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ABSTRACT
A variety of techniques currently exist for measuring the similar-
ity between time series datasets. Of these techniques, the methods
whose matching criteria is bounded by a specifiedǫ threshold value,
such as the LCSS and the EDR techniques, have been shown to be
robust in the presence of noise, time shifts, and data scaling. Our
work proposes a new algorithm, called the Fast Time Series Evalu-
ation (FTSE) method, which can be used to evaluate such threshold
value techniques, including LCSS and EDR. Using FTSE, we show
that these techniques can be evaluated faster than using either tra-
ditional dynamic programming or even warp-restricting methods
such as the Sakoe-Chiba band and the Itakura Parallelogram.

We also show that FTSE can be used in a framework that can
evaluate a richer range ofǫ threshold-based scoring techniques, of
which EDR and LCSS are just two examples. This framework,
called Swale, extends theǫ threshold-based scoring techniques to
include arbitrary match rewards and gap penalties. Through exten-
sive empirical evaluation, we show that Swale can obtain greater
accuracy than existing methods.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining, Spatial Databases
and GIS

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
Time Series, Trajectory Similarity, Clustering

1. INTRODUCTION
Techniques for evaluating the similarity between time series data-

sets have long been of interest to the database community. New
location-based applications that generate time series location trails
(called trajectories) have also fueled interest in this topic since time
series simularity methods can be used for computing trajectory sim-
ilarity. One of the critical research issues with time series analysis
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is the choice of distance function to capture the notion of simi-
larity between two sequences. Past research in this area has pro-
duced a number of distance measures, which can be divided into
two classes. The first class includes functions based on the L1 and
L2 norms. Examples of functions in this class are Dynamic Time
Warping (DTW) [2] and Edit Distance with Real Penalty (ERP) [4].
The second class of distance functions includes methods that com-
pute a similarity score based on a matching thresholdǫ. Examples
of this class of functions are the Longest Common Subsequence
(LCSS) [30], and the Edit Distance on Real Sequence (EDR) [5].
Previous research [5,30] has demonstrated that this second class of
methods is robust in the presence of noise and time shifting.

All of the advanced similarity techniques mentioned above rely
on dynamic programming for their evaluation. Dynamic program-
ming requires that each element of one time series be compared
with each element of the other; this evaluation is slow. The re-
search community has thus developed indexing techniques such
as [5, 7, 14, 18, 32] that use an index to quickly produce a super-
set of the desired results. However, these indexing techniques still
require a refinement step that must perform the dynamic program-
ming evaluation on elements of the superset. Furthermore, time
series clustering has also been studied [5, 15, 30], and these clus-
tering techniques require pairwise comparison ofall time series in
the dataset, which means that indexing methods cannot be used to
speed up clustering applications.

To address this problem, a number of techniques have been de-
veloped that impose restrictions on the warping length of the dy-
namic programming evaluation. The Sakoe-Chiba band, studied
in [26], uses a sliding window of fixed length to narrow the number
of elements that are compared between two time series. The Itakura
Parallelogram, studied in [11], also limits the number of compar-
isons to accomplish a similar effect as the Sakoe-Chiba band. These
techniques that constrain the warping factor are faster, but at the ex-
pense of ignoring sequence matches that fall outside of the sliding
window. If the best sequence match between two time series falls
outside of the restricted search area, then these techniques will not
find it.

In this paper, we propose a novel technique to evaluate the sec-
ond class of time series comparison functions that compute a sim-
ilarity score based on anǫ matching threshold. The popular LCSS
and EDR comparison functions belong to this class and can directly
benefit from our new evaluation technique. This technique, called
the FastTime SeriesEvaluation (FTSE), is not based around the
dynamic programming paradigm nor is it an approximation (i.e. it
computes the actual exact similarity measure). Using a number of
experiments on real datasets, we show that FTSE is nearly an or-
der of magnitude faster than the traditional dynamic programming-
style of similarity computation. In addition, we show thatFTSE is



Symbol Definition
R, S Time series(r1, ..., rm) and(s1, ..., sn).
ri Theith element ofR.
Rest(R) R with the first element removed.
Md d dimensional MBR.
Md1, Md2 Lower and upper bounds ofM

Table 1: Symbols and definitions.

also faster than popular warp-restricting techniques by a factor of
2-3, while providing an exact answer.

We show that FTSE can evaluate a broader range ofǫ threshold-
based scoring techniques and not just LCSS and EDR. Motivated
by FTSE’s broader ability, we propose theSequenceWeighted
AL ignmEnt (Swale) scoring model that extendsǫ threshold based
scoring techniques to include arbitrary match rewards and gap penal-
ties. We also conduct an extensive evaluation comparing Swale
with popular existing methods, including DTW, ERP, LCSS, and
EDR and show thatSwale is generally more accurate than these
existing methods.

The remainder of this paper is organized as follows: Section 2
discusses the terminology that is used in the rest of the paper. Sec-
tion 3 discusses related work and Section 4 describes the FTSE al-
gorithm. Section 5 introduces the Swale similarity scoring method
and Section 6 presents experimental results. Finally, Section 7
presents our conclusions.

2. TERMINOLOGY
Existing similarity measures such as LCSS, DTW, and EDR as-

sume that time is discrete. For simplicity and without loss of gen-
erality, we make these same assumptions here. Formally, the time
series data typeT is defined as a sequence of pairsT = (p1, t1), (p2,
t2), ... , (pn, tn), where eachpi is a data point in ad-dimensional
data space, and eachti is the time at whichpi occurs. Eachti

is strictly greater than eachti−1, and the sampling rate of any two
time series is equivalent. Other symbols and definitions used in this
paper are shown in Table 1.

Time series datasets are usually normalized before being com-
pared. We follow the normalization scheme for time series data
described in [9]. Specifically, forS of lengthn, let the mean of
the data in dimensiond be µd and let the standard deviation be
σd. Then, to obtain the normalized dataN(S), we can evaluate
∀ i ∈ n : si,d = (si,d − µd)/σd on all elements ofS. This
process is repeated for all dimensions. In this paper, all data is nor-
malized, and we useS to stand forN(S), unless stated otherwise.

3. RELATED WORK
There are several existing techniques for measuring the similar-

ity between different time series. The Euclidean measure sums
the Euclidean distance between points in each time series. For
example, in two dimensions the Euclidean distance is computed
as:

p
Pn

i=1 ((ri,x − si,x)2 + (ri,y − si,y)2). This measure can
be used only if the two time series are of equal length, or if some
length normalization technique is applied. More sophisticated sim-
ilarity measures include Dynamic Time Warping (DTW) [2], Edit
distance with Real Penalty (ERP) [4], the Longest Common Subse-
quence (LCSS) [30], and Edit Distance on Real sequences (EDR) [5].
These measures are summarized in Table 2.

DTW was first introduced to the database community in [2].
DTW between two time series does not require the two series to
be of the same length, and it allows for time shifting between the
two time series by repeating elements. ERP [4] createsg, a con-

stant value for the cost of a gap in the time series, and uses the L1
distance norm as the cost between elements. The LCSS technique
introduces a threshold value,ǫ, that allows the scoring technique to
handle noise. If two data elements are within a distance ofǫ in each
dimension, then the two elements are considered to match, and are
given a match reward of 1. If they exceed theǫ threshold in some
dimension, then they fail to match, and no reward is issued. The
EDR [5] technique uses gap and mismatch penalties. It also seeks
to minimize the score (so that a score closer to 0 represents a better
match).

In [1], the authors use the Euclidean distance to measure sim-
ilarity in time series datasets. The Discrete Fourier Transform is
used to produce features that are then indexed in an R-tree. Dimen-
sionality reduction is also studied in [3, 14, 18, 20, 23, 32]. Index-
ing is also studied in [7], which proposes a generic method built
around lower bounding to guarantee no false dismissals. Indexing
methods for DTW have been the focus of several papers includ-
ing [13, 19, 27, 33, 34]. Indexing for LCSS [29] and EDR [5] has
also been studied. In this paper, our focus is not on specific in-
dexing methods, but on the design of robust similarity measures,
and efficient evaluation of the similarity function. We note that our
work is complementary to these indexing methods, since the index-
ing methods still need to perform a refinement step that must eval-
uate the similarity function. Traditionally, previous work has not
focused on this refinement cost, which can be substantial. Previous
works employ a dynamic programming (DP) method for evaluat-
ing the similarity function, which is expensive, especially for long
sequences. In other words, FTSE can be used to boost the perfor-
mance of existing LCSS or EDR-based indexing methods since it
is faster than traditional DP methods for the refinement step.

The Sakoe-Chiba Band [26] and Itakura Parallelogram [11] are
both estimation techniques for restricting the amount of time warp-
ing to estimate the DTW score between two sequences. A restric-
tion technique similar to the Sakoe-Chiba Band is described for
LCSS in [30] and the R-K Band estimate is described in [24].

Time series may be clustered using compression techniques [6,
16]. We do not compare our algorithms with these techniques be-
cause of their inapplicability for clustering short time series.

The FTSE algorithm that we propose bears similarity to the Hunt-
Szymanski algorithm [10,21] for finding the longest common sub-
sequence between two sequences. However, Hunt-Syzmanski is
only concerned with string sequences (and not time series), sup-
ports only a limited string edit-distance model, and does none of
the grid matching that FTSE does to identify matching elements
between time series (see Section 4).

A more closely set of related work is concerned with clustering
of trajectory datasets (such as [5, 15, 30, 31]). In fact, a commonly
established way of evaluating the effectiveness of trajectory simi-
larity measures is to use it for clustering, and then evaluate the qual-
ity of the clusters that are generated [5,15,30]. Common clustering
methods such as complete linkage are often used for trajectory data
analysis [5, 15, 30], and these methods require that each trajectory
in the dataset be compared to every other trajectory. Essentially, for
a dataset of sizes, this requires approximatelys2 comparisons. As
we show in this paper for such problems, not only is the Swale scor-
ing method more effective, but the FTSE technique is also faster
than the existing methods.

4. FAST TIME SERIES EVALUATION
In this section, we introduce the FTSE algorithm. In order to bet-

ter understand why FTSE is faster than dynamic programming, we
first discuss dynamic programming and its shortcomings for evalu-
atingǫ based comparison functions. We then provide an overview



Definition

DTW(R,S) =
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∞
dist(r1, s1) + min{DTW (Rest(R), Rest(S)),
DTW (Rest(R), S), DTW (R, Rest(S))}

if m = n = 0
if m = 0 or n = 0

otherwise

ERP(R,S) =

8

>

>

<

>

>

:

Pn
1 dist(si, g),

Pm
1 dist(ri, g)

min{ERP (Rest(R), Rest(S)) + dist(r1, s1)
ERP (Rest(R), S) + dist(r1, g),
ERP (R, Rest(S)) + dist(s1, g)}

if m = 0, if n = 0

otherwise

LCSS(R,S) =

8

<

:

0
LCSS(Rest(R), Rest(S)) + 1
max{LCSS(Rest(R), S), LCSS(R, Rest(S))}

if m = 0 or n = 0
if ∀d, |rd,1 − sd,1| ≤ ǫ

otherwise

EDR(R,S) =

8

<

:

n, m
min{EDR(Rest(R), Rest(S))+subcost,
EDR(Rest(R), S) + 1, EDR(R, Rest(S)) + 1}

if m = 0, if n = 0
otherwise

Table 2: Distance Functions:dist(ri, si) = L1 or L2 norm; subcost= 0 if |r1,t − s1,t| ≤ ǫ, else subcost= 1.
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Figure 1: Two time series examples of the cylinder class
from the Cylinder-Bell-Funnel Dataset.

of the FTSE algorithm. We also discuss its operation for LCSS and
EDR, provide an example for each, and analyze the cost for each.

4.1 Dynamic Programming Overview
Time series comparison techniques such as those shown in Ta-

ble 2 are typically evaluated using dynamic programming. Two
time seriesR andS of lengthm andn, respectively, are compared
using dynamic programming in the following way: First, anm x n
two dimensional arrayA is constructed. Next, each elementri of
R is compared with each elementsj of S for all 1 ≤ i ≤ m and
1 ≤ j ≤ n. The result of the comparison ofri andsj is added to
the best cumulative score between(r1, ...,ri−1) and(s1, ...,sj−1)
and stored inA at position(i, j). Once all themn comparisons
have been made and the elements ofA are filled in, the final score
is stored inA(m, n).

For a concrete example, consider finding the LCSS score be-
tween the two time series shown in Figure 1. These two time series
are from the popular Cylinder-Bell-Funnel (CBF) synthetic data-
set [15]. The CBF dataset consists of time series from three classes,
cylinders, bells, and funnels. Elements from the same class in the
dataset are usually similar to each other. The two time series shown
in Figure 1 are both from the cylinders class.

The two dimensional array used by the dynamic programming
method for the LCSS comparison betweenR andS is shown in
Figure 2, where theǫ matching criteria is chosen as one-quarter
the standard deviation of the normalized time series (a common

ǫ value, also chosen in [5]). In Figure 2, black entries in the ar-
ray at position(i, j) indicate mismatches betweenri andsj . Gray
entries in the array indicate matches betweenri andsj that do not
contribute to the LCSS score ofR andS, and light gray colored en-
tries indicate matches betweenri andsj that are chosen by LCSS
as the best alignment betweenR andS. Notice that the light gray
colored entries run approximately from(0, 0) to (m, n) along the
grid diagonal. This makes intuitive sense – the alignment between
two similar time series should match similar parts of each series
(i.e. the front portion ofR should not match the final portion ofS).

4.1.1 Shortcomings of Dynamic Programming
When evaluating the LCSS ofR andS, many of the compar-

isons made by dynamic programming when filling in them × n
two-dimensional array are between components ofR andS that
do not match, and therefore cannot positively impact the score be-
tweenR andS. Much of the computation can be saved by finding
only those elementsri andsj of R andS that match. An exam-
ple of the positive matches betweenR andS is given in Figure 3.
This is the same two-dimensional array that is shown in Figure 2,
but the mismatching portions are no longer shown in black. The
number of squares in this figure is much smaller than before. Since
each square in the array represents work that must be done by the
algorithm as well as space that must be used, the evaluation ofǫ
threshold scoring techniques can be made more efficient. The main
observation that we make is that if only those matches in Figure 3
are considered when comparing two time series, considerable com-
putation can be saved since mismatching pairs are ignored.

4.2 Overview of FTSE
FTSE identifies the matching elementsri andsj between time

seriesR andS withoutusing a large two-dimensional array, such as
that shown in Figure 2. This is done by treatingR andS nonuni-
formly, rather than treating them in the same way as in dynamic
programming. In dynamic programming, bothR andS are treated
the same (each is lined up on one edge of the two-dimensional array
to be compared with the elements of the other sequence).

To find the matching pairs betweenR andS without comparing
eachri with everysj , FTSE indexes the elements ofR on-the-fly
into a grid. Each element ofR is placed into a grid cell. Now, to
find the elements ofR thatsj matches, the grid is probed withsj .
Only the elements ofR that reside in the same grid cell assj need
to be compared with it to see if they match.



No Match Match, not taken
Match, taken Cylinder1
Cylinder2

Match Cylinder1
Cylinder2

Figure 2: The dynamic programming computations nec-
essary to evaluate LCSS between the two cylinder exam-
ples from Figure 1. The first time series is above the com-
putation array and the second time series is on its right.

Figure 3: The matching elements as determined by LCSS
between the two time series shown in Figure 1. This is
what is needed by FTSE to perform the evaluation, in
contrast to the larger number of comparisons needed by
dynamic programming.

Once the matching pairs ofR and S are found, the score of
LCSS, EDR, or of the more general Swaleǫ scoring functions for
R andS and the best alignment between them can be found us-
ing only an array of sizen and a list containing the matching pairs
between the two sequences (in contrast to themn size array of dy-
namic programming). This is accomplished by noting that the grid
can be probed by order of increasingS position. Hence, when the
grid is probed withsj to find the matching pairs betweenR andsj ,
the matching pairs between the precedingj − 1 elements ofS with
R have already been found. Therefore, when considering previous
matches between(s1, ...,sj−1) andR for the best cumulative score
for a match betweenri andsj , there is no restriction on the previ-
ous matches fromsj . Any of the previous matches that contribute
to the best cumulative score forri andsj simply must be between
elements ofR before positioni because the previous matches are
inherently beforesj . Thus, high scores by position inR can be
indexed into a one dimensional array of sizen. The best alignment
betweenR andS can be stored using a list containing matching
pairs of elements derived from the grid.

One crucial requirement must be met for the index strategy of
FTSE to win over the dynamic programming paradigm: the num-
ber of cells in the grid must be less thanmn. Since the data is
normalized, most elements fall between -3σ and 3σ. If epsilon is
chosen as 0.5σ as is done in [29], then the grid contains 6/0.5=12
entries. Since time series are not usually more than 2 dimensional
and typically of length considerably greater than 12, the grid size is
typically much smaller thanmn.

4.3 Finding Matches
In this section, we describe how the novel Fast Time Series Eval-

uation method finds matching pairs between elements ofR and el-
ements ofS. FTSE measures the similarity between time series
R andS with threshold valueǫ. Using ǫ, each pair of elements
ri ∈ R andsj ∈ S can be classified as either a match or a mis-
match. The elementsri andsj are said to match if|ri − sj | < ǫ

in all dimensions. Otherwise, these two elements ofR andS are a
mismatch.

The first step in the FTSE algorithm is to find all intersecting
pairs between elements ofR and elements ofS. The technique
used to obtain these intersecting pairs is shown in Algorithm 1.
First, a grid of dimensionalityd is constructed (line 4 of the algo-
rithm). The edge length of each element of the grid isǫ.

In lines 6 to 8 of the algorithm, a Minimum Bounding Rectangle
(MBR) is constructed for each elementri of R. This MBR has
a side length of2ǫ in each dimension, and its center is the point
ri. This construction method ensures thatri overlaps with no more
than3d elements in the grid.

The MBR construction is illustrated in Figure 4 for one and two
dimensions. In one dimension, the MBR ofri is flattened into a
line and intersects with 3 grid elements, as shown in Figure 4a. In
two dimensions, the MBR ofri intersects with 9 grid elements, as
shown in Figure 4b.

A FIFO queue is associated with each cellg of the grid. The
queue for eachg is used to maintain a reference to allri that are
within ǫ of g, in order of increasingi. This is done in line 9 of
Algorithm 1.

The intersections betweenR andS are found in lines 11-18 of
Algorithm 1. The grid cellg that contains eachsj ∈ S is located.
The elements ofR in the queue associated withg are compared
with sj to see if they are withinǫ of one another. For each element
rk of R that is withinǫ of sj , the index ofrk, i.e. k, is inserted into
the intersection listLj of sj . The entries ofLj are also maintained
in order of increasingk.

Note that the size of the grid is likely to be small for the follow-
ing reason: Since data is normalized with mean zero and standard
deviationσ = 1, most data will fall between -3 and 3. If theǫ
value is not exceptionally small relative toσ (which is common
– for example, [29] uses0.5σ), the size of the grid is reasonably
small. Outliers beyond -3 or 3 are rare and can be captured into an
additional grid cell.



Algorithm 1 Build Intersection List.
1: Input: R, m, S, n, ǫ
2: Output: Intersection ListL
3: Local Variables: Grid G, MBR M
4: Initialize G: each grid element contains a queue that stores references

to all intersecting elements.
5: for i = 1 tom do
6: for k = 1 tod do
7: Mk

i =(rk
i -ǫ, rk

i +ǫ)
8: end for
9: InsertMi into the queue associated with each grid squareg of G

whichMi intersects.
10: end for
11: for i = 1 ton do
12: Obtain queueqg for grid squareg in whichsi lies.
13: for k ∈ qg do
14: if |si − rk| < ǫ in all dimensionsthen
15: insertk into Li

16: end if
17: end for
18: end for

If the dimensionality is unusually high, the grid may be built on
a subset of the overall dimensions since, as is shown in the next
section, the number of matching pairs between time seriesR and
S decreases quickly as the dimensionality grows. This way, the
technique can still be applicable in higher dimensional spaces.

4.3.1 Cost Analysis of Match Finding
The cost of finding the matches using the grid technique of FTSE

is O(P + m + n), whereP is the total number of comparison
operations between the elements ofR and the elements ofS made
when probing the grid,m is the length ofR, andn is the length of
S. The cost to insert each element ofR into a grid isO(m), and
the cost to probe the grid with each element ofS is O(n). There
areO(P ) total comparisons betweenR andS.

The total number of probe comparisons betweenR andS will
be similar to the total number of matchesM , both of which are
determined by the size ofǫ. (An element ofS will match all ele-
ments that are withinǫ in each dimension. It will be compared in
the probe phase with elements that are up to2ǫ away from it in each
dimension, and on average within1.5ǫ in each dimension, since the
element will be mapped to 3 grid cells in each dimension that are
each of sizeǫ.) While this cost isO(mn) in the worst case, in the
general case,P will be much less thanmn for commonǫ values.

To obtain an average case analysis, we consider two 1 dimen-
sional sequencesR andS whose elements are chosen uniformly
from the unit space in 1 dimension. OnceR andS are normalized,
they will be distributed normally with mean 0 and variance 1. The
conditional density function of the standard normal random vari-
ableZ is provided in Equation 1. SinceS is normalized, the values
of its elements follow a normal distribution and we can consider the
value ofsj to be a normal random variable. The probability that a
standard normal random variableZ lies between two valuesa and
b, wherea < b, is given by Equation 2. Hence, the probability that
the normalized value ofri, N(ri), lies within ǫ of the normalized
value ofsj , N(sj), is given in Equation 3.

Φ(z) =
1

2
√

2π

Z z

−∞

e−u2/2 du (1)

P [a < Z ≤ b] = Φ(b) − Φ(a) (2)

P [N(ri) − ǫ < N(sj) ≤ N(ri) + ǫ]

= Φ(N(ri) + ǫ) − Φ(N(ri) − ǫ) (3)

ri
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i
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i
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Figure 4: A depiction of R sequence elements with MBRs
mapped to a (a) one-dimensional and (b) two-dimensional grid.

The expected number of matchesM betweenri and then ele-
ments ofS is equal to the probability that a particular element of
N(S) matches with a valueN(ri) multiplied byn. This is shown
in Equation 4. We can then find the expected number of matches
betweenR andS by summing over allm, in Equation 5. To obtain
a solution in terms ofmn, we can multiply by 1 (m/m) in Equa-
tion 6. We can approximate this summation (since we want an esti-
mate in terms ofmn) numerically by pickingm values uniformly
from the unit space for eachri. We use two values forǫ, 0.25σ
and 0.50σ, which are commonly usedǫ values in [5] and [29], re-
spectively. Forǫ = 0.50, we obtain between0.26mn and0.27mn
matches betweenR and S, and for ǫ = 0.25, we obtain about
0.13mn matches betweenR andS. This is approximately a 4-7X
improvement over dynamic programming.

E[M |ri] = n(Φ(N(ri) + ǫ) − Φ(N(ri) − ǫ)) (4)

E[M ] = n

m
X

i=1

(Φ(N(ri) + ǫ) − Φ(N(ri) − ǫ)) (5)

E[M ] = mn
m

X

i=1

1

m
(Φ(N(ri) + ǫ) −

Φ(N(ri) − ǫ)) (6)

The expected number of probesP can be found by replacingǫ in
Equation 6 with1.5ǫ, the average maximum distance away fromsj

that elements inR can be and still be compared withsj in the probe
phase. Doing so produces about0.4mn probe comparisons when
ǫ = 0.50 and about0.2mn probe comparisons whenǫ = 0.25.
This is an improvement of 2.5-5X over dynamic programming.

To obtain the average case analysis for 2 dimensions, we con-
sider 2 dimensional time seriesR andS whose elements are drawn
independently from the unit space. The analysis then is similar to
the analysis above. The main difference is thatN(ri) must match
N(sj) in both dimensions. Since the values ofri andsj in each di-
mension are independent, we can arrive at Equation 7 by perform-
ing the same analysis as we did in the 1 dimensional case. If we ap-
proximate the number of matches in two dimensions numerically,
we obtain between0.06mn and0.07mn matches whenǫ = 0.50
and about0.02mn matches whenǫ = 0.25. This is about a 14-50X
improvement over the dynamic programming, which producesmn
comparisons.

E[M ] = mn
m

X

i=1

1

m
[(Φ(N(r1

i ) + ǫ) − Φ(N(r1
i ) − ǫ))

∗ (Φ(N(r2
i ) + ǫ) − Φ(N(r2

i ) − ǫ))] (7)



Algorithm 2 LCSS Computation.
1: Input: R, m, S, n, ǫ, IntersectionsL
2: Output: score
3: Local Variables: Array matches
4: Initialize matches[0] = 0 andmatches[1 to n] = m + 1.
5: max=0;
6: for j = 1 ton do
7: Let c, a pointer into thematches array, =0.
8: Let temp store an overwritten value frommatches.
9: temp=matches[0].

10: for k ∈ Lj do
11: if temp < k then
12: while matches[c] < k do
13: c = c + 1.
14: end while
15: temp=matches[c].
16: matches[c] = k.
17: if c > max then
18: max = c
19: end if
20: end if
21: end for
22: end for
23: score = max.

The expected number of probesP in 2 dimensions can be found
by replacingǫ in Equation 7 with1.5ǫ, the average distance away
from sj that elements inR can be and still be compared with it
in each dimension in the probe phase. Doing so produces about
0.16mn probe comparisons forR andS whenǫ = 0.50 and about
0.05mn probe comparisons whenǫ = 0.25. This is an improve-
ment of 6-20X over dynamic programming for 2 dimensions.

4.4 Computing LCSS using FTSE
Once the intersections are found, the LCSS score for the pair

R and S can be evaluated using Algorithm 2. An array called
matches is maintained that stores at positionmatches[i] the small-
est valuek for whichi matches exist between the elements ofS and
r1, ... ,rk (line 4).

The values inmatches are filled by iterating through the el-
ements ofS (line 6). Variablec is an index intomatches and
temp stores an overwritten value from matches. For each of the
intersections betweenrk andsj (line 10),k is checked against the
value oftemp (line 11). Initially, temp is 0 (line 9), so the algo-
rithm proceeds to line 12. Next,c is incremented until the value of
matches[c] is not less thank. This indicates that there arec − 1
matches betweens1, ... ,sj−1 andr1, ..., rmatches[c−1]. Adding
the match betweensj andrk makesc matches.

The old value ofmatches[c] is stored totemp (line 15) and
matches[c] is updated tok (line 16). The maximum possible num-
ber of matches is stored inmax and updated ifc is greater than it
(lines 17-19). The value oftemp is updated because subsequent
intersections betweenR andsj cannot make use of the intersection
betweenrk andsj . This is because theLCSS technique only al-
lowssj to be paired with onerk so the previous value is retained as
a stand in for the oldmatches[c] for the next loop iteration. At the
end of the algorithm, theLCSS score is stored inmax (line 23).

4.4.1 Example for LCSS
To demonstrate the operation of FTSE for LCSS, letR ber1 =

2.0, r2 = −0.5, r3 = 1.0, r4 = −2.2, andr5 = −0.4, and letS
bes1 = −0.4, s2 = −2.1, s3 = 1.4, s4 = −1.8. Let ǫ = 0.5.

The matching phase of Algorithm 1 progresses by generating a
one dimensional grid in which each grid cell has a side length of
0.5 (theǫ value). Assume that grid boundaries occur at−2.5, −2,
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Figure 5: The matches array during FTSE LCSS evaluation.

−1.5, −1, −0.5, 0, 0.5, 1, 1.5, 2, and2.5 (line 4 of Algorithm 1).
Next, the algorithm generates MBRs for each element ofR (lines
5 to 8). The MBRs for eachri are (1.5, 2.5) forr1, (-1, 0) forr2,
(0.5, 1.5) forr3, (-2.7, -1.7) forr4, and (-0.9, 0.1) forr5,

Next, the algorithm inserts eachri into the grid (line 9). For
example, the grid cell with boundaries(−0.5, 0) contains bothr2

andr5. The grid is then probed with eachS value (lines 11-18).
First, the grid is probed withs1. The cell in which it lies, (-0.5,0),
contains two MBRs – namelyr2 andr5. Both elements ofR are
compared withs1. Since they are both withinǫ of s1, 2 and 5 are
inserted into intersection listL1, in that order.

Then, the grid is probed withs2. The grid in which it is located,
(−2,−2.5), contains only one element,r4. Sincer4 ands2 are
within 0.5 of one another, 4 is inserted intoL2. In a similar way,
the grid is probed withs3 ands4 to produce a match withr3 for s3

and withr4 for s4.
Next, the operation of Algorithm 2 progresses. The initial state

of thematches array is shown in Figure 5. The algorithm begins
processing the intersection list ofs1. The first value in the inter-
section list fors1 is 2 (line 10 of the algorithm), sinces1 intersects
with r2.

Sincematches[0] < 2 < matches[1] (lines 12-14), the great-
est number of matches possible so far is 1, so thec pointer is set
to 1. Hence, the value oftemp is updated to the old value of
matches[1] (line 15), which is 6 andmatches[1] is updated to
2 (line 16). The value ofmax is updated to 1 (lines 17-18). The
new status ofmatches is shown in Figure 5. The next value in the
intersection list fors1 is 5. Since 5 is less thantemp (line 11), this
intersection cannot be used.

After the processing of thes1 intersection list,c andtemp are
reset for the intersections ofs2 (lines 7-9). The first and only value
in the intersection list fors2 is 4 (line 10). Sincematches[1] <
4 < matches[2] (lines 12-14),c is set to 2. The value oftemp is
updated tomatches[2] (line 15), andmatches[2] is updated to 4
(line 16). The value ofmax is also updated to 2 (lines 17-18).

The intersection list fors3 is processed in the same way. Since its
only match is withr3, and becausematches[1] < 3 < matches[2],
the value ofmatches[2] is overwritten with 3 (see Figure 5). The
intersection list ofs4 is also processed, and sinces4 intersects with
r4, andmatches[2] < 4 < matches[3], the value ofmatches[3]
is updated to 4, and the max value becomes 3.

Since all theS points have been processed, the algorithm termi-
nates. The best possible number of matches betweenR andS is
stored inmax, which is 3. This is the LCSS score.

4.4.2 Cost Analysis of FTSE computing LCSS
The cost of FTSE for computing LCSS isO(M + Ln), where

M is the number of matches (discussed in Section 4.3.1) andL is
the length of the longest matching sequence betweenR andS (i.e.
the LCSS score). The proof of this is straightforward and hence
is omitted (essentially, each matching pair is considered, and the



length of the longest match is stored in the array and is iterated
over for each elementn of S). In the worst case, this length will
be equal to the length ofmin(m, n) (since the LCSS score cannot
exceed the length of either sequence), which could be as long asm,
making the overall costO(mn). However, this worst case occurs
only when all elements ofR andS are matched in the LCSS score,
which is not expected to happen often, even for sequences that are
quite similar.

To obtain an average case analysis for the size ofL in 1 dimen-
sion, we again assume time seriesR and S have their elements
drawn uniformly from the unit space. We numerically approximate
L by generating one thousand random versions ofR andS, each
of length one thousand. We then measure the average, maximum,
and minimum length ofL. For ǫ = 0.25, the average size ofL
is 0.52m, the maximum size is0.54m, and the minimum size is
0.51m. For ǫ = 0.50, the average size ofL is 0.66m, the max-
imum size is0.68m, and the minimum size is0.64m. The small
variation in the sizes ofL show that this average case analysis pro-
duces repeatable results. It also shows a 1.5-2X improvement over
dynamic programming’smn computation to find the best align-
ment ofR andS.

We obtain an average case analysis for 2 dimensions through
numerical approximation as well. Forǫ = 0.25, the average size
of L is 0.23m, the maximum size is0.24m, and the minimum
size is0.22m. For ǫ = 0.50, the average size ofL is 0.41m, the
maximum size is0.43m, and the minimum size is0.39m. The
smaller size ofL in two dimensions is becauseri must matchsj

in two dimensions instead of just 1, which produces fewer matches
between eachri and the elements ofS (see Section 4.3.1). This
analysis shows a 2.5-4X improvement over dynamic programming.

4.5 Computing EDR using FTSE
Unlike LCSS, EDR does not reward matches, but rather penal-

izes gaps and mismatches, so the FTSE algorithm changes slightly.
The maximum possible score for EDR(R,S,ǫ) is 0 if R andS are
nearly identical. The worst possible score is−1∗ (m+n), if all m
elements ofR and alln elements ofS incur a gap penalty. A mis-
match penalty of -1 between elementsri of R andsj of S can thus
be viewed as a savings of 1 over two mismatches (which together
have a cost of -2 versus the -1 mismatch cost). A match betweenri

andsj has a score of 0, which is a savings of 2 over the gap penalty
costs. FTSE for EDR thus scores a match with a+2 reward and a
mismatch with a+1 reward, and considers the baseline score to be
−1 ∗ (m + n) instead of zero.

The FTSE algorithm for EDR is presented in Algorithm 3. The
matches array is initialized (line 4 of Algorithm 3) similar to Al-
gorithm 2. Since match rewards are being scored with a 2, the
array needs to be twice as long. Variablesmax (line 5),c (line 7),
andtemp (line 8) are the same as before. Variabletemp2 stores an
overwritten value of thematches array, similar totemp. A second
such temporary holder is needed because match rewards are scored
with a+2, hence two values can be overwritten on an iteration.

Most of FTSE for EDR is the same as FTSE for LCSS, such
as iterating through the elements ofS (line 6) and checking each
element of the intersection list for the appropriatematches value
(lines 10-12).

Mismatches are handled by lines 13-19. Variabletemp stores the
value ofmatches[c− 1]. Sincesj can obtain a mismatch with any
element ofR, each value ofmatches must be incremented (line
15). The overwritten value ofmatches is stored back intotemp
(lines 14, 16, 18). Line 13 checks that a previous element has not
matched at positionc of matches (producing a higher score than a
potential mismatch) and that the length ofR has not been exceeded.

Algorithm 3 EDR Computation.
1: Input: R, m, S, n, ǫ, IntersectionsL
2: Output: score
3: Local Variables: Array matches
4: Initialize matches[0] = 0 andmatches[1 to 2n] = m + 1.
5: max=0;
6: for j = 1 ton do
7: Let c, a pointer into thematches array, =0.
8: Let temp store an old value frommatches,=matches[0]
9: Let temp2 store an old value frommatches,=matches[0]

10: for k ∈ Lj do
11: if temp < k then
12: while matches[c] < k do
13: if temp < matches[c] − 1 andtemp < m − 1 then
14: temp2 = matches[c]
15: matches[c] = temp + 1
16: temp = temp2
17: else
18: temp = matches[c]
19: end if
20: c = c + 1.
21: end while
22: temp2=matches[c].
23: matches[c]=temp + 1.
24: temp=matches[c + 1].
25: if matches[c + 1] > k, then matches[c + 1] = k
26: if max < c + 1, then max = c + 1
27: c = c + 2.
28: else iftemp2 < k andk < matches[c] then
29: temp2 = temp
30: temp = matches[c]
31: matches[c] = k
32: if max < c, then max = c
33: c = c + 1
34: end if
35: end for
36: for j = c to max + 1 do
37: if temp < matches[j] − 1 andtemp < m − 1 then
38: temp2 = matches[j]
39: matches[j] = temp + 1
40: temp = temp2
41: if max < j, then max = j
42: else
43: temp = matches[j]
44: end if
45: end for
46: end for
47: score = max − (m + n).

Lines 22-27 handle a match. The previous value ofmatches[c]
is stored intemp2 (line 22) sincematches[c] will be updated with
a mismatch score (line 23);matches[c+1] is stored intemp (line
24) since a match is recorded atmatches[c + 1] (line 25). The
maximum score andc counter are updated in lines 26 and 27 re-
spectively.

Lines 28-34 handle the case when the next matching element in
intersection listLj is greater than the previous element by exactly
1. For example, ifsj matches elementsrk andrk+1. In this case,
the match withrk+1 will not necessarily exceedtemp, the previ-
ously updatedc−1 value, but might exceedtemp2, the previously
updatedc − 2 value. The update code is similar to lines 22-27
already described.

Lines 36-45 handle the case when eithersj has no matches inR
or whensj matches elements only near the beginning ofR. In this
case,sj could obtain mismatch scores with the remaining portions
of R. This section of Algorithm 3 is similar to the already described
lines 13-19.
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Figure 6: The matches array during FTSE EDR evaluation.

4.5.1 Example for EDR
We show the operation of FTSE evaluating EDR with the same

example as was used for LCSS. Following the intersection list gen-
eration of Algorithm 1 already discussed, Algorithm 3 begins by
initializing matches. This initialized state is seen in Figure 6.

The first match is obtained from the intersection list (line 10 of
the algorithm). This is the intersection betweenr2 ands1, hence
k = 2. Sincematches[0] < 2 < matches[1], c is set to 1 in
lines 13-20. temp and temp2 are both set to 11 (lines 22 and
24). matches[1] is set to 1 becauses1 can mismatch withr1.
matches[2] is set to 2 becauser2 matches withs1. Nothing is
done for the match betweenr5 ands1. The updatedmatches ar-
ray is shown in Figure 6.

The intersection list fors1 is now empty, so FTSE proceeds to
line 36. c is 3 andmax + 1 is 3, so the loop is taken exactly
once. Theif condition at line 37 fails, so no changes are made to
matches.

Next, the intersection betweenr4 ands2 is processed, sok = 4.
Sincematches[2] < 4 < matches[3], c is set to3 by lines 12-
20. No changes are made to thematches array by lines 14-16.
Hence, the else condition (line 18) is taken for bothc = 1 and2
andtemp = 2. matches[3] is set totemp + 1 = 3 (line 23) and
matches[4] is set to 4 (line 25) sincek = 4. max is updated to
4 (line 26) andc is set to 5 (line 33). Again, lines 36-45 make no
changes tomatches.

The intersection betweens3 andr3 is next considered. As shown
in Figure 6, The match betweens3 andr3 can use the match be-
tweens1 andr2 at position 2 ofmatches. So, the value ofk (3) is
recorded at position 4 ofmatches. When processing fors3 reaches
line 36,temp is 4,c is 5, andmax is 4. Hence, lines 37-40 record
a value of 5 in positionmatches[5]. This is becauses3 builds upon
ther4 ands2 match with a mismatch between itself andr5.

Finally, the intersection betweenr4 ands4 is processed. Since
the intersection betweenr3 ands3 has resulted in amatch[4] value
of 3, line 23 will setmatch[5] to 4, and line 25 will setmatch[6]
to a value of 4. This means thatmax is also set to 6 (line 27). The
final score achieved (line 47) is−1 ∗ (5 + 4) + 6 = −3.

4.5.2 Cost Analysis of FTSE computing EDR
The cost of FTSE when evaluating EDR isO(M + Tn), where

M is the number of matches betweenR andS, n is the length of
time seriesS, andT is the value ofmax in Algorithm 3. This
complexity results from iterating over thematches array for each
of then elements ofS up tomax places in the array. The value
of max is bounded betweenmin(m, n) and2min(m, n). This is
because the value ofmax is increased once for each mismatch and
two times for each match that occurs in the final alignment between
R andS. While this is stillO(mn) in the worst case, FTSE for
EDR still achieves efficiencies relative to dynamic programming
since it only needs to store the number of matching elementsM

betweenR andS. This leads to better performance, which is later
quantified experimentally in Section 6.2.

4.6 Maintaining the Best Matching Pairs
The FTSE algorithm for either LCSS or EDR can be easily mod-

ified to find not only the best score between two time series, but
also the best sequence of matching pairs that produce that score.
Maintaining the best sequence of matching pairs is useful for appli-
cations that seek to compute the best alignment between two time
series. We now discuss how to modify FTSE for LCSS; a similar
discussion for EDR is omitted.

The matching pairs found in Algorithm 1 are maintained in a list
of intersections. The list element that contains a particular match
can be linked to the previous best set of list elements when the
match is considered in line 10 of Algorithm 2 since each match
contributes to the best score in at most one position. The best align-
ment can be found by maintaining an array of the list elements that
contain the matching pairs. Each array position corresponds to the
last match in the sequence, with the remaining matches chained out
behind it.

The following three lines can be added to Algorithm 2 between
lines 16 and 17 to maintain the record of the best alignment (where
lk is the list element for matchk):

alignment[c] = lk.
if c > 0 then lk.next = alignment[c − 1].
else lk.next = 0.

The alignment array is of lengthn, similar to matches. It
is initialized to all null entries. At the end of the algorithm, the
best sequence is maintained in thealignment array, and it can be
returned to the user.

5. THE SWALE SCORING MODEL
The FTSE algorithm can be used to evaluate a broad class ofǫ

threshold value based scoring models, of which LCSS and EDR are
two examples. This broader class of scoring models includes a new
Swale scoring model, which we present below. The Swale scoring
model improves over previous approaches in several ways. First,
it allows for a sequence similarity score to be based on both match
rewards and mismatch penalties. Second, it allows for the match
reward and gap penalties to be weighted relative to one another.
These weights also allow a user or domain expert with particular
knowledge of a certain area to tune the distance function for opti-
mal performance instead of having only one technique for all data
domains. If the user has no such domain-specific knowledge, a
training dataset can be used to automatically learn the weights (as
we do in all the experiments presented in this paper).

More formally, the Swale distance function is defined as:

DEFINITION 5.1. Let R and S be two time series of length m
and n, respectively. Let the gap cost begapc and let the match
reward berewardm. ThenSwale(R, S) =

8

>

>

>

>

>

<

>

>

>

>

>

:

n ∗ gapc,
m ∗ gapc,
rewardm+

Swale(Rest(R), Rest(S)),
max{gapc + Swale(Rest(R), S),
gapc + Swale(R, Rest(S))}

if m = 0
if n = 0

if ∀d, |rd,1 − sd,1| ≤ ǫ

otherwise

Next we explain why Swale offers a better similarity measure
compared to the best existingǫ methods, namely LCSS and EDR
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Figure 7: Time Series Examples

[5, 30]. For this illustration, consider the sequences shown in Fig-
ure 7. SequenceA contains six elements. SequenceB has the
same six elements asA, but has three additional “noise” elements
embedded in it. SequenceC contains ten elements, and sequence
D has the same ten elements with three additional “noise” elements
in it. Note that the number of mismatched elements betweenC and
D is the same as that betweenA andB.

Both EDR and LCSS lose some information when scoring these
sequences. EDR scores gaps and mismatches, but does not reward
matches. In this sense, it only measures dissimilarity between two
sequences. For example,A andB receive the same score asC
andD even thoughC andD have nearly twice as many matching
elements.

LCSS rewards matches, but does not capture any measure of dis-
similarity between two sequences. For example, the LCSS tech-
nique scoresC andD identically toC scored with itself, which is
not intuitive.

Swale is similar to LCSS because it rewards matches between
sequences, but it also captures a measure of their dissimilarity by
penalizing gap elements. Swale allowsC andD to obtain a higher
score thanA andB because they have more matching elements
while still penalizing them for gap costs.

The Swale scoring function can be evaluated with the same FTSE
algorithm described for LCSS by simply changing the last line of
Algorithm 2 to score = max ∗ rewardm + gapc ∗ (m + n −
2max).

6. EXPERIMENTS
In this section, we experimentally evaluate the performance of

FTSE, and the accuracy of Swale.

6.1 FTSE Experimental Evaluation
In this section, we evaluate the effectiveness of the FTSE tech-

nique evaluating both LCSS and EDR. Since Swale is evaluated
with only a small modification to FTSE for LCSS, its performance
is identical to LCSS with FTSE. All experiments are run on a ma-
chine with a 1.7 GHz Intel Xeon, with 512MB of memory and a
40GB Fujitsu SCSI hard drive, running Debian Linux 2.6.0. We
compare the performance of FTSE against DTW, ERP, LCSS, and
EDR. Each technique is evaluated using a traditional, iterative dy-
namic programming-style algorithm.

The performance of FTSE is dependant on theǫ value, since this
value determines which elements ofR andS are close enough to
one another to be matched. The emphasis of our work is not on
describing how to pick anǫ value for either LCSS or EDR, but to
demonstrate the effectiveness of FTSE for reasonable choices of
ǫ. Consequently, we show results with anǫ value of0.5σ, where
σ is the standard deviation of the data (since we are dealing with
normalized data,σ is 1). We have chosen thisǫ value since it was
shown to produce good results in [29].

Method CM ASL CBF Trace
DTW 53.23 1.31 1.94 521.93
ERP 77.43 1.76 2.68 553.73
LCSS 42.74 0.93 1.41 386.09
EDR 43.69 1.01 1.41 390.87
SC-BDTW 10.55 0.78 0.71 104.91
SC-BLCSS 14.61 0.80 0.88 132.43
I-Par 15.44 0.86 0.90 141.05
FTSELCSS 5.13 0.78 0.74 80.80
FTSEEDR 6.27 0.82 0.85 99.17

Table 3: Time in seconds to cluster a given dataset, using tech-
niques that compute the actual alignment.

Method CM ASL CBF Trace
DTW 35.23 1.20 1.78 329.17
LCSS 14.24 0.84 1.16 129.42
SC-BDTW 7.05 0.76 0.74 72.91
SC-BLCSS 6.40 0.74 0.72 66.95
FTSELCSS 2.69 0.72 0.61 48.28
FTSESC−B 2.26 0.70 0.60 40.74

Table 4: Time in seconds to cluster a given dataset, usingO(n)
storage techniques that do not compute the alignment.

In our first experiment we show the average time to perform
the similarity comparisons for a complete linkage clustering eval-
uation. Complete linkage clustering of time series was used in
both [30] for LCSS and in [5] for EDR. For a dataset withk time
series, each clustering run involves computing approximatelyk ×
(k − 1) time series similarity scores.

To perform the complete linkage clustering, our evaluation uses
the same datasets used in [30] and in [5], which includes the Camer-
amouse (CM ) dataset [8] and the Australian Sign Language (ASL)
dataset from the UCI KDD archive [28]. Since both of these data-
sets are two dimensional, we also experiment with the popular
Cyliner-Bell-Funnel (CBF) dataset of [15] and theTrace dataset
of [24]. The CBF dataset contains three classes (one each for the
cylinder, bell, and funnel shapes) and is synthetically generated.
We use 10 examples from each class in the clustering. The Trace
dataset is a four class synthetic dataset that simulates instrument
failures inside of a nuclear power plant. There are fifty examples
for each class.

The CM dataset consists of 15 different time series obtained from
tracking the fingertips of people in two dimensions as they write
words. Three different people wrote out five different words. This
gives a total of five distinct class labels (one for each word) and
three members for each class.

The ASL dataset contains examples of Australian Sign Language
signs. The dataset contains time series in two dimensions for words
that are signed by the user, and each word is signed five different
times. We choose to use the same 10 word examples of [30]. This
gives us a dataset with 10 classes with 5 time series per class.

We also compare with the Sakoe-Chiba Band (SC Band) and
Itakura Parallelogram techniques for warp-restricting DTW. A re-
striction value of 10 percent is used in [34], so we also use this
value. A similar technique to the SC Band for LCSS is described
in [30], which sets the restriction value to 20 percent. The Itakura
Parallelogram is referred to as (I-Par).

The results for the complete linkage clustering test is shown in
Table 3. For the CM data set, FTSE is faster than the dynamic
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Figure 8: Cost of computing similarity
scores v/s time series length. (CLIVAR
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parison with warp-restricting methods.
(CLIVAR dataset)

Figure 10: Cost of computing similarity
scores v/s time series length; compari-
son with methods that do not compute
the actual alignment. (CLIVAR dataset)

programming methods by a factor of 7-8 and faster than the warp-
restricting techniques by a factor of 2-3. FTSE is faster than DP by
a factor of 4-5 and is nearly twice as fast as the SC Band evaluating
LCSS for the Trace dataset. FTSE also consistently performs better
than dynamic programming on the other datasets. Note that the
performance advantage achieved using FTSE relative to the various
DP techniques is not as large for ASL and CBF as it is for the CM
and Trace datasets. This is because the average sequence length
of the ASL and CBF sequences are 45 and 128 respectively, while
the average length of the CM is 1151 and the Trace is 255. This
indicates that FTSE performs better than DP as length increases,
which we also show in the next experiment. The Trace dataset
also takes longer to evaluate than others datasets because it contains
many more sequence examples (200) than CM (15), ASL (50), or
CBF (30).

We also show results for both the DP and SC Band techniques
usingO(n) storage techniques that produce the best score but do
not yield the best alignment between the two sequences in Table 4.
Essentially, since theith column of themn matrix depends only
on thei − 1th column, 2 column arrays can be used. Similarly,
it is a simple extension for FTSE to show that the list of intersec-
tions need not be materialized if an alignment between the two time
series is not required; we have also implemented this version of
FTSE (FTSELCSS in the table). FTSE can also be implemented
with a warp-restriction (in essence, to only consider matches in the
same narrow band as the SC Band technique). We have also imple-
mented this version with a restriction value of 20 percent to show
that FTSE (FTSESC−B in the table) can obtain the same score as
the SC Band, if desired. In these tests, we limit results to LCSS and
DTW evaluation In these tests, FTSE is faster than DP for LCSS
by a factor of 7 and by more than 2X when restricting the warping
window for the 2 dimensional CM dataset and by a factor of 2.5
over exact DP for LCSS and by a factor of 1.5 when restricting the
warping window when evaluating the 1 dimensional Trace dataset.

The second experiment evaluates the effectiveness of the FTSE
algorithm as the time series length varies. For this experiment,
we use the CLIVAR-Surface Drifters trajectory dataset from [22],
which contains climate data obtained in 2003 from free-floating
buoys on the surface of the Pacific Ocean. This data contains the
longitude and latitude coordinates for each buoy. The time series
in this data set vary in length from 4 to 7466 data points.

From the CLIVAR-Surface Drifters dataset, subsets of data are
produced such that each subset contains time series of similar length
(all time series in a subset are within 10% of the average). For ex-

perimentation, subsets of 5 time series each are chosen with the
following average time series lengths: 349, 554, 826, 1079, 1739,
2142, and 3500. As before, we report the time needed to perform
k × (k − 1) comparisons (the same as was done in the clustering
experiments). Since each subset contains 5 time series, this is the
time to perform 20 time series comparisons. The results for this
experiment are shown in Figures 8, 9, and 10.

Figure 8 shows the results for FTSE evaluating LCSS (labeled
FTSEL) and EDR (FTSEE). It also shows DTW, ERP, LCSS, and
EDR evaluated using dynamic programming. As can be seen in
this figure, FTSE is nearly an order of magnitude faster than the
dynamic programming techniques. The figure also shows that the
performance advantage of FTSE over the DP techniques increases
with sequence length.

Figure 9 presents results for FTSE and the Sakoe-Chiba Band
(SCD evaluating DTW and SCL evaluating LCSS) and Itakura Par-
allelogram (IPAR) warp-restricting techniques. FTSE is about twice
as fast as the Sakoe-Chiba Band and 2-3 times faster than the Itakura
Parallelogram technique. SC for LCSS is slower than for DTW
because the warping restriction needed for good results (20%) for
LCSS is larger than for DTW (10%).

Figure 10 presents results for theO(n) storage techniques al-
ready discussed. FTSE (FTSEL in the figure) is generally about
3 times faster than the DP methods (LCSS and DTW) and almost
twice as fast when the warp-restricted version of FTSE (FTSESC)
is compared with the SC Band technique (SCL and SCD).

In summary, compared to existing methods that compute the ac-
tual alignment,FTSE is up to 7-8 times faster than popular dy-
namic programming techniques for long sequences and 2-3 faster
than warp-restricting techniques, while providing an exact answer.

6.2 Experimental Cost Analysis of FTSE
The complexity and average case cost of FTSE have already been

analyzed in Sections 4.3.1 and 4.4.2. In this section, we analyze the
experimental cost of FTSE to show why it performs better than the
other techniques that produce the best alignment, using the CM
dataset as an example.

FTSE is more efficient for two reasons: it performs fewer op-
erations than the competing techniques and it requires less space,
which improves the algorithm’s memory and cache performance.

The number of operations performed by FTSE is dependent on
two principle components: the number of matches between ele-
ments ofR and elements ofS obtained by Algorithm 1 and the
number of reads or writes to thematches array in Algorithm 2.



For the CM dataset, there are about 120 thousand matching pairs
on average between any two sequencesR andS (since the average
length of each time series is 1151 elements, there are a total possi-
bility of 1151∗1151 = 1.32 million) and about 300 thousand reads
and writes to thematches array. This means that FTSE performs
about 420 thousand operations on the CM dataset versus the 1.32
million for DP, which is less than one-third.

The amount of space used by FTSE is dependant on the number
of matching pairs generated by Algorithm 1. Thematches array
and the grid (which contains fewer than 200 grid cells for CM) are
of negligible size. For the CM dataset, the number of matching
pairs is approximately 120 thousand. The equivalent DP algorithm
writes approximately 1.32 million elements.

To test that this considerable space difference actually results in
cost savings, we modified Algorithm 2 by allocating an amount
of space equivalent to that of the DP algorithm and adding a line
between lines 13 and 14 of Algorithm 2 that randomly writes to an
element of the allocated space. The new algorithm attains improved
performance only from the saved operations, not from memory or
cache efficiency. The time this new FTSE takes to cluster the CM
dataset is 12.12 seconds (before it was 5.13). This is expected,
since DP for LCSS takes 42.74 seconds and the ratio of operations
between FTSE and DP is420/1320 and42.74∗420/1320 = 13.59
seconds.

6.3 Evaluation of the Swale Scoring Model
In this section, we evaluate the effectiveness of the Swale scoring

model compared to existing similarity models. For this evaluation,
we test the ability of the model to produce high-quality clusters.
(Following well-established methodology [5,15,30].)

For our evaluation, we used the Cameramouse (CM) dataset [8],
and the Australian Sign Language (ASL) dataset (described in Sec-
tion 5.1). In addition, we also obtained an additional dataset from
the UCI KDD archive [28] called the High Quality ASL. This data-
set differs from the ASL dataset in the following way: In the ASL
dataset, several different subjects performed the signing, and lower
quality test gloves were used. The High Quality ASL (HASL)
dataset consists of one person performing each sign 27 times us-
ing higher quality test gloves. Details regarding these differences
can be found at [28]. We do not provide detailed results for the
Trace and CBF datasets because these datasets have a small num-
ber of classes (4 and 3, respectively) and hence do not offer as much
room for differentiation as the ASL datasets (all techniques tested
on Trace and CBF performed nearly identically).

In the evaluation we perform hierarchical clustering using Swale,
DTW, ERP, LCSS, and EDR. (We omit a comparison with the Eu-
clidean distance, since it has been generally shown to be less ro-
bust than DTW [5, 13, 30].) Following previous established meth-
ods [5,15,30], for each dataset, we take all possible pairs of classes
and use the complete linkage algorithm [12], which is shown in [30]
to produce the best clustering results.

Since DTW can be used with both the L1-norm [4] and the L2-
norm [17] distances, we implement and test both these approaches.
The results for both are similar. For brevity, we present the L1-
norm results.

The Swale match reward and mismatch penalty are computed
using training datasets. The ASL dataset in the UCI KDD archive
contains time series datasets from several different signers placed
into directories labeled by the signer’s name and trial run number.
We selected the datasets labeled adam2, john3, john4, stephen2,
and stephen4 for test datasets 1-5, respectively, and datasets an-
drew2 and john2 for training. For the HASL, each word has 27
examples, so we are able to group them into 5 different collections

1 2 3 4 5 total
DTW 40 32 34 37 41 184
ERP 38 32 39 40 41 190
LCSS 40 30 38 39 41 188
EDR 38 27 39 37 43 184
Swale 39 29 41 42 42 193

Table 5: Number of correct clusterings (each out of 45) for the
ASL dataset. The best performers are highlighted in bold.

1 2 3 4 total
DTW 8 8 2 5 23
ERP 9 5 4 7 25
LCSS 8 10 6 7 31
EDR 13 2 3 6 24
Swale 18 10 5 7 40

Table 6: Number of correct clusterings (each out of 45) for the
HASL dataset. The best performers are highlighted in bold.

of data, each with 5 examples, with 2 examples left over. The first
such dataset is used for training, and the others are used for testing.

For the training algorithm, we use the random restart method [25].
Since the relative weight of the match reward and gap cost is what
is important (i.e. the ratio between them), we fix the match reward
to 50 and use the training method to pick various gap costs. The
computed mismatch cost for ASL is -8 and for HASL is -21.

The CM dataset does not have enough data to produce a training
and a test set. We therefore chose the ASL weight as the default.
All techniques correctly clustered the dataset (10 out of 10 correct).

The total number of correct clusterings for each of the five differ-
ent ASL datasets (out of 45 for each dataset) are shown in Table 5.
As can be seen in the table, Swale has the overall best performance
for the tests. There is a high degree of variability for all the simi-
larity functions from one ASL dataset to the next, but some general
trends do emerge. For example, all of the techniques perform well
on dataset 5, averaging over 40 correct clusterings out of 45 possi-
ble. All of the techniques do relatively poorly on dataset 2, averag-
ing only about 30 correct clusterings out of 45. These two datasets
emphasize the variability of data for multi-dimensional time series;
two datasets in the same ASL clustering framework produce very
different results for all of the tested similarity measures.

The results for the HASL datasets are shown in Table 6 and are
once again out of a possible 45 for each technique on each test.
Overall, DTW, ERP, LCSS, EDR, and Swale obtain fewer correct
clusterings on the HASL datasets than they do on the ASL data-
sets. There is also high variability in accuracy across the datasets,
just as in the ASL data presented in Table 5. Swale performs much
better on the classifications for the HASL datasets than the alter-
native techniques, obtaining a total of 40 correct total classifica-
tions. The closest competitor is the LCSS technique with 31. This
dataset also highlights how Swale leverages the combination of the
match reward and gap penalty on real datasets for improved accu-
racy. On HASL dataset 1, EDR, which also uses gap penalties,
performs much better than the LCSS technique. Swale also per-
forms very well on this dataset. On HASL dataset 2, the LCSS
technique performs better than EDR. Swale performs as well as the
LCSS technique on this dataset, and is thus able to obtain the best
of both worlds - it does well when EDR does well, and also does
well when LCSS does well!

In summary, the results presented in this section demonstrate that
Swale is consistently a more effective similarity measuring method
compared to existing methods.



7. CONCLUSIONS
In this paper, we have presented a novel algorithm called FTSE

to speed up the evaluation ofǫ threshold-based scoring functions
for time series datasets. We have shown that FTSE is faster than
the traditionally used dynamic programming methods by a factor
of 7-8, and is even faster than approximation techniques such as
the Sakoe-Chiba Band by a factor of 2-3. In addition, we also pre-
sented a flexible new scoring model for comparing the similarity
between time series. This new model, called Swale, combines the
notions of gap penalties and match rewards of previous models, and
also improves on these models. Using extensive experimental eval-
uation on a number of real datasets, we show that Swale is more
accurate compared to existing methods.
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