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ABSTRACT
In main-memory databases, the number of processor cache misses
has a critical impact on the performance of the system. Cache-
conscious indices are designed to improve performance by reduc-
ing the number of processor cache misses that are incurred during
a search operation. Conventional wisdom suggests that the index’s
node size should be equal to the cache line size in order to min-
imize the number of cache misses and improve performance. As
we show in this paper, this design choice ignores additional effects,
such as the number of instructions executed and the number of TLB
misses, which play a significant role in determining the overall per-
formance. To capture the impact of node size on the performance
of a cache-conscious B+-tree (CSB+-tree), we first develop an an-
alytical model based on the fundamental components of the search
process. This model is then validated with an actual implementa-
tion, demonstrating that the model is accurate. Both the analytical
model and experiments confirm that using node sizes much larger
than the cache line size can result in better search performance for
the CSB+-tree.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design; I.6 [Simulation
and Modeling]: Miscellaneous; E.1 [Data Structures]: Trees

General Terms
Algorithms, Measurement, Performance, Design

Keywords
Index, Cache-Conscious, B+-tree

1. INTRODUCTION
Systems with large main memory configurations are becoming

more prevalent, due in large part to the decreasing price and the in-
creasing capacity of random access memory chips. Consequently,
it is economical and desirable to configure database servers with
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large amounts of main memory; in such configurations, the entire
database, or most of the frequently accessed parts of the database,
resides in main memory. As this trend continues, it is expected
that, in the future, all but the largest data sets will be resident in
main memory [3].

Traditional databases are designed to reduce the number of disk
accesses, since accessing data on the disk is orders of magnitude
more expensive than accessing data in main memory. With data sets
becoming resident in main memory, the new performance bottle-
neck is the latency in accessing data from the main memory [2,6,25,
27, 28]. Since accessing data in main memory is “expensive” rel-
ative to the processor speeds, modern processors make use ofpro-
cessor caches. A processor cache is a block of low-latency memory
that sits between the processor and main memory, and stores the
contents of the most recently accessed memory addresses. Latency
in retrieving data from the cache is one to two orders of magnitude
smaller than the latency in retrieving data from the main memory;
therefore, careful utilization of the processor caches can result in
large overall performance improvements.

Modern processors typically have separate caches for instruc-
tions and data, with multiple levels of these caches. The first two
levels of data cache memory are denoted as L1-D cache and L2-D
cache respectively. It has been proven that database systems expe-
rience a significant number of L2-D cache misses, and these misses
contribute substantially to the overall execution time [2]. In this pa-
per, we are primarily concerned with L2 data cache-misses, and for
the rest of the paper we will simply refer to these as cache misses.

In addition to cache misses, another significant factor that can
impact the performance of main-memory database systems is the
number ofTLB misses. TLB misses can occur when a virtual mem-
ory address is translated into a physical memory address. Within
a process, both data and code segments are allocated to locations
in the process’s virtual address space. However, at the hardware-
level, all memory accesses use physical addresses. To access the
actual item (data or instruction), the operating system must trans-
late the virtual address of the item to its physical memory address.
These address translations are stored in apage tablethat resides
in main-memory. An entry in the page table maps a virtual page
address to the physical page address. For every address translation
request, the page in which that address resides is identified, and the
corresponding page table entry is retrieved. To improve the perfor-
mance of this operation, atranslation look-aside buffer(TLB) is
used to cache the most recent address translations. Main-memory
is accessed only if the address translation is not found in the TLB.
As with processor cache misses, TLB misses are expensive as they
can require accessing the main memory.

A frequently performed operation in database systems is evalu-



ating equality-based searches. Given the importance of equality-
based searches, a number of cache-conscious index structures have
been proposed to speedup this operation [5, 22, 26, 27]. These
cache-conscious access methods include tree-based access meth-
ods, such as the CSS-trees, CSB+-tree, and T-trees; and hash-based
access methods, such as extendible hashing [22] and chained bucket
hashing [26]. These techniques primarily focus on arranging the
data in the access method’s data structure to reduce the number of
cache misses, and produce significant improvements over the tradi-
tional disk-based indices.

A design decision that is consistently used in cache-conscious in-
dices is defining the node size to be equal to the size of the L2 data
cache line. This is analogous to defining the node size to be equal to
the disk page size in traditional disk-based database environments.
On the first access to a node, its entire content is copied from main
memory into the cache. All subsequent accesses to this node can be
satisfied by reading data from the processor cache, thereby avoid-
ing the long latency associated with reading data from main mem-
ory. Even query processing algorithms, such as hash-based join
and aggregate operations, have used this idea of setting the node
size equal to the cache line size for constructing their internal in-
memory indices [17]. As we demonstrate, this choice is often
suboptimal for cache-conscious access methods when running on
modern processors.

While both tree-based and hash-based indexing techniques are
of interest within the context of memory-resident databases, in this
paper we concentrate on the more popular of these indexing struc-
tures, namely the B+-tree. (See the technical report [19] for analy-
sis and evaluation of hash-based cache-conscious indices).

The disk-based B+-tree has been shown to have poor proces-
sor cache performance, and modifications to the B+-tree have been
shown to dramatically improve the performance of B+-tree in main-
memory environments. The modified indexing structure is called
the CSB+-tree [27], and it is the indexing structure that we examine
in this paper. We analyze the effect of node size on the CSB+-tree
and make the following contributions:

• Using a first-order analytical model of the search performance,
we show that the conventional choice of setting the node size
equal to the cache line size is often suboptimal. This design
choice focuses on reducing the number of cache misses, but
ignores the effect on the number of instructions that are exe-
cuted, the number of conditional branches mispredicted, and
the number of TLB misses.

• Using a simple first-order model for the space requirements,
we show that a large node size is not only more time efficient,
but it is also much more space efficient.

• Using an actual implementation of the index, we validate
both the search performance model and the space model. We
show that when executing equality searches, a node size of
512 bytes or larger generally results in better performance
than the conventional cache-conscious node size equal to the
cache line size. Compared to the conventional node size, a
larger node size can improve the performance of the CSB+-
tree by17% (1.21 speedup) for equality searches on the In-
tel Pentium III.1 Larger node sizes are also found to improve
the space utilization by up to57% compared to a CSB+-tree
constructed using the conventional node size.

The remainder of this paper is organized as follows: Section 2
briefly describes the CSB+-tree index. Section 3 presents analytical
1These commonly used performance metrics are defined in Section
4.4

models for the index. Section 4 presents results based on an actual
implementation of the index. Section 5 discusses related work, and
finally, we present our conclusions and directions for future work
in Section 6.

2. CSB+-tree
A CSB+-tree [27] is an adaptation of the ubiquitous B+-tree for

main memory databases [27]. The CSB+-tree is an important data
structure for memory-resident databases as it has been shown to
outperform other cache-conscious, tree-based indices as well as tra-
ditional, tree-based indices in memory-resident databases [27].

Figure 1 shows an example of a CSB+-tree. Like the B+-tree,
data is stored in the leaf nodes. These data entries are of the form:
〈key, pointer〉, wherekey is the key value for the record pointed
to by pointer. In a regular B+-tree, a non-leaf node has a similar
structure except that thepointer points to another node in the in-
dex.key values in non-leaf nodes guide the search operation to the
appropriate leaf node(s). The key difference between the CSB+-
tree and the B+-tree is in the structure of the non-leaf nodes. In
a non-leaf node of the CSB+-tree, there is onlyonepointer. This
pointer references the start of a collection of child nodes, called a
group, where each node in thegroup is allocated contiguously in
memory. The parent node only points to the head of the group;
thus, the address of a child node can be computed from this pointer
and the ordinal number of the child in the parent node. By elimi-
nating the child node pointers in the non-leaf nodes, additional keys
can be stored which results in more efficient use of the space used
by a non-leaf node. Node size is typically set to the cache line size.

To illustrate the use of the index during a search operation, con-
sider the retrieval of the record identifier (RID) associated with the
key value3 on the index shown in Figure 1. The search operation
first begins at the root nodeA, where there is only one key value,10.
The search value,3, is less than10 so the search continues to the
first child node,B. The search key,3, is greater than2 but less than
4, indicating the search should continue to the second child node,E.
E is a leaf node which contains a number of〈key, pointer〉 pairs.
A binary search inside nodeE is then used to find the key value
3, and the corresponding pointers identify the records that match
the search. If required, the pointers are followed to retrieve the ac-
tual records. In main-memory databases, following the pointer is
equivalent to dereferencing a memory address.

3. INDEX STRUCTURE ANALYSIS
In this section, an analytical model of the CSB+-tree’s search

performance is presented. The model is then used to examine the
effect of the node size on the search performance. Next, an ana-
lytical model of the index’s space requirements is introduced, and
then used to analyze the effect of node size on the space required
to store the index.

The following analytical models rely on the input parameter def-
initions shown in Table 1 and the model parameters shown in Ta-
ble 2. The values for the architecture and index parameters in Ta-
ble 2 areestimatesbased upon our implementation of the CSB+-
tree executing on the Pentium III architecture. While only a single
architecture is examined in this section, the analytical models are
not dependent on particular values, allowing one to study the per-
formance effects of modifying these parameter values.

3.1 Analytical Model for Execution Time
The cost of executing an index search is modeled as a function of

four variables: the instruction count (I), the number of data cache
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Figure 1: CSB+-tree

Variable Description Value

Input Parameters
node sz size of an index node (in bytes) varies

q number of queries varies
σ cardinality of the index varies

Output Parameters
Mbtree number of cache misses incurred in searching the CSB+-tree Eq. 10
Mspec number of cache misses incurred in searching the CSB+-tree — speculative Eq. 14
Ibtree number of instructions executed in searching the CSB+-tree Eq. 15
Bbtree number of branch paths incorrectly predicted in searching the CSB+-tree Eq. 16
Tbtree number of TLB misses incurred in searching the CSB+-tree Eq. 18
space space required to construct a CSB+-tree (in bytes) Eq. 19

spacefull space required to construct the “full” CSB+-tree (in bytes) Eq. 21

Table 1: Input and Output Parameters for the Model

misses (M ), the number of branch mispredictions (B), and the
number of TLB misses (T ). There are additional factors that con-
tribute to the execution time, including instruction cache misses [2].
Instruction cache misses can become a significant component of the
overall execution time, especially if the query workload requires
executing code paths with large footprints. For this study, the L1 in-
struction cache effects are ignored because we only execute queries
on a single index structure, and the code footprint fits well within
the L1 instruction cache. Our assumption is supported by empirical
measurements showing that the instruction cache misses contribute
less than 0.5% to the overall execution time.

An additional factor that may affect execution time is out-of-
order execution. Out-of-order execution enables a processor to
potentially hide a portion of the observed stall time by exploiting
instruction-level parallelism. Given that the primary operation in
searching the CSB+-tree is a binary search, which has a short code
path and contains data dependencies, there is little opportunity to
exploit instruction-level parallelism; therefore, we ignore out-of-
order effects.

The execution time model is shown in Equation 1:

t = I ∗ cpi + M ∗miss latency

+ B ∗ pred penalty + T ∗ tlb penalty (1)

In Equation 1,t is the total execution time, in processor clock cy-
cles,cpi is the cost of executing an instruction,miss latency is
the cost of servicing a cache miss,pred penalty is the cost of in-
correctly predicting a branch path, andtlb penalty is the cost of
retrieving a TLB entry from the page table in main-memory. The
cpi, miss latency, pred penalty, andtlb latency costs are all
in processor clock cycles. Estimates for thecpi, miss latency,
pred penalty, andtlb penalty parameters can usually be extracted

from a processor’s design manual. The values for these architecture
parameters for a Pentium III are shown in Table 2. We note that the
cpi parameter was estimated based on the observed behavior over a
number of actual index searches. Also, the TLB miss penalty is as-
sumed to be the same as the L2 cache miss penalty, which ignores
the effects of caching page table entries in the processor caches. As
we show in our model, the majority of TLB misses are compulsory
misses that occur at the lowest levels of the tree, so the page ta-
ble entries are less likely to be cached. In addition, the TLB miss
penalty that we have chosen is very conservative, so page table en-
tries that are found in the cache are not severely penalized with the
full TLB miss latency.

3.1.1 Cache Miss Component
During an equality search operation, cache misses are incurred as

the search proceeds down the index tree, performing a binary key-
search at each level. The number of cache misses for this binary
key-search,mnode, can be computed as:

l =

�
node size

lsz

�
(2)

k =

�
f ∗ node sz − nlmeta sz

key sz

�
(3)

kinit =
lsz − nlmeta sz

key sz
(4)

mnode =

(
log2(l + 1) + (1− kinit

k
), if k > kinit

log2(l + 1), if k <= kinit

(5)

Each non-leaf node contains a child pointer, a key count, and a list
of keyvalues. The size of the child pointer and key count meta-
data is represented by thenlmeta sz term. The number of cache



Variable Description Value

Architecture Parameters (Pentium III)
cpi processor clock cycles per instruction executed 0.63
lsz size of a cache line (in bytes) 32

miss latency processor clock cycles per L2 cache miss 75
page sz size of a page in main-memory (in bytes) 4096

pred penalty branch misprediction penalty in processor clock cycles 15
tlb cap number of entries in the TLB 64

tlb penalty processor clock cycles to retrieve a TLB entry 75
Index Parameters

Isearch instructions to compare a key and select the next position in the binary search 6
Itrav instructions per node traversal 30

entry sz size of an entry in a leaf node (in bytes) 8
f fill percentage of a node 0.67

key sz size of an index key (in bytes) 4
nlmeta sz size of the non-leaf’s metadata (in bytes) 8
lmeta sz size of the leaf’s metadata (in bytes) 12

Computed Values
l number of cache lines spanned by a node Eq. 2
k number of keys in a non-leaf node Eq. 3

kinit number of keys in the first cache line of a node Eq. 4
mnode number of cache misses incurred in a binary search of a node Eq. 5

L number of leaf nodes in the index Eq. 6
bf branching factor Eq. 7
h height of the tree Eq. 8

bfroot branching factor of the root node Eq. 11
λi number of nodes in a single level of the index Eq. 12

mspec number of cache misses incurred in a binary search of a node — speculativeEq. 13
pi number of main-memory pages containing a single level of the index Eq. 17

bfmax maximum branching factor Eq. 20

Table 2: Internal Parameters for the Model

misses incurred by a binary search inside a node (Eq. 5) depends
on the number of cache lines spanned by the node (Eq. 2), plus an
additional cost to read the node’s child pointer and key count data.
Because a node’s key entries begin immediately after the meta-data,
the cost of accessing the meta-data is adjusted based on the proba-
bility of revisiting the cache line during the search. The probability
of revisiting the cache line containing the first few keys (Eq. 4) de-
pends on the total number of keys in the node (Eq. 3).

The number of cache misses incurred as the search operation
traverses down the tree is bounded by the height of the tree,h,
which is computed as follows:

L =
σj

f ∗ node sz−lmeta sz
entry sz

k (6)

bf = k + 1 (7)

h =
�
logbf L

�
+ 1. (8)

The height of the tree (Eq. 8) is dependent on the number of leaf
nodes (Eq. 6) in the index as well as the branching factor (Eq. 7.)
The number of leaf nodes,L, is computed by dividing the cardi-
nality, σ, by the number of entries per leaf node. Each leaf node
contains a count, pointers to both the right and left sibling groups,
and a list of〈key, rid〉 pairs. The entry count and pointers are
considered meta-data and are accounted for by the termlmeta sz.
The branching factor,bf , is the number of children a non-leaf node
can reference, and is dependent on the number of keys that are con-
tained in the non-leaf nodes (Eq. 3).

On the first traversal of the tree, each node access will incur a
compulsory cache miss. However, on subsequent traversals (queries),
nodes near the root of the tree will have a high probability of be-
ing found in the processor cache, while the leaf nodes will have a
substantially lower probability. To model this effect, we apply Car-
denas’s formula [8]at each levelof the tree since the probability of
a node being cached depends on the number of nodes at that level,
which in turn depends on the level of that node.

We note that this problem is very similar to estimating the num-
ber of page misses in a buffer pool, and databases frequently use
Yao’s formula for this purpose [13]. Yao’s formula [32] computes
the average number of pages, or blocks, accessed during query eval-
uation. Since the records that satisfy a query are unique, Yao’s for-
mula assumes that records in the blocks will not be revisited. In the
case of modeling cache misses, Cardenas’s formula is more appro-
priate because we are interested in predicting the number of unique
blocks accessed with the possibility of replacement. In other words,
the data contained within a block may be revisited during subse-
quent queries.

In using Cardenas’s formula, we are modeling a system of con-
tinuously running queries, i.e. the steady state behavior. It is im-
portant to note that the processor cache can be diluted by other
programs, removing highly accessed data from the cache. In using
Cardenas’s formula to account for the actual cache misses during
a search, we assume that the database application is a high priority
process, and that the interference from the OS or other applications
is marginal.



Continuing with the description of the model, Cardenas’s for-
mula, shown in Equation 9, predicts the number of unique blocks
that are visited,XD, for a given number of queries,q, on a given
number of data blocks,λ; in our caseλ is the total number of nodes
for a given level of the tree.

XD(λ, q) = λ ∗ (1− (1− 1/λ)q) (9)

The total number of cache misses,Mbtree, is modeled as the sum
of the expected number of unique cache misses at each level of the
tree.

Mbtree =

Ph
i=1 XD(l ∗ λi, q ∗mnode)

q
(10)

In Equation 10,l ∗ λi is the number of cache lines spanned by all
the nodes at leveli of the tree, andq ∗ mnode is the total number
of cache lines accessed forq queries at each leveli. λi can be
estimated as follows:

bfroot =
L

bfh−2
(11)

λi =

�
bfroot ∗ bf i−2 if i > 1
1 if i = 1 (root)

(12)

In Equation 12,bfroot is the branching factor of the root node,
andbf is the average fanout of a node. We treat the root node as a
special case because the number of entries in the root node greatly
influences the number nodes at each level of the tree. Without this
special case, we could get a very different value ofλ for each level
of the tree, leading to an overestimation of the number of cache
misses.

Equation 10 accounts for compulsory misses, but does not in-
corporate conflict misses or capacity misses in the cache [20]. For
a first-order approximation, we assume a large cache where these
effects are not significant. The experimental results in Section 4
confirm the accuracy of this simplification, but in future work we
plan to address this with a more detailed cache model.

Modern processors use branch predictors to predict the target
of a branch instruction and speculatively execute instructions from
the predicted target. The actual target of the branch instruction is
computed several cycles later, during the execution of the branch
instruction. If the actual target does not match the predicted tar-
get, the processor pipeline is flushed and execution resumes at the
correct target. During this speculative phase, a load instruction
might initiate a cache miss. Once the branch instruction is exe-
cuted, and if the branch target was predicted incorrectly, the cache
miss due to the load instruction will no longer remain on the crit-
ical path of execution. As a result, a cache miss that results from
speculative execution may be registered by the processor’s event
counter, even though the full cache miss latency will not be present
in the execution time. It is important to account for these spec-
ulative cache miss events to correctly estimate the observed stall
time due to cache misses. Equation 13 modifies the binary-search
cost-equation (Eq. 5) to account for speculative memory accesses.

mspec =

(
1.5 ∗ log2(l + 1)− 0.5 + (1− kinit

k
) if k > kinit

1.5 ∗ log2(l + 1)− 0.5 if k <= kinit

(13)

Equation 13 assumes that the search key is random, and conse-
quently, the processor mispredicts the search direction half of the
time. Based on this assumption, the number of cache line accessed
is equal to the number of non-speculative cache reads due to the
binary search, plus an additional 50% due to branch misprediction.
When including speculative memory accesses, Equation 14 can be

used to predict the number of cache miss events that an out-of-order
capable processor is likely to register.

Mspec =

Ph
i=1 XD(l ∗ λi, q ∗mspec)

q
(14)

3.1.2 Instruction Component
The second component of the analytical model is the number

of instructions executed during a search operation. The number
of instructions executed includes a binary key-search of the entire
data, plus the cost of a child-node traversal. Equation 15 predicts
the number of instructions executed.

Ibtree = log2(σ) ∗ Isearch + h ∗ Itrav. (15)

In Equation 15,Isearch is the number of instructions required to
evaluate a key and select the next evaluation position in the binary
search, andItrav is a fixed cost for traversing to the next node in
the tree. The values for these parameters are estimates based on the
actual implementation, and values for these parameters are shown
in Table 2.

3.1.3 Branch Prediction Component
The third component of the model is an estimate of the number

of conditional branches that are incorrectly predicted by the archi-
tecture. The number of mispredicted branches is proportional to the
number of binary search operations executed plus the conditional
branch that ends the binary search of a node. On each key com-
parison in a binary search, the next key examined may be before
or after the present key, with each path having an equal probability
of being taken. Therefore, the processor has an equal probability
of predicting the correct or incorrect path. Also, the processor can
not accurately predict the conditional branch that is taken to end
the search. Consequently, the number of mispredicted branches,
Bbtree, is estimated to be 50% of the branch instructions that are
executed during the binary search of the data, plus one mispredic-
tion per node searched to represent the end of the search loop.

Bbtree = h +
log2(σ)

2
(16)

3.1.4 TLB Component
The fourth and final component of the model is an estimate of

the number of misses in the TLB. The number of TLB misses de-
pends on the number of unique physical memory pages that are
accessed during the search. Index nodes are contained in physical
pages of memory, where each page may hold one or more nodes.
In traversing the index, each node’s physical memory address must
be translated from the virtual memory address. If an index is large,
then the TLB may not be able to cache all the address translations
for the index, and expensive TLB cache misses will be incurred
during an index search.

The TLB is typically much smaller than the level 2 cache, e.g.
the data TLB on the Pentium III has only 64 entries, so capacity
misses must be taken into account. Since each query accesses ex-
actly one page at each level of the index, the TLB entries can be
viewed as a number of smaller independent caches, each with a
cache oftlb cap/h entries. This model assumes a fully associative
TLB cache using an LRU replacement policy. The probability of
experiencing a TLB miss can then be calculated as the probability



of not hitting the same page intlb cap/h attempts.

pi =

�
node sz

page sz
∗ λi

�
(17)

Tbtree = h−
hX

i=1

�
1− 1

pi

� tlb cap
h

(18)

Equation 18 calculates the average number of TLB misses per query
by subtracting the average number of pages that are found in the
TLB from the number of TLB requests. The probability of a page-
table entry being found in the TLB is dependent on the number of
memory pages at each level,pi. In deriving Equation 18, the height
of the index is assumed to be less than the number of TLB entries,
and the number of queries is much greater than the number of TLB
entries. The model may underestimate the actual number of TLB
misses because the operating system may flush the TLB on page
table changes and context switches.

3.1.5 Overall Cost
The overall cost of an index scan is calculated by substituting

Mbtree, Ibtree, Bbtree, andTbtree for M , I, B, andT respectively
in Equation 1. We useMbtree rather thanMspec, since the specu-
lative cache misses will not incur the entire cache miss latency.

Using the four component models, as well as the execution model,
the effect of the node size on the performance of equality search can
now be analyzed.

3.1.6 Analysis of Node Size Effects on Equality Search
Using the model presented in the previous section, the effects of

node size of the performance of equality searches can now be de-
termined. For this analysis, the underlying architecture is assumed
to be an Intel Pentium III (Table 2), which is the same as our exper-
imental machine; the cardinality of the index is set to 10 million,
and the number of search queries to 10 thousand.
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Figure 2 shows the height of the CSB+-tree as the node size in-
creases. As expected, a small node size creates an index with a
large height, and as the node size grows larger than a few cache
lines in size, the height of the index decreases dramatically.

Figure 3 shows the average number of cache misses incurred dur-
ing an equality search for various node sizes. In this figure, we
plot the average number of cache-miss events with and without the
misses incurred due to speculative execution. In the figure, the plot
labelednon-speculativecorresponds to Eq. 10, and the plot labeled
speculative corresponds to Eq. 14. From Figure 3, we observe that
the CSB+-tree shows its best cache behavior at small node sizes,
with a node size equal to the cache line size (32 bytes) experienc-
ing the minimum number of cache misses. At a node size of 32
bytes, the leaf node can only hold a maximum of two entries, with

four bytes remaining unused. Because of the small node size, the
tree is high. At a node size of 64 bytes, a leaf node can contain a
maximum of six entries, sharply decreasing the height of the tree
but increasing the number of cache misses incurred to traverse the
tree. As the node size increases, cache performance begins to suf-
fer as the binary search inside of the node causes poor cache line
utilization.

Figure 4 shows the average number of instructions executed dur-
ing an equality search, for various node sizes (Eq. 15). For node
sizes in the range of 32–96 bytes, there is a large traversal cost due
to the height of the tree. As the size of the node increases, the
traversal cost decreases rapidly. Consequently, for the larger node
sizes, there are fewer instructions executed per query.

The number of branch mispredictions (Eq. 16), presented in Fig-
ure 5, follows a trend similar to the number of instructions exe-
cuted. As the node size increases, the height of the tree decreases,
and the mispredictions that occur per node access is reduced. The
cost of the mispredictions contributes approximately 14–18% to the
overall execution time, over the entire range of node sizes.

The number of TLB misses (Eq. 18) in Figure 6 also follows
the height of the tree. The number of TLB misses is highest at
small node sizes because of the large number of unique pages that
are accessed. At larger node sizes, there are fewer TLB misses
because more work is being performed per page access. An index
constructed with a node size of 512 bytes exhibits 67% fewer TLB
misses than at a node size of 32 bytes.

Figure 7 shows the effect of the node size on the overall exe-
cution time of equality search on the CSB+-tree. This graph is
plotted using Equations 1, 10, 15, 16, and 18. As the node size
increases, the cache miss latency is contributing more to the overall
execution time while the instructions, branch mispredictions, and
TLB miss latency are contributing much less to the overall execu-
tion time; therefore, while the cache performance may be optimal
for small node sizes, the execution time is adversely affected by
the high instruction count, branch mispredictions, and TLB misses.
From the figures, the minimum number of cache misses occurs at
a node size of 32 bytes, and the minimum number of instructions
executed occurs at sizes of 1632 bytes and larger. The number of
branch mispredictions and the number of TLB misses continue to
decline as the node size increases, since the tree is becoming more
shallow. The resulting execution time is poor for small node sizes,
quickly improves as the node size approaches 512 bytes, and then
remains fairly constant for node sizes larger than 512 bytes.The
predicted optimal node size is 1696 bytes, performing 27% faster
over a node size of 32 bytes, which is the L2 cache line size for the
Intel Pentium III, and the current conventional choice for a node
size.

3.2 Analytical Model for Space
The total amount of space required to construct a CSB+-tree is

calculated by summing the number of nodes at each level, and then
multiplying the sum by the node size, as shown in Equation 19.

space = node sz

hX
i=1

λi (19)

In Equation 19,node sz is the node size, andλi is the number
of nodes at each level of the tree. Whilespace accounts for the
memory allocated to nodes that contain actual entries, afull CSB+-
tree allocates memory for the entiregroupof nodes, regardless of
the parent node’s fill factor. The space required for a full CSB+-tree
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is shown in Equation 21.

bfmax = 2 ∗
�

node sz − nlmeta sz

2 ∗ key sz

�
+ 1 (20)

spacefull =
bfmax

bf
∗ space (21)

Equation 21 uses the ratio ofbfmax : bf to relate the number of
nodes allocated in a group to the number that actually contain en-
tries, wherebfmax is the maximum branching factor of a node.

Figure 8 plots the space required for a “full” CSB+-tree to store
10 million entries. From the figure, node sizes larger than a cache
line size create trees that require much less space.A node size of
512 bytes requires 66% less space than a node size of 32 bytes, and
29% less space than a node size of 64 bytes.

3.3 Analytical Model Application
We have applied the performance model to analyze the effects

of constructing the CSB+-tree with larger keys, and to analyze the
performance effects of using a simple concurrency control protocol
with the index. In the interest of space, only a summary of these
results is presented here, and we refer the interested reader to the
full-length version of this paper [19].

To model the search performance when indexing keys larger than
four bytes (such as doubles), we simply modify the parameterkey sz.
Analysis of the model demonstrates that, with larger keys, the con-
ventional choices are even further off from the optimal performance
point, and the benefits of using larger node sizes are even greater.

The model has also been applied to examine the effects of a sim-
ple concurrency control protocol. As shown in [19], the overall
effect on the model is similar to increasing the overhead per node,
Itrav. Consequently, the performance benefits of using larger node
sizes continue to hold even when a concurrency control protocol is
employed.

4. EXPERIMENTAL EVALUATION
In this section, we present experimental results based on an im-

plementation of the CSB+-tree in a main memory database system,
namedQuickstep, that we are currently building.

4.1 Index Implementation Details
Since the index was implemented in an actual database system,

system abstractions may have induced additional performance over-
head in some of the index operations. For example, our system
allocates memory in pages that can then be saved to disk, and we
utilize a buffer manager to manage page caching in main mem-
ory. The Quickstep database buffer manager allows pinning entire
relations or indices in main memory (if there is enough memory
available), and maps the entire disk image to a contiguous space in
virtual memory. In this mode, all of the data is pinned in the main
memory, and disk pointers areswizzledto direct memory pointers;
thereby, reducing node traversal overheads. In the experiments pre-
sented in this section, the entire data set is pinned in main memory.
The index and database system were coded in C++, and the system
was compiled with the GNU gcc compiler with all optimizations
turned on.

The full CSB+-tree, as described in [27], was implemented. All
nodes were allocated in pages of memory, with groups of nodes
allocated on contiguous pages of memory if necessary. All keys
are four bytes, and all〈key, RID〉 entries are eight bytes.

4.2 Experimental Setup
The experiments were performed on a 600MHz Intel Pentium

III with 768MB of main memory. The Pentium III has a two level
cache hierarchy. The first level consists of a 16KB data cache and
a 16KB instruction cache. The second level cache is a 512KB uni-
fied data/instruction cache. All caches are 4-way, set associative,
with a 32 byte line size. The Pentium III also has two TLBs, one
for code pages (i-TLB) and one for data pages (d-TLB). The i-
TLB can hold 32 translation entries, while the d-TLB can hold 64



entries. Both TLBs are 4-way set associative. The Pentium III pro-
vides two hardware counters for measuring processor events, such
as the number of cache misses and the number of instructions ex-
ecuted. The operating system used on this machine was Debian
Linux, kernel version 2.4.18. To access the event counters on the
processor, we used the PAPI library [7].

We also verified these results on a 450MHz Sun UltraSPARC-II
with 1024MB of main memory, running SunOS version 5.8. The
cache line size for the UltraSPARC-II is twice the line size used
in the Pentium III processor. When comparing the relative perfor-
mance improvements over the “default” case of using a node size
equal to the cache line size, the relative performance improvements
are roughly half of that observed for the Pentium III. In the interest
of space, we only present the experimental results using the Pen-
tium III here, and refer the interested reader to [19].

The events measured include execution time, L2 cache misses,
instructions executed, L1 instruction cache misses, and branch mis-
predictions. The L1 instruction cache misses are an insignificant
percentage of overall execution time (less than 0.5%), and are not
discussed in the analysis of the experiments. The Pentium III does
not expose the data TLB misses as measurable events. To mea-
sure the number of TLB misses, we wrote a TLB simulator that
estimated the number of TLB misses from a trace of the memory
references. The simulator modeled the capacity and associativity of
the Pentium III d-TLB, and assumed an LRU replacement policy.

Concurrency control, record retrieval, and output operations are
not included in our measurements of the index performance. Record
retrieval and output costs remain constant for the range of index
node sizes, while the effects of concurrency control have been ex-
amined separately, and can be found in the full version of this pa-
per [19].

4.3 Data Set and Queries
For the data set, we used the Wisconsin Benchmark’s [4, 14]

TENK relation scaled to ten million entries, and indexed on the
unique1attribute, which is a candidate key in this relation. Unless
stated otherwise, theunique1values are inserted into the index in
unsorted order.

In each of the experiments reported below, the index is queried
ten thousand times. Each query is an equality search for a key value
that is randomly selected from the ten million possible entries. The
measured events are divided by the total number of queries to cal-
culate an average event per query, so each data point in a graph is
an average of ten thousand queries. Experiments with much larger
numbers of queries, and relations with different cardinalities were
also analyzed. The per query performance results presented here
remained essentially the same; for brevity, we omit these results,
and refer the interested reader to [19].

4.4 Measuring Performance
In analyzing the experiments, we will frequently refer to the op-

timal range of node sizes for a given performance metric; this range
is defined as the node sizes that result in performance that is within
5% of optimal for the particular metric. To quantify performance
improvement, we use the percentage improvement metric given by:

performance before− performance after

performance before
%

A second frequently used metric isspeedup, given by:

performance before

performance after

When reporting the performance results, the performance improve-
ment will be presented first, with the speedup presented second and
in parenthesis.

4.5 Experiment 1: Equality Search Perfor-
mance

To analyze the effect of node size on the search performance of
the index, we first present an analysis of equality searches over a
wide range of node sizes. In this first experiment, the CSB+-tree
index was constructed on theunique1attribute in the scaled TENK
relation (cardinality 10M).

Figure 9 shows the average number of cache misses per query
for the CSB+-tree index, including speculative cache misses. From
the figure, we observe that the CSB+-tree experiences the fewest
cache misses for the node sizes ranging from 32–64 bytes. As ex-
pected, cache misses are minimized at small node sizes. However,
as the node sizes become larger, the binary search within each node
increasingly contributes to the number of cache misses.

Figure 10 shows the average number of instructions per query for
the index. As the node size increases for the CSB+-tree, the height
of the tree decreases, causing the instruction count to drop. The
jumps that occur in Figure 10 correspond to changes in the height of
the index structure. The instruction count is at its minimum within
the range of 1408–3072 bytes.

The number of branch mispredictions, shown in Figure 11, is
fairly constant for node sizes of 512 bytes and greater. For much
smaller node sizes, the number of mispredictions increase due to
the increased number of node traversals that occur.

Figure 12 shows the number of TLB misses per query. As dis-
cussed in Section 4.2, the Pentium III does not expose the data TLB
misses, so this figure is derived using a simulation. As expected,
the number of TLB misses varies with the height of the index. A
node size of 512 bytes exhibits 73% fewer TLB misses than at a
node size of 32 bytes, and node sizes larger than 512 bytes incur up
to 80% fewer TLB misses than at a node size of 32 bytes.

Figure 13 shows the execution time, measured as clock cycles
per query. As the figure shows, the CSB+-tree’s best performance
occurs at node sizes greater than160 bytes. Node sizes in this
range are much larger than the cache line size, which is 32 bytes.
Using a node size within the range 256–512 bytes can improve the
performance of the index by 17% (1.21 speedup) over the perfor-
mance when the node size is 32 bytes. After a node size of 512
bytes, the performance of the index very gradually improves. Us-
ing a node size in the range of 1280–3072 bytes can improve the
performance of the index up to19% (1.24 speedup)over the per-
formance when the node size is 32 bytes.

Comparing Figures 9 – 13 from the experimental evaluation to
Figures 3 – 7 from the analytical model, we can see that the ana-
lytical model accurately predicts the actual empirical behavior. As
stated before, the experiments were performed in the context of a
database system, and consequently include additional performance
overhead that is not predicted by the analytical model. For exam-
ple, before evaluating the index search operation, the query must
be parsed, which requires additional instructions, and also incurs
one data cache miss to read the literal in the query predicate. This
overhead is reflected as a constant value added to the actual number
of cache misses incurred (Fig. 9) and the actual number instructions
executed (Fig. 10), and subsequently affects the overall execution
time (Fig. 13).

4.6 Experiment 2: Space Requirements
In this experiment, we investigate the effect of the node size on

the space required to store the CSB+-tree index. The CSB+-tree
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implementation was thefull CSB+-tree, where space is allocated
for an entire group of nodes regardless of whether each node con-
tains entries. As in the previous experiment, we used the TENK
relation scaled to ten million entries, and indexed on theunique1
attribute. The space requirements of the CSB+-tree versus node
size in Figure 14 highlights an important problem with using small
node sizes for memory constrained environments: small node sizes
result in very deep trees, requiring substantially more space to rep-
resent. From the figure, a node size of 512 bytes requires 60% less
space than a node size of 32 bytes, and requires 36% less space
than a node size of 64 bytes. Node sizes larger than 512 bytes show
moderate improvements in space utilization, requiring between 42–
64% less space than a node size of 32 bytes. The saw-tooth shape
in Figure 14 is due to small changes in the fill factor of the nodes
in the index. This fill factor can vary from 0.5 to 1, but the ana-
lytical model does not exhibit this saw-tooth form because the fill
factor is modeled as a constant of 0.67, which is the average fill fac-
tor that is typically observed in practice [31]. While the fill factor
varies in the experimental evaluation, the space requirements fluc-
tuate around 163MB, which compares favorably to the 171MB that
is predicted by the analytical model.

4.7 Additional Experiments
We have performed several additional experiments to evaluate

the effect of node size under a variety of different conditions. In
the interest of space, we only summarize these results, and refer
the interested reader to [19].

First, we examined the performance of range searches for a vari-
ety of node sizes. The results show that for the Pentium III, using
a node size larger than 512 bytes improves the range search perfor-
mance by up to 48% (1.94 speedup) over a CSB+-tree constructed
with the conventional node size.

Second, we examined the performance of equality search on a
CSB+-tree constructed with keys of size eight bytes (the key size
for a double precision number). The CSB+-tree experienced its

optimal performance with node sizes larger than 1024 bytes, per-
forming up to 26% (1.34 speedup) faster than at a node size of
64 bytes. These results demonstrate that, with larger keys, the
conventional choice in node size is even further from the optimal
performance point, and the benefits of using larger node sizes are
even greater.

Third, we evaluated the impact of concurrency control on the
equality search performance of the CSB+-tree. This experiment
shows that the optimal range of node sizes remains 160-bytes and
larger, and results in a performance improvement of 17% (1.21
speedup) over a node size of 32 bytes.

Fourth, the performance of the CSB+-tree index containing du-
plicate keys was examined. For this experiment, the index was
loaded with ten million integers which were drawn from a set of
five-hundred thousand distinct integer values. These values fol-
lowed a Zipfian distribution where theskewparameter varied be-
tween0 and1. This experiment shows that, when the index con-
tains skewed data, node sizes much larger than the cache line size
performed optimally. Specifically, node sizes in the range of 256–
512 bytes performed up to 49% (1.95 speedup) faster than a node
size equal to the cache line size of 32 bytes. Node sizes larger than
512 bytes perform up to 50% (2.00 speedup) faster than a node size
equal to 32 bytes.

Finally, we evaluated the effect of node size on the performance
of the CSB+-tree when inserting ten million unique, unsorted inte-
gers into an empty index. As the node size increased, the execution
time also increased due to the larger cost in splitting nodes. Smaller
node sizes performed much better than larger node sizes. A CSB+-
tree with a node size of 512 bytes performed 27% (21% slowdown)
slower than an index with a node size of 32 bytes. Node sizes
larger than 512 bytes performed increasingly worse. While node
sizes much larger than a cache line size perform worse than small
node sizes, workloads that have many more search operations rel-
ative to inserts (the common case in practice) will not be greatly
affected by this poor insert performance.



4.8 Discussion
In summary, we have experimentally demonstrated that the first-

order models presented in Section 3 are accurate. The experimental
data shows that node sizes larger than 512 bytes perform up to 17%
(1.21 speedup) faster for equality searches, as compared to the per-
formance of an index with a node size equal to the cache line size.
In addition, we have shown that the conventional node size demon-
strates poor space utilization, consuming up to 149% more space
than a node size of 512 bytes.

5. RELATED WORK
A number of previous studies have identified the critical influ-

ence that processor cache misses have on the performance of mod-
ern database systems, which typically run on servers with large
main-memory configurations [2, 23, 25, 28]. To remedy this per-
formance bottleneck, a number of popular database algorithms and
access methods have been adapted to improve their cache utiliza-
tion [6, 17, 25, 28]. Main-memory database systems have also paid
considerable attention to efficient indexing techniques. The earliest
work in this area by Lehman and Carey [22] investigates various
hash-based and tree-based indexing structures for main memory
databases. They also propose a new indexing structure called the
T-tree that is shown to be very effective in main-memory environ-
ments. The paper did not consider cache behavior, primarily be-
cause processors at that time did not have sophisticated processor
caches.

Rao and Ross recently rekindled interest in main-memory in-
dices by considering the performance impact of cache misses. In [26],
they investigate main memory indexing techniques for static data,
proposing the Cache Sensitive Search tree, or CSS-tree, to im-
prove the processor cache utilization during a search. In the anal-
ysis of the CSS-tree, the authors conclude that a node size equal
to a cache line size is optimal in most cases. A limitation of the
CSS-tree is that it is a static index structure, and must be entirely
rebuilt uponany updates to the data. The authors also investi-
gated dynamic indexing techniques in the main-memory environ-
ment in [27], proposing a cache-conscious variation of the tradi-
tional B+-tree, called the CSB+-tree. The CSB+-tree eliminates
child node pointers in the non-leaf nodes, allowing additional keys
to be stored in a node which improves cache line utilization. Anal-
ogous to the traditional B+-tree where a node size is equal to a disk
page to minimize the number of page accesses during a search, the
node size for the CSB+-tree is set equal to a processor cache line to
minimize the number of cache misses. The work by Rao and Ross
has been extended in recent years in a number of different ways,
including handling variable key length attributes efficiently [5] and
for architectures that support prefetching [10].

In a recent paper, Chen, Gibbons and Mowry [10] examined
the cache behavior of B+trees and CSB+-trees. They conclude
that the CSB+-trees produce very deep trees which cause many
cache misses as a search traverses down the tree. They propose a
prefetching-based solution, in which the node size of a B+tree is
larger than the cache line size, and special prefetching instructions
are manually inserted into the B+tree code to prefetch cache lines
and avoid stalling the processor. We also recommend larger node
sizes for the CSB+-tree, but our recommendation is not based on
using special hardware prefetch instructions. Rather, we recognize
that node size influences a number of different factors besides cache
misses, and that overall performance is improved by carefully con-
sidering the effect of node size on all these factors.

Chen, Gibbons, Mowry, and Valentin also propose a version of
their prefetching B+-tree optimized for disk pages, called Fractal

pB+-trees [11]. In this work, the authors show how the pB+-
tree index can be efficiently constructed onto disk pages, which
are generally much larger in size than the index node. This paper
nicely demonstrates the practical implications of utilizing a cache-
sensitive main-memory index in a disk-based environment.

Kim, Cha, and Kwon recently proposed a cache-conscious mod-
ification to the traditional R-Tree index, which is used for indexing
spatial data types such as points and polygons. The indexing struc-
ture that they propose is called the CR-Tree [21], which improves
the cache utilization of the traditional R-Tree by reducing the space
required to store the keys. The authors show that node sizes larger
than a cache line size generally outperform node sizes approach-
ing the cache line size. Our work in this paper compliments their
work on spatial indices by presenting an analytical model and ex-
perimental results for the single-dimensional CSB+-tree.

Cha, Hwang, Kim, and Kwon have also analyzed the perfor-
mance of the CSB+-tree and the traditional B+-Tree when incorpo-
rating concurrency control logic for use in a shared memory multi-
processor system [9]. The authors found that a node size of twice
the cache line size is optimal for the CSB+-tree. The authors’ ex-
periments were conducted on a Sun Enterprise 5500 server with
eight UltraSPARC-II processors, so twice the cache line size trans-
lated into a node size of 128 bytes. As the description of the exper-
iment that supports this conclusion is sparse, it is unclear why their
conclusions modestly contradict our findings that even larger node
size result in better performance. Our work provides a more com-
plete analytical and experimental evaluation of the CSB+-tree on
single processor systems, and demonstrates that node sizes larger
than the cache line size are optimal for both equality searches and
range searches.

Choosing an optimal node size for a B+-tree in a traditional disk-
bound database system has been the focus of a paper by Lomet [24],
which follows the work of Gray and Graefe [18]. Lomet shows
that from the performance perspective, large page sizes for B+-trees
are better because they amortize the cost of going to the disk and
also produce shallower trees. Our analysis presents an important
parallel from the perspective of the processor data cache misses.

Chilimbi et al. [12] examines how the compiler can change the
layout of data structures to improve cache-behavior of the pro-
gram. They demonstrate that such compiler optimization tech-
niques can improve the performance of Microsoft’s SQL Server
by 1–2%. Since the proposed technique is a general purpose com-
piler technique, the authors do not consider changing the database
implementation.

There has been work on modeling cache misses for sparse matrix
operations [15] as well as general processor cache modeling equa-
tions [16]. This work provides a more complete model of the cache
hardware, including modeling capacity and conflict misses in their
workloads. Our motivation for using Cardenas’s formula was to
model the first order effects of our particular workload, which are
the most significant factors for the CSB+-tree.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we investigate the performance of a popular cache-

sensitive B+-tree index, called the CSB+-tree. For this investiga-
tion, we introduce a first-order analytical model for the index struc-
ture. From the analysis of the model, we demonstrate that using the
common design heuristic of setting the node size equal to the cache
line size for this index structure is often suboptimal. We show that
cache misses, instruction count, and TLB misses must be balanced
to achieve the optimal index performance. We also report results
from extensive experimentation on the CSB+-tree index structure.



The experiments show that for the CSB+-tree, a node size of 512
bytes or larger performs well across a wide range of search queries.

The results that we present in the paper can be easily applied to
main memory databases and even to traditional databases that use
main memory type of index structures for search operations. In
most well structured systems, node size is typically a constant in
the code or a database configuration parameter, and changing the
node size is fairly straightforward. Thus we expect that, for many
systems, using the results of this paper is likely to be an easy way
to improve index’s search performance.

Since we have only experimentally validated our results for a
couple of the more popular microprocessors, the results of this pa-
per should be used cautiously when applying to implementations
running on other processors. However, our conclusions are cen-
tered around the observation that, in modern processors, the over-
all performance of an index structure depends on the number of
cache misses, the instructions that are executed, the number of
mispredicted conditional branches, and the number of TLB misses.
Our analytical model captures these characteristics using a simple
model which can easily be adapted for other architectures.

This paper has only focused on the equality search operation, and
in the future we plan on extending the analytical model to analyze
range search operations. The complexity lies in modeling the num-
ber of cache misses incurred during the linear leaf-node scan. For
example, if the number of cache lines accessed during the leaf-node
scan approaches, or surpasses, the capacity of the processor cache,
all non-leaf node cache lines will be flushed. The result is that ev-
ery access will result in a cache miss, virtually eliminating cache
line re-use. To illustrate this scenario, a 0.65% range search of ten
million entries will flush a 512 KB L2 cache after a single query.
For very small range selectivities, the previous performance model
for equality searches may suffice. However, for range selectivities
that result in small, but non-negligible, fractions of the processor
cache being replaced, it may be necessary to incorporate a more
complete cache model to accurately capture the performance of the
workload, similar to the work of Doallo et al. [15] for sparse matrix
operations

We also plan on using the model to investigate the effects of
the processor architecture on the performance of the CSB+-tree.
This study will include varying such architectural parameters as the
main-memory latency, cache-line size, page size, etc. Some prelim-
inary results on the effects of varying the architectural parameters
can be found in [19].

There is a rich literature base examining performance models for
caches in SMP environments [1, 29, 30]. However, the main focus
of these previous papers has been on the performance impact of var-
ious cache invalidation protocols. In some studies [29], the effect
of cache block size is also considered. In our current work, we only
consider single processor machines, and consequently do not need
these performance models for SMPs. However, as part of our fu-
ture work, we will consider the effect of node sizes on CSB+-trees
in SMP environments with a mixed workload of updates and read-
only queries. The SMP cache models will be directly applicable in
that investigation.
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