figures 5 (a) and (b).) Furthermore, even when
both methods are imbalanced, BC has a better worst-case
behavior than DC, as is evidenced by the lower height (node
utilization) of the operating points in Figures 5 (a) and (b).
For example, with respect to our problem statement in Sec-
tion 2.2, ifU = 120%, then BC has 67 states where the max-
imum node utilization violates this constraint while DC has
209 states. This is simply a count of all possible operating
states with a maximum nodes utilization greater thanU .

Lastly, we notice from in Figure 5 (a) that DC cannot
reach ¯s(500) for N = 1000. This is because as it system-
atically traverses the ring, cutting segments in half, it may
create irreducible segments of length 2. Thus, it cannot reach
the optimal number of offline nodes. This effect can be seen
in Figure 4, where near 50% utilization, DC is slightly lower
in energy savings than BC.

An analysis of this phenomenon over varying system
sizes (N) is shown in Figure 5 (c). Here we show how close
DC can come to powering downN/2 nodes for 1≤ N ≤
1000. What we notice is that there are dramatic swings,
but more importantly, we notice that DC can transition to
s̄(N/2) only whenN = 2i . Ultimately, the reason this oc-
curs is because DC heuristically takes nodes down and will
never self-correct by bringing them back online as utiliza-
tion monotonically decreases. The upside to this heuristicis
a low (constant) transitioning energy cost that is discussed in
Section 5.5.

For a detailed look at further effects of BC optimal load

Load

Balancing

Transitioning

Overhead

Blinking Chains

Properties

Methods

Good
 High

Fair
 Low
Dissolving Chains

Mirroring
 Poor
 Low

Figure 7. Comparison of energy management methods

balancing to DC heuristic balancing, we zoom in on a
smaller set of operating states. We use the models of Fig-
ures 2 and 3 and compare how energy consumption and re-
sponse time are affected by these imbalanced states. Figure6
examines the imbalanced operating points for the range of
150 to 250 offline nodes, in 5 node increments, while ex-
ecuting the Index query workload (Figure 2). (The results
for the scan query workloads are similar and omitted here.)
Figures 6 (a) and (b) compare the variance in node response
time between the operating states for DC and BC, respec-
tively. The response time variance is clearly far smaller with
BC.

To summarize, BC transitioning results in more balanced
node loads than DC. With its lower maximum node utiliza-
tions, BC offers greater opportunities to power down nodes
and stay within the thresholdU in our problem statement
(see Section 2.2).
5.5 Effect of Transitioning Costs

In the results above, we have not included any energy or
latency costs associated with making transitions from one
state to the next. From Section 5.4, we know that BC is
optimal in balancing the load across the nodes, but the cost
of this optimality is a complex transitioning mechanism (cf.
Section 4.2.2). In contrast, DC always powers up/down the
minimal number of nodes required to reach the target operat-
ing state. From the perspectives of energy consumed during
the actual transitions, DC is clearly more efficient.

We have also examined the effect of the transitioning
costs on BC. These results show that the BC transitions
costs are acceptable if the system does not transition between
states very often, and that for certain states DC will always
be worse than BC. More details about this experiment can be
found in [11]
5.6 Summary

Now we summarize some of the practical implications of
our work. In a setting where load balance is not as important,
as we discussed in Section 3.1, simple mirroring can be used.
The power down scheme is simple (turn off one of the two
replicate nodes, causing a 2X load increase on the remain-
ing node) and it affords the 100% and 50% online balanced
states. However, in cases where the huge 2X load imbal-
ances must be avoided (in most cases involving SLAs), we
suggest the Dissolving Chain (DC) and the Blinking Chain
(BC) methods.

The differences between DC and BC are summarized in
Figure 7. If avoiding load imbalances and the variation in
loads across the nodes is important, then BC offers excel-
lent load balancing in energy saving states. However, BC re-
quires significant state transitioning overhead that wouldbe
amplified when system utilization is highly variable. Thus,if

one knows the system utilization will be highly variable, DC
offers low transitioning cost but incurs slight but predictable
load imbalances and offers fewer state transitions.

Finally, notice that since both schemes leverage Chained
Declustering, the usage of one over the other is not exclusive;
if utilization fluctuates, we can switch to DC, and if there is
little fluctuation, we can switch to BC. We will examine such
hybrid approaches as part of future work.

6 Related Work
There has been considerable work on reducing the en-

ergy consumption of data centers, largely directed towards
reducing the TCO [13], and include methods such as using
more efficient power supply parts, raising data center temper-
atures, etc. These efforts are orthogonal to software methods
for reducing energy consumption.

On the software systems side, a desired property is energy
proportionality – i.e., an X% utilized server should consume
X% of the peak 100% power. One of the hurdles in achiev-
ing this behavior is the problem that idle machines typically
consume a significant amount (50%) of its peak power [3].
For web servers, methods such as [16, 18] propose selec-
tively turning servers off. Additional methods [15, 17] ei-
ther rely on learning request skew, specialized hardware, and
data migration and do not explore load imbalances caused by
powering down disks.

Another mechanism for energy management is to use
VM-based consolidation methods, such as [2, 8, 19, 21, 22].
However these methods are challenging to use for data-
intensive applications as they may require moving large
amounts of data during VM migration.

Recent work by Leverich powers down MapReduce clus-
ter nodes but does not consider load balancing [12].

None of these previous works have considered the prob-
lem that we address – namely, energy management using
replication to maintain data availability, while maintaining
a well-balanced system.

7 Conclusions and Future Work
In this paper we have presented energy management

methods that can be used in distributed data processing en-
vironments to reduce energy consumption. We leverage the
properties of replication schemes and design techniques that
can take nodes offline to conserve energy when the system
utilization is low. Our methods trade off load balancing
against energy efficient state transitioning, allowing theuser
to choose a suitable strategy. To the best of our knowledge,
this is the first paper that makes a connection between repli-
cation, energy management and load balancing.

This paper seeds a number of directions for future work.
First, our methods used a 2X replication, and does not exploit
utilization below 50%. One direction for future work is to
build on the ideas proposed here and broaden the connections
between generic levels of replication, load balancing and en-
ergy management. Other directions for future work include
incorporating workload modeling and prediction techniques
to work with our method, techniques that switch between
Blinking and Dissolving Chains based on hybrid workload
characteristics, and improving the techniques for handling
rapid transitions between different operating states.

Finally, we fully recognize that replication, power down
sequences, and load balancing are only part of a larger soft-
ware solution for energy management in data intensive com-
puting environments. We recognize that extensions to our
work are needed to produce fully deployable complete solu-
tions (e.g. incorporating workload modeling), and it is our
hope that this work instigates other work in this emerging
area of research.

8 References
[1] Power and Temperature Measurement Setup Guide SPECpower V1.1.

SPEC Power, 2010.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of Vir-
tualization. InSOSP, 2003.

[3] L. A. Barroso and U. Ḧolzle. The Case for Energy-Proportional Com-
puting. IEEE Computer, 40(12), 2007.

[4] C. Belady. In the Data Center, Power and Cooling Costs More than
the IT Equipment it Supports.Electronics Cooling, 23(1), 2007.

[5] D. Bitton and J. Gray. Disk Shadowing. InVLDB, 1988.

[6] A. Borr. Transaction Monitoring in Encompass. InVLDB, 1981.

[7] K. G. Brill. Data Center Energy Efficiency and Productivity. In The
Uptime Institute - White Paper, 2007.

[8] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live Migration of Virtual Machines. InNSDI, 2005.

[9] D. J. DeWitt. The Wisconsin Benchmark: Past, Present, andFuture.
In J. Gray, editor,The Benchmark Handbook for Database and Trans-
action Systems (2nd Edition). Morgan Kaufmann, 1993.

[10] H.-I. Hsiao and D. J. DeWitt. Chained Declustering: A New Availabil-
ity Strategy for Multiprocessor Database Machines. InICDE, 1990.

[11] W. Lang, J. M. Patel, and J. F. Naughton. On Energy Management,
Load Balancing and Replication. Technical Report UW-CS-TR-1670,
University of Wisconsin–Madison; Computer Sciences Department,
2010.

[12] J. Leverich and C. Kozyrakis. On the Energy (In)efficiency of Hadoop
Clusters. InHotPower, 2009.

[13] C. D. Patel and A. J. Shah. Cost Model for Planning, Development and
Operation of a Datacenter.HP Technical Report, HPL-2005-107R1,
2005.

[14] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Redundant
Arrays of Inexpensive Disks (RAID). InSIGMOD, 1988.

[15] E. Pinheiro and R. Bianchini. Energy Conservation Techniques for
Disk Array-Based Servers. InICS, 2004.

[16] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. Load Bal-
ancing and Unbalancing for Power and Performance in Cluster-Based
Systems. InWorkshop on Compilers and Operating Systems for Low
Power, 2001.

[17] E. Pinheiro, R. Bianchini, and C. Dubnicki. ExploitingRedundancy
to Conserve Energy in Storage Systems. InSIGMETRICS, 2006.

[18] K. Rajamani and C. Lefurgy. On Evaluating Request-Distribution
Schemes for Saving Energy in Server Clusters. InProc. of the IEEE
Intl. Symp. on Performance Analysis of Systems and Software, 2003.

[19] P. Ranganathan, P. Leech, D. Irwin, and J. Chase. Ensemble-level
Power Management for Dense Blade Servers. InISCA, 2006.

[20] Teradata. DBC/1012 Database Computer System Manual Release 2.0.
Technical Document C10-0001-02, 1985.

[21] N. Tolia, Z. Wang, M. Marwah, C. Bash, P. Ranganathan, and X. Zhu.
Delivering Energy Proportionality with Non Energy-Proportional Sys-
tems - Optimizing the Ensemble. InHotPower, 2008.

[22] C. A. Waldspurger. Memory Resource Management in VMware ESX
Server. InOSDI, 2002.

